Could the negative capacitance effect be used in field-effect transistors with a ferroelectric gate?

Array

Authors

  • E. A. Eliseev Institute for Problems of Materials Science of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • A. N. Morozovska Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • L. P. Yurchenko Institute for Problems of Materials Science of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • M. V. Strikha Taras Shevchenko Kyiv National University, Kyiv, Ukraine; V.Lashkariov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.15330/pcss.23.4.705-713

Keywords:

negative capacitance, ferroelectric film, size-induced phase transition, metal-oxide-ferroelectric field effect transistor

Abstract

We analyze the electric potential and field, polarization and charge, and differential capacitance of a silicon metal-oxide-ferroelectric field effect transistor (MOSFET), in which a gate insulator consists of thin layers of dielectric SiO2 and weak ferroelectric HfO2. It appeared possible to achieve a quasi-steady-state negative capacitance (NC) of the HfO2 layer, , if the layer thickness is close to the critical thickness of the size-induced ferroelectric-paraelectric phase transition. However, this effect disappears as the gate voltage increases above a certain critical value, which can be explained by the nonlinearity of the ferroelectric permittivity. The quasi-steady-state NC corresponds to a positive capacitance of the whole system. Implementation of the gate insulator NC, , can open the principal possibility to reduce the MOSFET subthreshold swing below the critical value, and to decrease the gate voltage below the fundamental Boltzmann limit. However, we failed to found the parameters for which  is negative in the quasi-steady states; and thus, the negative  cannot reduce the subthreshold swing below the fundamental limit. Nevertheless, the increase in , related with , can decrease the swing above the limit, reduce device heating during the operation cycles, and thus contribute to further improvements of MOSFET performances.

References

J. Íñiguez, P. Zubko, I. Luk’yanchuk, and A. Cano, Ferroelectric negative capacitance, Nat. Rev. Mater., 4, 243 (2019); https://doi.org/10.1038/s41578-019-0089-0.

W. Cao and K. Banerjee, Is negative capacitance FET a steep-slope logic switch? Nat. Commun., 11, 196 (2020); https://doi.org/10.1038/s41467-019-13797-9.

M. Hoffmann, S. Slesazek, Thomas Mikolajick. Progress and future prospects of negative capacitance electronics: A materials perspective, APL Mater., 9, 020902 (2021); https://doi.org/10.1063/5.0032954.

R. Landauer. Can capacitance be negative? Collect. Phenom., 2, 167-170 (1976).

S. Salahuddin and S. Datta, Use of negative capacitance to provide voltage amplification for low power nanoscale devices, Nano letters, 8, 405 (2008); https://doi.org/10.1021/nl071804g.

S. Salahuddin, S.Datta. The era of hyper-scaling in electronics, Nat. Electron., 1, 442-450 (2018); https://doi.org/10.1038/s41928-018-0117-x.

M. Hoffmann, M. Peši´c, S. Slesazeck, U. Schroeder, and T. Mikolajick, On the stabilization of ferroelectric negative capacitance in nanoscale devices, Nanoscale, 10, 10891 (2018); https://doi.org/10.1039/C8NR02752H.

T.S. Boscke, S. Teichert, D. Brauhaus, J. Muller, U. Schroder, U. Bottger, and T. Mikolajick, Phase transitions in ferroelectric silicon doped hafnium oxide, Appl. Phys. Lett., 99, 112904 (2011); https://doi.org/10.1063/1.3636434.

P. Nukala, M. Ahmadi, Y.F. Wei, S. de Graaf, E. Stylianidis, T. Chakrabortty, S. Matzen, H.W. Zandbergen, A. Bjorling, D. Mannix, D. Carbone, B. Kooi, B., Noheda, Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices, Science, 372, 630 (2021); https://doi.org/10.1126/science.abf3789.

H. Mulaosmanovic, S. Dünkel, J. Müller, M. Trentzsch, S. Beyer, E.T. Breyer, T. Mikolajick, and S. Slesazeck, Impact of read operation on the performance of HfO2-based ferroelectric FETs, IEEE Electron. Device Lett., 41, 1420 (2020); https://doi.org/10.1109/LED.2020.3007220.

P.D. Lomenzo, S. Jachalke, H. Stoecker, E. Mehner, C. Richter, T. Mikolajick, U. Schroeder, Universal Curie constant and pyroelectricity in doped ferroelectric HfO2 thin films, Nano Energy, 74, 104733 (2020).

Yu. A. Kruglyak, M. V. Strikha, Physics of nanotransistors: MOSFET theory in traditional approach, zero level virtual source model, and depletion approximation, Sensor Electronics and Мicrosystem Technologies, 16(1), 24 (2019); https://doi.org/10.18524/1815-7459.2019.1.159485

Yu. A. Kruglyak, M. V. Strikha, Physics of nanotransistors: gate voltage and surface potential, mobile charge in bulk MOS and in thin SOI, Sensor Electronics and Мicrosystem Technologies, 16(2), 5 (2019); https://doi.org/10.18524/1815-7459.2019.2.171224

S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley-Interscience, New York, 1981).

Supplementary materials in http://arxiv.org/abs/2208.13187

R. L. Anderson, Experiments on Ge-GaGs heterojunctions, Solid-State Electronics, 5, 341 (1962); https://doi.org/10.1007/978-94-009-3073-5_2.

L. D. Landau, and I. M. Khalatnikov, On the anomalous absorption of sound near a second order phase transition point, In Dokl. Akad. Nauk SSSR, 96, 496 (1954).

A.M. Bratkovsky, and A. P. Levanyuk, Very large dielectric response of thin ferroelectric films with the dielectric layers, Phys. Rev., B 63, 132103 (2001); https://doi.org/10.1103/PhysRevB.63.132103.

M. V. Strikha, A. M. Morozovska, On the impossibility of a stable negative capacitance realization in mosfet transistors with insulators based on thin layers of dielectric and ferroelectric, Sensor Electronics and Мicrosystem Technologies, 19(1/2), 19 (2022); https://doi.org/10.18524/1815-7459.2022.1/2.258446

E. A. Eliseev, M. E. Yelisieiev, S. V. Kalinin and A. N. Morozovska. Observability of negative capacitance of a ferroelectric film: Theoretical predictions. Phys. Rev. B, 105, 174110 (2022); https://doi.org/10.1103/PhysRevB.105.174110.

The realized minimal thickness of the SiO2 layer is about 1.8 nm, and the minimal width of p-Si channel is 4 nm. We use smaller sizes in FEM to show how the sizes influence on the polar properties and capacitance of HfO2 film.

A.I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L,You, C. Serrao, S.R. Bakaul, R. Ramesh, and S. Salahuddin, Negative capacitance in a ferroelectric capacitor, Nat. Mater., 14, 182 (2015); https://doi.org/10.1038/nmat4148.

M. Hoffmann, M. Pešić, K. Chatterjee, A.I. Khan, S. Salahuddin, S. Slesazeck, U. Schroeder, and T. Mikolajick, Direct observation of negative capacitance in polycrystalline ferroelectric HfO2. Adv. Func. Mater., 26, 8643 (2016); https://doi.org/10.1002/adfm.201602869.

P. Zubko, J. C. Wojdeł, M. Hadjimichael, S. Fernandez-Pena, A. Sené, I. Luk’yanchuk, J.-M. Triscone, and J. Íñiguez, Negative capacitance in multidomain ferroelectric superlattices, Nature, 534, 524 (2016); https://doi.org/10.1038/nature17659.

Published

2022-12-18

How to Cite

Eliseev, E. A., Morozovska, A. N., Yurchenko, L. P., & Strikha, M. V. (2022). Could the negative capacitance effect be used in field-effect transistors with a ferroelectric gate? Array. Physics and Chemistry of Solid State, 23(4), 705–713. https://doi.org/10.15330/pcss.23.4.705-713

Issue

Section

Scientific articles (Physics)