Synthesis and electrochemical properties of LiyM1-xCaxMnO3 (M = Pr, Eu) solid solutions

Array

Authors

  • V. Kordan Ivan Franko National University of Lviv, Lviv, Ukraine
  • O. Zaremba Ivan Franko National University of Lviv, Lviv, Ukraine
  • P. Demchenko Ivan Franko National University of Lviv, Lviv, Ukraine
  • V. Pavlyuk Ivan Franko National University of Lviv, Lviv, Ukraine; Jan Długosz University of Czestochowa, Czestochowa, Poland

DOI:

https://doi.org/10.15330/pcss.23.4.699-704

Keywords:

X-ray diffraction, electron microscopy, perovskite structure, electrochemical lithiation

Abstract

New Li-containing solid solutions LiyM1-xCaxMnO3 (M = Pr and Eu) were synthesized by electrochemical lithiation of the ceramics with perovskite structure. The qualitative and quantitative composition of the initial and Li-containing ceramics was determined by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The M/Ca/Mn cation ratio was confirmed by X-ray fluorescence spectroscopy. The crystal structure of theM1-xCaxMnO3solid solutions before lithiation (GdFeO3-type structure, space group Pnma, Pearson code oP20) and after lithiation (filled-up GdFeO3-type) was determined by the Rietveld method. X-ray structural analysis showed the formation of phases with increased unit cell parameters after lithiation process. In the case of Eu and Pr-containing samples X-rays diffraction patterns illustrate the amorphous halo based on the by-products of reaction between of ceramics surface and components from electrolyte. Under experimental conditions (Li-metal anode) the quantity of intercalated Li increases for ceramics: Li0.084Eu0.5Ca0.5MnO3, Li0.113Pr0.5Ca0.5MnO3, and Li0.134Pr0.7Ca0.3MnO3. Scanning electron microscopy method revealed the formation of Li-containing aggregates with dimension of 200-900 nm. The grains demonstrate block-like or irregular shape morphology with developed area surface.

References

P. Villars, K. Cenzual (Eds.) Pearson’s Crystal Data – Crystal Structure Database for Inorganic Compounds, ASM International: Materials Park, OH, USA.Release, 2019/20.

M. Yashima, R. Ali, Structural phase transition and octahedral tilting in the calcium titanate perovskite CaTiO3, Solid State Ionics, 180, 120 (2009); https://doi.org/10.1016/j.ssi.2008.11.019.

P. Wagner, G. Wackers, I. Cardinaletti, J. Manca, J. Vanacken, From colossal magnetoresistance to solar cells: An overview on 66 years of research into perovskites, Phys. Status Solidi A, 9, 1700394 (2017); https://doi.org/10.1002/pssa.201700394.

S. Yoon, E. H. Otal, A. E. Maegli, L. Karvonen, S. K. Matam, S. Riegg, S. G. Ebbinghaus, J. C. Fallas, H. Hagemann, B. Walfort, S. Pokrant, A. Weidenkaff, Improved photoluminescence and afterglow of CaTiO3:Pr3+ by ammonia treatment, Opt. Mater. Express, 3(2), 248 (2013); https://doi.org/10.1364/OME.3.000248.

P. Kaur, K. Singh, Review of perovskite-structure related cathode materials for solid oxide fuel cells, Ceram. Int, 46(5), 5521 (2020); https://doi.org/10.1016/j.ceramint.2019.11.066.

M. E. Arroyo-de Dompablo, C. Krich, J. Nava-Avendaño, M. R. Palacín, F. Bardé, In quest of cathode materials for Ca ion batteries: the CaMO3 perovskites (M = Mo, Cr, Mn, Fe, Co, and Ni), Phys. Chem. Chem. Phys., 18,19966 (2016); https://doi.org/10.1039/C6CP03381D.

A. Mai, V. A. C. Haanappel, S. Uhlenbruck, Fr. Tietz, D.Stöver, Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells: Part I. Variation of composition, Solid State Ionics, 176(15–16), 1341(2005); https://doi.org/10.1016/j.ssi.2005.03.009.

J. Han, K. Zheng, K. Świerczek, Nickel-based layered perovskite cathode materials for application in intermediate-temperature solid oxide fuel cells, Funct. Mater. Lett., 4(2), 151 (2011); https://doi.org/10.1142/S1793604711001853.

Z. Lu, Fr. Ciucci, Anti-perovskite cathodes for lithium batteries, J. Mater. Chem. A., 6, 5185 (2018); https://doi.org/10.1039/C7TA11074J.

M. Amores, H. El-Shinawi, I. McClelland, S. R. Yeandel, P.J. Baker, R.I. Smith, H. Y. Playford, P. Goddard, S. A. Corr, E. Cussen, Li1.5La1.5MO6 (M = W6+, Te6+) as a new series of lithium-rich double perovskites for all-solid-state lithium-ion batteries, J. Nat. Commun, 11, 6392 (2020); https://doi.org/10.1038/s41467-020-19815-5.

J. Yan, D Wang., X. Zhang, J. Li, Q. Du, X. Liu, J. Zhang, X. Qi, A high-entropy perovskite titanate lithium-ion battery anode, J. Mater. Sci, 55, 6942 (2020); https://doi.org/10.1007/s10853-020-04482-0.

B. Rożdżyńska-Kiełbik, I. Stetskiv, V. Pavlyuk, A. Stetskiv, Significant improvement of electrochemical hydrogenation, corrosion protection and thermal stability of LaNi4·6Zn0.4-xLix (x ≤ 0.2) solid solution phases due to Li-doping, Solid State Sci. 113, 106552 (2021); https://doi.org/10.1016/j.solidstatesciences.2021.106552.

I. Stetskiv, V. Kordan, I. Tarasiuk, V. Pavlyuk, Synthesis, crystal structure and physical properties of the TbCo4.5SixLi0.5-x solid solution, Physics and Chemistry of Solid State, 22(3), 577 (2021); https://doi.org/10.15330/pcss.22.3.577-584.

N. O. Chorna, V. M. Kordan, A. M. Mykhailevych, O. Ya. Zelinska, A. V. Zelinskiy, K. Kluziak, R. Ya. Serkiz, V. V. Pavlyuk, Electrochemical hydrogenation, lithiation and sodiation of the GdFe2–XMX and GdMn2–XMX intermetallics, Voprosy khimii i khimicheskoi tekhnologii, 2, 139 (2021); https://doi.org/10.32434/0321-4095-2021-135-2-139-149.

A. Balińska, V. Kordan, R. Misztal, V. Pavlyuk, Electrochemical and thermal insertion of lithium and magnesium into Zr5Sn3, J. Solid State Electrochem., 19(8), 2481 (2015); https://doi.org/10.1007/s10008-015-2895-7.

G. Kowalczyk, V. Kordan, A. Stetskiv, V. Pavlyuk, Lithiation and magnesiation of R5Sn3 (R = Y and Gd) alloys, Intermetallics, 70, 53 (2016); https://doi.org/10.1016/j.intermet.2015.12.004.

V. Pavlyuk, W. Ciesielski, N. Pavlyuk, D. Kulawik, M. Szyrej, B. Rozdzynska-Kielbik, V. Kordan, Electrochemical hydrogenation of Mg76Li12Al12 solid solution phase, Ionics, 25(6), 2701 (2019); https://doi.org/10.1007/s11581-018-2743-8.

V. Pavlyuk, W. Ciesielski, N. Pavlyuk, D. Kulawik, G. Kowalczyk, A. Balińska, M. Szyrej, B. Rozdzynska-Kielbik, A. Folentarska, V. Kordan, Hydrogenation and structural properties of Mg100-2xLixAlx (x=12) limited solid solution, Mater. Chem. Phys., 223, 503 (2019) https://doi.org/10.1016/j.matchemphys.2018.11.007.

P. Solokha, S. De Negri, A. Saccone, V. Pavlyuk, B. Marciniak, J. C. Tedenac, Tb2Ni2Mg3: a new structure type derived from the Ru3Al2B2 type, Acta Crystallogr. C Struct. Chem., 63(2), i13-i1631(2007); https://doi.org/10.1107/S0108270107001503.

P. Solokha, S. De Negri, V. Pavlyuk, A. Saccone, G. Fadda, Synthesis and Crystallochemical Characterisation of the Intermetallic Phases La(AgxMg1–x)12 (0.11 ≤ x ≤ 0.21), LaAg4+xMg2–x (–0.15 ≤ x ≤ 1.05) and LaAg2+xMg2–x (0 < x ≤ 0.45), Eur. J. Inorg. Chem., 30, 4811 (2012); https://doi.org/10.1002/ejic.201200700.

V. V. Pavlyuk, I. M. Opainych, O. I. Bodak, T. Palasinska, B. Rozdzynska, H. Bala, Interaction of compounds in La-Ni-Zn system, Pol. J. Chem., 71(3), 309 (1997).

A. I. Horechyy, V. V. Pavlyuk, O. I. Bodak, X-Ray Investigation of the Ce-Cu-Cd System at 570 K, Pol. J. Chem., 73(10), 1681 (1999).

MTech. Retrieved from: http://chem.lnu.edu.ua/mtech/mtech.htm [in Ukrainian].

J. Rodriguez-Carvajal, The Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr (Toulouse, 1990), p. 127.

V. M. Kordan, O. I. Zaremba, P. Yu. Demchenko, V. V. Pavlyuk, Synthesis and Electrochemical Properties of LiyCaxNd1−xMnO3 Solid Solution, Acta Phys. Pol. A., 114(4), 273 (2022); https://doi.org/10.12693/APhysPolA.141.273.

Downloads

Published

2022-12-18

How to Cite

Kordan, V., Zaremba, O., Demchenko, P., & Pavlyuk, V. (2022). Synthesis and electrochemical properties of LiyM1-xCaxMnO3 (M = Pr, Eu) solid solutions: Array. Physics and Chemistry of Solid State, 23(4), 699–704. https://doi.org/10.15330/pcss.23.4.699-704

Issue

Section

Scientific articles (Chemistry)