Dispersion properties of (La0.06Ga0.94)2O3:Eu thin films

Authors

  • O.M. Bordun Ivan Franko National University of Lviv, Lviv, Ukraine
  • B.O. Bordun Ivan Franko National University of Lviv, Lviv, Ukraine
  • I.I. Medvid Ivan Franko National University of Lviv, Lviv, Ukraine
  • I.Yo. Kukharskyy Ivan Franko National University of Lviv, Lviv, Ukraine
  • D.M. Maksymchuk Ivan Franko National University of Lviv, Lviv, Ukraine
  • I.M. Kofliuk Ivan Franko National University of Lviv, Lviv, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.1.85-90

Keywords:

thin film, lanthanum and gallium oxide, refractive index, dispersion

Abstract

The dispersion of the refractive index of (La0.06Ga0.94)2O3:Eu thin films obtained by radio-frequency ion-plasma sputtering has been studied. It was found that the films have a polycrystalline structure corresponding to the monoclinic structure of β- Ga2O3. It is shown that the freshly deposited films are characterised by an abnormal dispersion, and after annealing in argon, a normal dispersion of the refractive index is observed. It was found that at normal dispersion, the spectral dependence of the refractive index in the visible region of the spectrum is mainly determined by electronic transitions from the 2p-state oxygen band, which form the upper filled level of the valence band to the bottom of the conduction band formed by hybridised 2p-states of oxygen and 4s-states of gallium. Two single-oscillator approximation models were analysed and compared for the films annealed in argon, and the approximation parameters, dispersion energy, degree of chemical bond ionicity, coordination number, and static refractive index were determined.

References

Yu. Qin, Zh. Wang, K. Sasaki, J. Ye and Yu. Zhang, Recent progress of Ga2O3 power technology: large-area devices, packaging and applications, Jpn. J. Appl. Physics 62, SF0801 (2023); https://doi.org/10.35848/1347-4065/acb3d3.

L. K. Ping, D. D. Berhanuddin, A. K. Mondal, P. S. Menon and M. A. Mohamed, Properties and perspectives of ultrawide bandgap Ga2O3 in optoelectronic applications, Chinese J. of Physics 73, 195 (2021); https://doi.org/10.1016/j.cjph.2021.06.015.

F. Shi and H. Qiao, Preparations, properties and applications of gallium oxide nanomaterials – A review, Nano Select 3, 348 (2022); https://doi.org/10.1002/nano.202100149.

F.B. Zhang, K. Saito, T. Tanaka, M. Nishio and Q.X. Guo, Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition, J. Cryst. Growth 387, 96 (2014); https://doi.org/10.1016/j.jcrysgro.2013.11.022.

T. Miyata, T. Nakatani and T. Minami, Manganese-activated gallium oxide electroluminescent phosphor thin films prepared using various deposition methods, Thin Sol. Films 373, 145 (2000); https://doi.org/10.1016/S0040-6090(00)01123-8.

Yu Lv, J. Ma, W. Mi, C. Luan, Zh. Zhu and H. Xiao, Characterization of β-Ga2O3 thin films on sapphire (0001) using metal-organic chemical vapor deposition technique, Vacuum 86(12), 1850 (2012); https://doi.org/10.1016/j.vacuum.2012.04.019.

P. Wellenius, A. Suresh, J.V. Foreman, H.O. Everitt and J.F. Muth, A visible transparent electroluminescent europium doped gallium oxide device, Mater. Sci. Eng. B 146(1–3), 252 (2008); https://doi.org/10.1016/j.mseb.2007.07.060.

J.-T. Yan and Ch.-T. Lee, Improved detection sensitivity of Pt/β-Ga2O3/GaN hydrogen sensor diode, Sensors and Actuators B 143(1), 192 (2009); https://doi.org/10.1016/j.snb.2009.08.040.

M. Passlack, M. Hong, E.F. Schubert, J.R. Kwo, J.P. Mannaerts, S.N.G. Chu, N. Moriya and F.A. Thiel, In situ fabricated Ga2O3–GaAs structures with low interface recombination velocity, Appl. Phys. Lett. 66(5), 625 (1995); https://doi.org/10.1063/1.114034.

V. Vasyltsiv, A. Luchechko, Y. Zhydachevskyy, L. Kostyk, R. Lys, D. Slobodzyan, R. Jakieła, B. Pavlyk and A. Suchocki, Correlation between electrical conductivity and luminescence properties in β-Ga2O3:Cr3+ and β-Ga2O3:Cr,Mg single crystals, J. Vacuum Science & Technol. A. 39(3), 033201 (2021); https://doi.org/10.1116/6.0000859.

O.M. Bordun, B.O. Bordun, I.Yo. Kukharskyy, D.M. Maksymchuk and I.I. Medvid, Luminescence of Cr-doped β-Ga2O3 thin films, Phys. and Chem. of Sol. State, 24 (3), 490 (2023); https://doi.org/10.15330/pcss.24.3.490-494.

L. Kong, J. Ma, C. Luan, W. Mi and Yu Lv, Structural and optical properties of heteroepitaxial beta Ga2O3 films grown on MgO (100) substrates, Thin Sol. Films 520(13), 4270 (2012); https://doi.org/10.1016/j.tsf.2012.02.027.

Y. Kokubun, K. Miura, F. Endo and Sh. Nakagomi, Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors, Appl. Phys. Lett. 90(3), 031912 (2007); https://doi.org/10.1063/1.2432946.

K. Shimamura, E.G. Villora, T. Ujiie and K. Aoki, Excitation and photoluminescence of pure and Si-doped β-Ga2O3 single crystals, Appl. Phys. Lett. 92(20), 201914 (2008); https://doi.org/10.1063/1.2910768.

N. Majewska, A. Muñoz, Ru-Shi Liu and S. Mahlik, Influence of Chemical and Mechanical Pressure on the Luminescence Properties of Near-Infrared Phosphors, Chem. Mater. 35, 4680 (2023); https://doi.org/10.1021/acs.chemmater.3c00203.

O.M. Bordun, B.O. Bordun, I.Y. Kukharskyy and I.I. Medvid, Photoluminescence Properties of β-Ga2O3 Thin Films Produced by Ion-Plasma Sputtering, J. Appl. Spectrosc. 84(1), 46 (2017). https://doi.org/10.1007/s10812-017-0425-3.

C. Remple, L. M. Barmore, J. Jesenovec, J. S. McCloy and M. D. McCluskey, Photoluminescence spectroscopy of Cr3+ in β-Ga2O3 and (Al0.1Ga0.9)2O3, J. Vac. Sci. Technol. A 41, 022702 (2023); https://doi.org/10.1116/6.0002340.

N. Pushpa, M.K. Kokila and K.R. Nagabhushana, Red luminescence from La2O3:Eu3+ nanophosphor prepared by Sol-Gel method, Materials Letters: X 18, 100205 (2023); https://doi.org/10.1016/j.mlblux.2023.100205.

I.O. Bordun, O.M. Bordun, I.Yo. Kukharskyy and Zh.Ya. Tsapovska, Structure and Cathodoluminescence of Y2O3:Eu Thin Films obtained at Different Conditions, Acta Physica Polonica A 133(4), 914 (2018); https://doi.org/10.12693/APhysPolA.133.914.

B. N. Rao, P. T. Rao, Sk. E. Basha, D. S. L. Prasanna, K. Samatha and R. K. Ramachandra, Optical response of Eu3+-activated MgAl2O4 nanophosphors for Red emissive. LED Applications, J. Mater. Sci.: Mater. Electron. 34, 955 (2023); https://doi.org/10.1007/s10854-023-10341-w.

O.M. Bordun, B.O. Bordun, I.I. Medvid and I.Yo. Kukharskyy, Microstructure and Thermally Stimulated Luminescence of β-Ga2O3 Thin Films, Acta Physica Polonica A 133(4), 910 (2018); https://doi.org/10.12693/APhysPolA.133.910.

B.F. Bylenky, R.Ya. Voloshchuk and Yu.V. Danyliuk, On the applicability of methods for calculating the optical parameters of thin semiconductor films on transparent layers, Opt. and spectrum, 67(5), 1150 (1989).

A.S. Valeev, Determination of optical permanent thin weakly absorbing layers, Opt. and spectrum, 15(4), 500 (1963)

S.H.Wemple and M.Di Domenico, Behavior of the electronic dielectric constant in covalent and ionic materials, Phys. Rev. B. 3, 1338 (1971); https://doi.org/10.1103/PhysRevB.3.1338.

O.M. Bordun, I.Y. Kukharskyy, B.O. Bordun and V. B. Lushchanets, Dispersion of Refractive Index of β-Ga2O3 Thin Films, J. Appl. Spectrosc. 81 (5), 771 (2014). https://doi.org/10.1007/s10812-014-0004-9.

O.M. Bordun, I.Y. Kukharskyy and I.I. Medvid, Dispersion Properties of (Y0.06Ga0.94)2O3 Thin Films, J. Appl. Spectrosc. 83 (1), 141 (2016); https://doi.org/10.1007/s10812-016-0257-6.

S.K. Sampath and J.F. Cordaro, Optical Properties of Zinc Aluminate, Zinc Gallate, and Zinc Aluminogallate Spinels, J. Am. Ceram. Soc. 81(3), 649 (1998); https://doi.org/10.1111/j.1151-2916.1998.tb02385.x.

Sh. Ono, J. P. Brodholt and G. D. Price, First-principles simulation of high-pressure polymorphs in MgAl2O4,Phys. Chem. Miner. 35(7), 381 (2008); https://doi.org/10.1007/s00269-008-0231-9.

F. Litimein, D. Rached, R. Khenata and H. Baltache, FPLAPW study of the structural, electronic, and optical properties of Ga2O3: Monoclinic and hexagonal phases, J. Alloys Comp. 488(1), 148 (2009); https://doi.org/10.1016/j.jallcom.2009.08.092.

M. Michling and D. Schmeißer, Resonant Photoemission at the O1s threshold to characterize β-Ga2O3 single crystals, IOP Conf. Ser.: Mater. Sci. Eng. 34, 012002 (2012); https://doi.org/10.1088/1757-899X/34/1/012002.

M.R. Tubbs, A Spectroscopic Interpretation of Crystalline Ionicity, Phys. Stat. Sol. B 41(1), K61 (1970); https://doi.org/10.1002/pssb.19700410164.

J. Ahman, G. Svensson and J. Albertsson, A Reinvestigation of β-Gallium Oxide, Acta Cryst. C 52 (6), 1336 (1996); https://doi.org/10.1107/S0108270195016404.

M. A. Blanco, M. B. Sahariah, H. Jiang, A. Costales and R. Pandey, Energetics and migration of point defects in Ga2O3, Phys. Rev. B 72 (18), 184103 (2005); https://doi.org/10.1103/PhysRevB.72.184103.

M. Abdel-Baki, F. A. Abdel Wahab and F. El-Diasty, Optical characterization of xTiO2–(60 − x)SiO2–40Na2O glasses: I. Linear and nonlinear dispersion properties,Mater.Chem. Phys. 96 (2–3), 201 (2006); https://doi.org/10.1016/j.matchemphys.2005.07.022.

R.D. Shannon and C.T. Prewitt, Effective Ionic Radii in Oxides and Fluorides, Acta Cryst. B25 (5), 925 (1969); https://doi.org/10.1107/S0567740869003220.

D. R. Penn, Wave-Number-Dependent Dielectric Function of Semiconductors, Phys. Rev. 128, 2093 (1962); https://doi.org/10.1103/PhysRev.128.2093.

Published

2024-02-29

How to Cite

Bordun, O., Bordun, B., Medvid, I., Kukharskyy, I., Maksymchuk, D., & Kofliuk, I. (2024). Dispersion properties of (La0.06Ga0.94)2O3:Eu thin films. Physics and Chemistry of Solid State, 25(1), 85–90. https://doi.org/10.15330/pcss.25.1.85-90

Issue

Section

Scientific articles (Physics)