Electromagnetic field detectors based on spintronics devices

  • R.L. Politanskyi Yuri Fedjkovych Chernivtsy National University, Chernivtsy, Ukraine
  • P.M. Shpatar Yuri Fedjkovych Chernivtsy National University, Chernivtsy, Ukraine
  • M.V. Vistak Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
  • I.T. Kogut Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • I.S. Diskovskyi Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
  • Yu.A. Rudyak Ivan Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
Keywords: electromagnetic field sensor, ferromagnetic resonance, spin current generation, spin valve


The paper proposes a model of an electromagnetic radiation sensor that uses the precession of the magnetization vector in a ferromagnet (ferromagnetic resonance) as a result of absorbing the energy of an incident electromagnetic wave, the generation of a spin current as a result of this precession, the generation of a spin-polarized current as a result of the passage of a spin current in a non-magnetic metal, and a change in the direction of magnetization of a ferromagnetic layer with a low coercive force (free layer) due to the passage of a spin-polarized current. Then the radiation will be detected by its effect on the electrical resistance of the entire structure, which depends on the mutual directions (parallel or antiparallel) of magnetization of the free and fixed (with a large coercive force) ferromagnetic layers (phenomenon of giant magnetic resistance). The dependence of the spin-polarized current in the device on the frequency and amplitude of the incident electromagnetic wave with linear polarization was calculated. A method of calculating the range of amplitude and frequency values of radiation that can be detected by the sensor has been developed. The parameters of this model are the detection time and the number of spin gates in one sensor. Calculations are given for a ferromagnetic layer made of permalloy and for spin valves with four different critical current values that determine the process of remagnetization of the free layer: 20, 50, 100, and 200 microamps.


X. Liu, K.H. Lam, K. Zhu, C. Zheng, X. Li, Y. Du, C. Liu, P.W.T. Pong, Overview of Spintronic Sensors with Internet of Things for Smart Living, IEEE Transactions on Magnetics, 55(11), 0800222 (2019); https://doi.org/10.1109/TMAG.2019.2927457.

Y. Chen, X. Wang, Z. Sun, H. Li, 2nd Asia Symposium on Quality Electronic Design (ASQED) (IEEE, Penang, Malaysia, 2010); https://doi.org/10.1109/ASQED.2010.5548244.

A. Tanwear, X. Liang, Y. Liu, A. Vuckovic, R. Ghannam, T. Bohnert, E. Paz, P.P. Freitas, R. Ferreira, H. Heidari, Spintronic Sensors Based on Magnetic Tunnel Junctions for Wireless Eye Movement Gesture Control, IEEE Transactions on Biomedical Circuits and Systems, 14(6), 1299 (2020); https://doi.org/10.1109/TBCAS.2020.3027242.

S.O. Kim, W.J. Kim, K.-J. Kim, S.-B. Choe, Y.M. Jang, S.H. Yoon, B.K. Cho, T.D. Lee, Experimental Study of Thermally Activated Magnetization Reversal With a Spin-Transfer Torque in a Nanowire," IEEE Trans. Magn., 44(11), 2531 (2008); https://doi.org/10.1109/TMAG.2008.2002419.

S. Luo, N. Xu, Y. Wang, J. Hong, L. You, Thermally Assisted Skyrmion Memory (TA-SKM), IEEE Electron Device Letters, 41(6), 932 (2020); https://doi.org/10.1109/LED.2020.2986312.

R.L. Politanskyi, V.I. Gorbulik, I.T. Kogut, M.V. Vistak, The Modeling of growth process on the surface of crystal, Physics and Chemistry of Solid State, 23(2), 387 (2022); https://doi.org/10.15330/pcss.23.2.387-393.

M.V. Vistak, V.E. Dmytrakh, Z.M. Mykytyuk, V.S. Petryshak, Y.Y. Horbenko, A liquid crystal-based sensitive element for optical sensors of cholesterol, Func. Mater., 24(4), 687 (2017); https://doi.org/10.15407/fm24.04.687.

W. Wójcik, M. Vistak, Z. Mykytyuk, R. Politanskyi, I. Diskovskyi, O. Sushynskyi, I. Kremer, T. Prystay, A. Jaxylykova, I. Shedereyeva, Technical solutions and SPICE modelling of optical sensors, Przeglad Elektrotechniczny, 96(10), 102 (2020); https://doi.org/10.15199/48.2020.10.18.

G.I. Barylo, R.L. Holyaka, I.I. Helzhynskyy, Z.Yu. Hotra, M.S. Ivakh, R.L. Politanskyi, Modeling of organic light emitting structures, Physics and Chemistry of Solid State, 21(3), 519 (2020); https://doi.org/10.15330/pcss.21.3.519-524.

R.L. Politanskyi, M.V. Vistak, G.I. Barylo, A.S. Andrushchak, Simulation of anti-reflecting dielectric films by the interference matrix method, Opt. Mater., 102, 109782 (2020); https://doi.org/10.1016/j.optmat.2020.109782.

Z. Hotra, A. Mahlovanyy, Z. Mykytyuk, H. Barylo, M. Vistak, I. Kremer, M. Ivakh, R. Politanskyi, IEEE XVth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH) (IEEE, Polyana, Ukraine, 2019); https://doi.org/10.1109/MEMSTECH.2019.8817378.

O. Sushynskyi, M. Vistak, V. Dmytrah, IEEE XIIVth International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET) (IEEE, Lviv, Ukraine, 2016); https://doi.org/10.1109/TCSET.2016.7452075.

F. Duan, D. Abbott, Binary modulated signal detection in a bistable receiver with stochastic resonance, Physica A, 376, 173 (2007); https://doi.org/10.1016/j.physa.2006.10.046.

R.L. Politansky, Z.M. Nytrebych, R.I. Petryshyn, I.T. Kogut, O.M. Malanchuk, M.V. Vistak, Simulation of the Propagation of Electromagnetic Oscillations by the Method of the Modified Equation of the Telegraph Line, Physics and Chemistry of Solid State, 22(1), 168 (2021); https://doi.org/10.15330/pcss.22.1.168-174.

Z. Nytrebych, R. Politanskyi, O. Malanchuk, R. Petryshyn, M. Vistak, IEEE 16th International Conference on the Experience of Designing and Application of CAD Systems (CADSM) (Lviv, Ukraine, 2021); https://doi.org/10.1109/CADSM52681.2021.9385248.

Y. Nakagawa, M. Takagishi, N. Narita, T. Nagasawa, G. Koizumi, W. Chen, S. Kawasaki, T. Roppongi, A. Takeo, T. Maeda, Spin-torque oscillator with coupled out-of-plane oscillation layers for microwave-assisted magnetic recording: experimental, analytical, and numerical studies, Appl. Phys. Lett., 122, 042403 (2023); https://doi.org/10.1063/5.0133921.

Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, Enhanced Gilbert Damping in Thin Ferromagnetic Films, Phys. Rev. Lett., 88, 117601 (2002); https://doi.org/10.1103/PhysRevLett.88.117601.

A. Brataas, Y. Tserkovnyak, G.E.W. Bauer, B.I. Halperin, Spin battery operated by ferromagnetic resonance, Phys. Rev. B, 66, 060404R (2002); https://doi.org/10.1103/PhysRevB.66.060404.

E. Saitoha, M. Ueda, H. Miyajima, Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect, Appl. Phys. Lett., 88, 182509 (2006); https://doi.org/10.1063/1.2199473.

R.L. Politanskyi, L.F. Politanskyi, I.I. Grygorchak, A.D. Veriga, Modeling of Spin Valves of Magnetoresistive Fast-Acting Memory, Journal of Nano- and Electronic Physics, 10(6), 06027 (2018); https://doi.org/10.21272/jnep.10(6).06027.

Y. Xu, D.D. Awschalom, J. Nitta, Handbook of Spintornics (Springer, Dordrecht Heidelberg New York London, 2016).

P. Kumar, A. Naeemi, Benchmarking of spin-orbit torque vs spin-transfer torque devices, Appl. Phys. Lett., 121, 112406 (2022); https://doi.org/10.1063/5.0101265.

V. Vlaminck, J.E. Pearson, S.D. Bader, A. Hoffman, Dependence of spin-pumping spin Hall effect measurement on layer thickness and stacking order, Phys. Rev. B, 88, 064414 (2013); https://doi.org/10.1103/PhysRevB.88.064414.

HuJun Jiao, Gerrit E. W. Bauer, Spin Backflow and ac Voltage Generation by Spin Pumping and the Inverse Spin Hall Effect, Phys. Rev. Lett., 110, 217602 (2013); https://doi.org/10.1103/PhysRevLett.110.217602.

K. Karube, L. Peng, J. Massel, M. Hemmida, H.-A. K. von Nidda, I. Kézsmárki, Xiuzhen Yu, Y. Tokura, Y. Taguchi, Doping Control of Magnetic Anisotropy for Stable Antiskyrmion Formation in Scheibersite (Fe,Ni)3P with S4 symmetry, Adv. Mater., 34(11), 2108770 (2022); https://doi.org/10.1002/adma.202108770.

D.M. Burn, S. Zhang, K. Zhai, Y. Chai, Y. Sun, G. van der Laan, Th. Hesjedal, Mode-Resolved Detection of Magnetization Dynamics Using X-ray Diffractive Ferromagnetic Resonance, Nano Lett., 20(1), 345 (2020); https://doi.org/10.1021/acs.nanolett.9b03989.

P. Bajracharya, V. Sharma, A. Johnson, R. C. Budhani, Resonant precession of magnetization and precession-indused DC voltages in FeGaB thin films, J. Phys. D Appl Phys, 55, 075303 (2022); https://doi.org/10.1088/1361-6463/ac34ab.

M. Guo, R. Cheng, Field-assisted sub-terahertz spin pumping and auto-oscillation in NiO, Appl. Phys. Lett., 121, 02401 (2022); https://doi.org/10.1063/5.0097211.

I.T. Kogut, A.A. Druzhinin, V.I. Holota, 3D SOI elements for system-on-chip applications, Adv. Mat. Res., 276, 137 (2011); https://doi.org/10.4028/www.scientific.net/AMR.276.137.

A. Druzhinin, I. Ostrovskii, Y. Khoverko, I. Kogut, V. Golota, Nanoscale polysilicon in sensors of physical values at cryogenic temperatures, J. Mater. Sci: Mater. in Electron., 29(10), 8364 (2018); https://doi.org/10.1007/s10854-018-8847-0.

R. Politanskyi, M. Vistak, A. Veryga, T. Ruda, Modelling of Spintronic Devices for Application in Random Access Memory, Informatyka Automatyka Pomiary w Gospodarce i Ochronie Środowiska, 10(1), 62 (2020); https://doi.org/10.35784/iapgos.915.

J.D. Costa, S. Guisan, B. Lacoste, A.S. Jenkins, T. Böhnert, M. Tarequzzaman, J. Borme, F.L. Deepak, E. Paz, J. Ventura, R. Ferreira, P.P. Freitas, High power and low critical current density spin transfer torque nano-oscillators using MgO barriers with intermediate thickness, Sci. Rep., 7, 7237 (2017); https://doi.org/10.1038/s41598-017-07762-z.

D.H. Kang, M. Shin, Critical switching current density of magnetic tunnel junction with shape perpendicular magnetic anisotropy through the combination of spin-transfer and spin-orbit torques, Sci. Rep., 11, 22842 (2021); https://doi.org/10.1038/s41598-021-02185-3.

How to Cite
PolitanskyiR., ShpatarP., VistakM., KogutI., DiskovskyiI., & RudyakY. (2023). Electromagnetic field detectors based on spintronics devices. Physics and Chemistry of Solid State, 24(3), 433-440. https://doi.org/10.15330/pcss.24.3.433-440
Scientific articles (Technology)