Induced blue phase of cholesteric-nematic mixtures under the action of acetone vapors

Authors

  • Z.M. Mykytyuk Lviv Polytechnic National University, Lviv, Ukraine
  • Y.M. Kachurak Lviv Polytechnic National University, Lviv, Ukraine
  • M.V. Vistak Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
  • I.T. Kogut Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • R.L. Politanskyi Yuri Fedjkovych Chernivtsy National University, Chernivtsy, Ukraine
  • O.Y. Shymchyshyn Lviv Polytechnic National University, Lviv, Ukraine
  • I.S. Diskovskyi Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
  • P.V. Vashchenko Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.1.109-113

Keywords:

liquid crystal, E7, gas sensor, blue phase, optical sensor

Abstract

Liquid crystals can exhibit structural orientational order. The creation of a mixture with the addition of chiral molecules to the nematic liquid crystal induces helical twisting, the axis of which is directed perpendicular to the cell surfaces. When some cholesteric mixtures with a sufficiently short spiral pitch (up to 400-500 nm) are heated to a temperature close to, but still lower than, the temperature of the main transition to the isotropic state, in some cases the so-called blue phases can be formed.

We carried out a study on the detection of structural manifestations of the blue phase under the action of vapors of chemical substances, in particular acetone. The main dependences of effect of acetone on the liquid crystal mixture depending on the concentration were also revealed. The two-stage phase transformation from cholesteric liquid crystal to the isotropic liquid via the intermediary blue phase could be clearly recorded by changes in optical transmission. Possible applications are discussed.

References

M.A. Bedolla Pantoja, Y. Yang, & N.L. Abbott, Toluene-induced phase transitions in blue phase liquid crystals. Liquid Crystals, 46 (13-14), 1925 (2019); https://doi.org/10.1080/02678292.2019.1633432.

B. Gurboga, E. Kemiklioglu, Optical sensing of organic vapor using blue phase liquid crystals. Liquid Crystals, 49(11), 1428 (2022); https://doi.org/10.1080/02678292.2022.2038294.

Y. Yang, Y.K. Kim, X. Wang, M. Tsuei, & N.L. Abbott, Structural and optical response of polymer-stabilized blue phase liquid crystal films to volatile organic compounds. ACS Applied Materials & Interfaces, 12(37), 42099 (2020); https://doi.org/10.1021/acsami.0c11138.

A. Yoshizawa, Material design for blue phase liquid crystals and their electro-optical effects. RSC advances, 3(48), 25475 (2013); https://doi.org/10.1039/c3ra43546f.

V.A. Belyakov, & V.E. Dmitrienko, The blue phase of liquid crystals. Soviet Physics Uspekhi, 28(7), 535 (1985); https://doi.org/10.1070/PU1985v028n07ABEH003870.

S. Meiboom, J.P. Sethna, P.W. Anderson, & W.F. Brinkman, Theory of the blue phase of cholesteric liquid crystals. Physical Review Letters, 46(18), 1216 (1981); https://doi.org/10.1103/PhysRevLett.46.1216.

P.P. Crooker, Blue phases. Chirality in liquid crystals, 186 (2001).

P. Oswald, P. Pieranski, Nematic and cholesteric liquid crystals: concepts and physical properties illustrated by experiments. CRC press, (2005); https://doi.org/10.1201/9780203023013.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, , & T. Kajiyama, Polymer-stabilized liquid crystal blue phases. Nature materials, 1(1), 64 (2002); https://doi.org/10.1038/nmat712.

D.S. Hou, L. Zheng, D.P. Sun, X. Zhou, J.L. Zhu, & W.M. Han, Polymer-stabilized blue phase liquid crystal sensor for sensitive and selective detection of organic vapors. Liquid Crystals, 49(2), 201 (2022); https://doi.org/10.1080/02678292.2021.1951381.

Z. Hotra, Z. Mykytyuk, O. Sushynskyy, O. Hotra, O. Yasynovska, P. Kisała, Sensor systems with optical channel of information transferring. Przeglad Elektrotechniczny, 86 (10), 21(2010)/

W. Wójcik, Z. Mykytyuk, M. Vistak, G. Barylo, R. Politanskyi, I. Diskovskyi, I. Kremer, M. Ivakh, W. Kotsun, Optical sensor with liquid crystal sensitive element for amino acids detection Przeglad Elektrotechniczny, 96 (4), 178 (2020). https://doi.org/10.15199/48.2020.04.37.

Z. Mykytyuk, I. Kremer, M. Ivakh, I. S. Diskovskyi, and S. V. Khomyak, Optical sensor with liquid crystal sensitive element for monitoring acetone vapor during exhalation, Mol. Cryst. 721, 24 (2021); https://doi.org/10.1080/15421406.2021.1905273.

W. Wojcik, M. Vistak, Z. Mykytyuk, R. Politanskyi, I. Diskovskyi, O. Sushynskyi, I. Kremer, T. Prystay, A. Jaxylykova, I. Shedreyeva, Technical solutions and SPICE modeling of optical sensors, Przeglad Elektrotechniczny, 96 (10), 102 (2020);. https://doi.org/10.15199/48.2020.10.18.

M.J. Lee, C.H. Chang, & W. Lee, Label-free protein sensing by employing blue phase liquid crystal. Biomedical Optics Express, 8(3), 1712 (2017). https://doi.org/10.1364/BOE.8.001712.

Z. Mykytiuk, H. Barylo, I. Kremer, M. Ivakh, Y. Kachurak, & I. Kogut, Features of the transition to the isotropic state of the liquid crystal sensitive element of the gas sensor under the action of acetone vapor. Physics and Chemistry of Solid State, 23(3), 473 (2022); https://doi.org/10.15330/pcss.23.3.473-477.

I.A. Gvozdovskyy, Y.M. Kachurak, P.V. Vashchenko, I.A. Kravchenko, Z.M.Mykytyuk, Liquid crystal sensors for detection of volatile organic compounds: comparative effects of vapor absorption and temperature on the phase state of the sensor material. Functional Materials, 30(2), 303 (2023); https://doi.org/10.15407/fm30.02.303.

B. S. Dzundza, I.T. Kohut, V.I. Holota, L.V. Turovska, M.V. Deichakivskyi, Principles of construction of hybrid microsystems for biomedical applications. Physics and Chemistry of Solid State, 23(4), 776 (2022); https://doi.org/10.15407/fm30.02.303.

I. Kogut, B. Dzundza, V. Holota, O. Bulbuk, V. Fedoriuk, & L. Nykyruy, Modeling of integrated signal converters for biomedical sensor microsystems. Physics and Chemistry of Solid State, 24(3), 515 (2023); https://doi.org/10.15330/pcss.24.3.515-519.

I.T. Kogut, A.A. Druzhinin, V.I. Holota, 3D SOI Elements for System-on-Chip Applications. Advanced Materials Research, 137 (2011); https://doi.org/10.4028/www.scientific.net/amr.276.137.

Published

2024-03-02

How to Cite

Mykytyuk, Z., Kachurak, Y., Vistak, M., Kogut, I., Politanskyi, R., Shymchyshyn, O., … Vashchenko, P. (2024). Induced blue phase of cholesteric-nematic mixtures under the action of acetone vapors. Physics and Chemistry of Solid State, 25(1), 109–113. https://doi.org/10.15330/pcss.25.1.109-113

Issue

Section

Scientific articles (Technology)

Most read articles by the same author(s)