Features of charge transport in polymer composites polymethylmethacrylate - polyaniline

Authors

  • G. V. Martynyuk Rivne State Humanitarian University
  • O. I. Aksimentyeva Ivan Franko National University of Lviv

DOI:

https://doi.org/10.15330/pcss.21.2.319-324

Keywords:

polymer composites, electrical conductivity, specific conductivity, polymer nanosystems, activation energy of charge transport, percolation

Abstract

The influence of polymer matrix of polymethyl methacrylate (PMMA) on the specific conductivity, percolation threshold, energy of activation of charge transport in polymer composites PMMA − polyaniline (PAN) was studied.

Concentration dependence of the electrical conductivity of composites reveals percolation behavior with the low value of percolation threshold within 2 % content of polyaniline. It is found that in the polymer composites PMMA - PAN the specific conductivity increases by more than 8−9 orders of magnitude compared to the original matrix.

On the base of temperature dependence of the specific conductivity of the obtained composites, it is concluded that PMMA polymer matrix does not change the semiconductor nature of PAN conductivity in the composite but effects on the activation parameters of the charge transport.

From ESR spectra, it found that the presence of a polymeric matrix causes significant delocalization of the charge along the macrochains of the dielectric polymeric matrix.

References

А.М. Mazrouaa, M. Y Abed, N. A Mansour, M. G. Mohamed, J. Mat. Sci. Eng. 1(1), 1 (2012) (http://dx.doi:org/10.4172/2169-0022.1000103).

T. Le, Y. Kim, H. Yoon, Polymers 9, 150 (2017) (https://doi.org/10.3390/polym9040150).

M. Ates, A.S Sarac, T Karazehira, Current Physical Chemistry 2(3), 224 (2012) (https://doi.org/10.4028/www.scientific.net/MSF.42.207).

O.I. Aksimentieva, H.V. Martyniuk, O.M. Yevchuk, I.V. Martyniuk, Scientific notes of the Ternopil National Pedagogical University named after Volodymyr Hnatyuk. Chemistry Series (20), 46 (2013).

H. Wang, G. Xie, M. Fang, Z. Ying, Y. Tong, Y. Zeng, Composites Part B: Engineering 79, (2014) (https://doi.org/10.1016/j.compositesb.2015.05.011).

M Müller, K.H, Liebscher, D. Lellinger, I Alig, P. Pötschke, Materials (Basel) 10(5), 545 (2017) (https://doi.org/10.3390/ma10050545).

H. Martyniuk, O. Aksimentieva, O. Konopelnyk, D. Polovyi, Visnyk Lviv University. Avg. chemical. (51), 336 (2010).

D. Mecerreyes, R. Marcilla, E. Ochoteco, Elrctrochim. Acta 49, 3555 (2004) (https://doi.org/10.1016/j.electacta.2004.03.032).

O. Aksimentyeva, O. Konopelnyk, G. Martyniuk, et al., Rev. Adv. Mater. Sci. (23), 30 (2010).

U Ali, Khairil Juhanni Bt. A. Karim, Nor Aziah Buang, Polymer Reviews (55), 678 (2015) (https://doi.org/10.1080/15583724.2015.1031377).

P.J.S. Foot, R. Simon, Journal of Physics D: Applied Physics 22 (11), 1598 (1989) (https://doi.org/10.1088/0022-3727/22/11/005).

O.I. Konopelnik, O.I. Aksimentyeva, M.Ya. Grytsiv, Materials Scienсe 20 (4), 49 (2002).

O.I. Aksimentyeva, O.I. Konopelnyk, M.Ya. Grytsiv, G.V. Martyniuk, Functional Materials 11(2), 300 (2004).

О. I. Aksimentieva, Electrochemical synthesis methods and conductivity of conjugated polymers (Svit, Lviv, 1998).

A. Pomohailo, A. Rozenberh, Y. Ufliand, Metal nanoparticles in polymers (Chemistry, Moscow, 2000).

О.І. Aksimentyeva, О.І. Konopelnik, G.V Martynyuk, Molec. Cryst. Liq. Cryst. 427, 37 (2005).

T. Liu, C. Burger, B. Chu, Progr. Polym. Sci. 28, 5 (2003).

D.R. Paul, L.M. Robeson, Polymer 49 (15), 3187 (2008) (https://doi.org/10.1016/j.polymer.2008.04.017).

The method of producing polyaniline A.C. 1772110. USSR, IPC S08G73/00/Aksimentieva E.I., Zakordonsky V.P., Kovalchuk E.P. et al. Application. 07/07/90, Publ. 10/30/92. B.I. N 40, 3p.

V.E. Gul, L.Z. Shenfil, Electrically Conductive Polymer Compositions (Chemistry, Moscow, 1984).

E.P. Mammun et al., Electroactive Polymeric Materials, (Alpha. Advertising, Kiev, 2013).

Yu.Yu. Tarasevich, Percolation, Theory. Application. Algorithms (Chemistry, Moscow, 2002).

O.І. Aksimentyeva, О.І. Konopelnyk, G.V. Martyniuk, O.M. Yevchuk, Computational and experimental analysis of functional materials. Chapter 9 (Apple Academic Press, Toronto, 2017).

O.I. Aksimentyeva, O.І. Konopelnyk, V.V. Yurkiv, G.V. Martuniuk, and V.A. Shapovalov, Molec. Cryst. Liq. Cryst. 486, 309 (2007).

G.V. Martinyuk, East European Scientific Journal Wschodnioeuropejskie Czasopismo Naukowe 4(3), 73 (2015).

S. Adhikary, Р. Banerji, Synthetic metals 159, 2519 (2009) (https://doi.org/10.1016/j.synthmet.2009.08.050).

M. Lapkowski, E.M, Geniès, J. Electroanal Chem. 279 (1-2), 157 (1990) (https://doi.org/10.1016/0022-0728(90)85173-3).

D. Srinivasan, T.S Natarajan, S.V. Bhat, В. Wessling, Solid State Communications 2(5), 503 (1999) (https://doi.org/10.1016/S0038-1098(99)00109-X).

P.K. Kahol, J.C. Ho, Y.Y. Chen, C.R. Wang, S. Neeleshwar, В. Tsai, С. Wessling, Synth. Metals. 151(1), 574 (2005) (https://doi.org/10.1016/j.synthmet.2005.03.017).

Published

2020-06-15

How to Cite

Martynyuk, G. V., & Aksimentyeva, O. I. (2020). Features of charge transport in polymer composites polymethylmethacrylate - polyaniline. Physics and Chemistry of Solid State, 21(2), 319–324. https://doi.org/10.15330/pcss.21.2.319-324

Issue

Section

Scientific articles