Porous structure of carbon materials obtained from the shell of walnuts

Array

Authors

  • N.Ya. Ivanichok Joint Educational and Scientific Laboratory for Physics of Magnetic Films of G.V. Kurdyumov Institute for Metal Physics NAS of Ukraine, State University “Precarpathian National University named after Vasyl Stefanyk”, Ministry of Education and Sciences of Ukraine, Ivano-Frankivsk, Ukraine
  • O.M. Ivanichok Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Street, Ivano-Frankivsk, Ukraine, 76025.
  • P.I. Kolkovskyi Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Street, Ivano-Frankivsk, Ukraine, 76025.
  • B.I. Rachiy Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Street, Ivano-Frankivsk, Ukraine, 76025.
  • S.-V.S. Sklepova Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Street, Ivano-Frankivsk, Ukraine, 76025.
  • Yu.O. Kulyk Ivan Franko National University of Lviv, Lviv, Ukraine
  • V.V. Bachuk Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine

DOI:

https://doi.org/10.15330/pcss.23.1.172-178

Keywords:

porous carbon material, porous structure, small-angle X-ray scattering, low-temperature porometry

Abstract

Samples of porous carbon material (PCM) were obtained by carbonization of the feedstock (walnut shells). Small-angle X-ray scattering (SAXS) was used to study the porous structure of the obtained carbon materials. The fractal dimension of the surface increases and significant changes are observed in the distribution of the pore volume of the PCM samples with an increase in the carbonization temperature of the initial feedstock, which is especially pronounced for the sample obtained at 700 °C. It is shown that PCM obtained at 400-700 °С are macroporous materials, the maximum porous volume corresponds to pores with radius R ≈ 30 nm, and samples obtained at 700-1000 °C are mesoporous with R ≈ 5 nm.  The characteristics of the porous structure of the obtained materials were calculated on the basis of isotherms of low-temperature adsorption-desorption of nitrogen and it was shown that the carbonization temperature significantly affects the specific surface area and pore volume of PCM. It was determined that to obtain of PCM with an optimal ratio of micro- and mesopores, the temperature is 800 °C, at which the specific surface area of the carbon material is 238 m2/g with an average pore diameter of 2.2 nm.

References

S. Rawatab, R.K. Mishrac, T. Bhaskarab, Chemosphere 286(3), 131961 (2021); https://doi.org/10.1016/j.chemosphere.2021.131961.

H. Yang, S. Ye, J. Zhou, T. Liang, Frontiers in Chemistry 24, 00274 (2019); https://doi.org/10.3389/fchem.2019.00274.

T.Y. Boychuk, I.M. Budzulyak, N.Y. Ivanichok, R.P. Lisovskiy, B.I. Rachiy, Journal of Nano- and Electronic Physics 7(1), 01019 (2015); https://jnep.sumdu.edu.ua/en/component/content/full_article/1420.

B.I. Rachiy, I.M. Budzulyak, V.M. Vashchynsky, N.Y. Ivanichok, M.O. Nykoliuk, Nanoscale Research Letters 11(18), 1 (2016); https://doi.org/10.1186/s11671-016-1241-z.

B.I. Rachiy, B.K. Ostafiychuk, I.M. Budzulyak, N.Y. Ivanichok, Journal of Nano- and Electronic Physics 7(4), 04077 (2015); https://jnep.sumdu.edu.ua/en/component/content/full_article/1673.

M. Inagaki, New Carbon Materials 24(3) 193 (2009); https://doi.org/10.1016/S1872-5805(08)60048-7.

R. Taylor, H. Marsh, E. Heintz, F. Rodriguez-Reinoso, Introduction to Carbon Technologies (University of Alicante, Alicante, 1997).

R.Y. Shvets, I.I. Grygorchak, A.K. Borysyuk, S.G. Shvachko, A.I. Kondyr, V.I. Baluk, A.S. Kurepa, B.I. Rachiy, Physics of the Solid State 56(10), 2021 (2014); https://doi.org/10.1134/S1063783414100266.

A. Jánosi, Monatshefte für Chemie – Chemical Monthly 124(8-9), 815 (1993).

M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, R. Francisco, J. Rouquerol, K.S.W. Sing, Pure and Applied Chemistry 87(9-10), 1051 (2015); https://doi.org/10.1515/pac-2014-1117.

J. Landers, G.Y. Gor, A.V. Neimark, Colloids and Surfaces A: Physicochemical and Engineering Aspects 437, 3 (2013); https://doi.org/10.1016/j.colsurfa.2013.01.007.

E. Härk, A. Petzold, G. J. Goerigk, S. Risse, I. Tallo, R. Härmas, E. Lust, M. Ballauff, Carbon 146, 284 (2019); https://doi.org/10.1016/j.carbon.2019.01.076.

K.S.W. Sing, D.H.Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure and Applied Chemistry 57(4), 603 (1985).

E.P. Barret, L.C. Joyner, P.P. Halenda, Journal of the American Chemical Society 73(1), 373 (1951).

S. Brunauer, P.H. Emmett, E. Teller, Journal of the American Chemical Society 60(2), 309 (1938).

Downloads

Published

2022-03-23

How to Cite

Ivanichok, N., Ivanichok, O., Kolkovskyi, P., Rachiy, B., Sklepova, S.-V., Kulyk, Y., & Bachuk, V. (2022). Porous structure of carbon materials obtained from the shell of walnuts: Array. Physics and Chemistry of Solid State, 23(1), 172–178. https://doi.org/10.15330/pcss.23.1.172-178

Issue

Section

Scientific articles (Physics)

Most read articles by the same author(s)

1 2 3 > >>