Electron Mobility in CdSexTe1-x (x = 0.25) Solid Solution: Ab Initio Calculation

Array

Authors

  • O.P. Malyk Lviv Polytechnic National University
  • S.V. Syrotyuk Lviv Polytechnic National University

DOI:

https://doi.org/10.15330/pcss.20.4.338-344

Keywords:

electron transfer, point defects, CdSeTe solid solution, ab initio calculation

Abstract

In this paper an assessment of the quality of a solid solution of CdSexTe1-x is done by study of its transport properties. The description of the kinetic phenomena is carried on the base of  the wave function and self-consistent potential for solid solution CdSexTe1-x (x = 0.25) which were determined from the first principles using the projector augmented waves as implemented in the ABINIT code. The scattering processes were considered in the framework of short-range scattering models where the electron interaction with polar and nonpolar optical phonons, piezoelectric and acoustic phonons, static strain centers, neutral and ionized impurities was taken into account. The transition matrix elements were obtained by integration over the unit cell using three-dimensional B-spline interpolation. For crystals with impurity concentration 5.6´1015 - 5´1018 cm-3 the temperature dependences of electron mobility and Hall factor in the range 15 - 1200 K are calculated. The theoretical curves obtained in the short-range approach differ qualitatively and quantitatively from those obtained within the long-range models in relaxation time approximation.

References

A. Kathalingam, M. R. Kim, Y. S. Chae, J. K. Rhee, S. Thanikaikarasan, T. Mahalingam, J. Alloys Compd. 505, 758 (2010) (https://doi.org/10.1016/j.jallcom.2010.06.136).

Q. Zeng, Z. Chen, Y. Zhao, X. Du, F. Liu, G. Jin, F. Dong, H. Zhang, B. Yang, ACS Appl. Mater. Interfaces 7, 23223 (2015) (https://pubs.acs.org/doi/abs/10.1021/acsami.5b07197).

D.E. Swanson, J.R. Sites, W.S. Sampath, Sol. Energ. Mat. Sol. C. 159, 389 (2017) (https://doi.org/10.1016/j.solmat.2016.09.025).

A.H. Munshi, J. Kephart, A. Abbas, J. Raguse, J.-N. Beaudry, K. Barth, J. Sites, J. Walls, W. Sampath, IEEE J. Photovolt. 8, 310 (2018) (https://doi.org/10.1109/JPHOTOV.2017.2775139).

S.M. Babu, T. Rajalakshmi, R. Dhanasekaran, P. Ramasamy, J. Cryst. Growth 110, 423 (1991) (https://doi.org/10.1016/0022-0248(91)90278-D).

Z. Loizos, A. Mitsis, N. Spyrellis, M. Froment, G. Maurin, Thin Solid Films 235, 51 (1993) (https://doi.org/10.1016/0040-6090(93)90242-H).

S. Benyettou, S. Saib, N. Bouarissa, Chem. Phys. 457,147 (2015) (https://doi.org/10.1016/j.chemphys.2015.06.004).

[8] G. Brill, Y. Chen, P. M. Amirtharaj, W. Sarney, D. Chandler-Horowitz, N. K. Dhar, J. Electron. Mater. 34, 655 (2005) (https://doi.org/10.1007/s11664-005-0080-y).

S. Velumani, X. Mathew, P.J. Sebastian, Sol. Energ. Mat. Sol. C. 76, 359 (2003) (https://doi.org/10.1016/S0927-0248(02)00288-X).

K.R. Murali, B. Jayasutha, Chalcogenide Lett. 6, 1 (2009).

B.I. MacDonald, A. Martucci, S. Rubanov, S.E. Watkins, P. Mulvaney, J.J. Jasieniak, ACS Nano 6, 5995 (2012) (https://doi.org/10.1021/nn3009189).

E. Benamar, M. Rami, M. Fahoume, F. Chraibi, A. Ennaoui, Solid State Sci. 1, 301 (1999) (https://doi.org/ 10.1016/S1293-2558(00)80084-9).

N. Muthukumarasamy, S. Jayakumar, M.D. Kannan, R. Balasundaraprabhu, Sol. Energy 83, 522 (2009) (https://doi.org/10.1016/j.solener.2008.10.004).

T.C.M. Santhosh, K.V. Bangera, G.K. Shivakumar, Sol. Energy. 153, 343 (2017) (https://doi.org/10.1016/j.solener.2017.05.079).

X. Gonze, et al., Comput. Phys. Commun. 205, 106 (2016) (https://doi.org/10.1016/j.cpc.2016.04.003).

O.P. Malyk, Comput. Mater. Sci. 33, 153 (2005) (https://doi.org/10.1016/j.commatsci.2004.12.052).

O.P. Malyk, Phys. Status Solidi C 6, S86 (2009) (https://doi.org/10.1002/pssc.200881315).

O.P. Malyk, Can. J. Phys. 92, 1372 (2014) (https://doi.org/10.1139/cjp-2013-0075).

O.P. Malyk, S.V. Syrotyuk, Comput. Mater. Sci. 139, 387(2017) (https://doi.org/10.1016/j.commatsci.2017.07.039).

O.P. Malyk, S.V. Syrotyuk, J. Electron. Mater. 47, 4212 (2018)(https://doi.org/10.1007/s11664-018-6068-1).

P.E. Blöchl, Phys. Rev. B. 50, 17953 (1994) (https://doi.org/10.1103/PhysRevB.50.17953).

N.A.W. Holzwarth, A.R. Tackett, G.E. Matthews, Comput. Phys. Commun. 135, 329 (2001) (https://doi.org/ 10.1016/S0010-4655(00)00244-7).

M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 110, 5029 (1999) (https://doi.org/10.1063/1.478401).

P. Novák, J. Kunes, L. Chaput, W.E. Pickett, Phys. Status Solidi B 243, 563 (2006) (https://doi.org/10.1002/pssb.200541371).

E. Tran, P. Blaha, K. Schwarz, P. Novák, Phys. Rev. B 74, 155108(10) (2006) (https://doi.org/10.1103/PhysRevB.74.155108).

J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Letters 77, 3865 (1996) (https://doi.org/10.1103/PhysRevLett.77.3865).

C. de Boor, A Practical Guide to Splines, (Springer-Verlag, New York, 1978).

C. Erginsoy, Phys.Rev. 79, 1013 (1950) (https://doi.org/10.1103/PhysRev.79.1013).

B. Segall, M.R. Lorenz, R.E. Halsted, Phys. Rev. 129, 2471 (1963) (https://doi.org/10.1103/PhysRev.129.2471).

J. Litwin, Phys. Status Solidi 5, 551 (1964) (https://doi.org/10.1002/pssb.19640050311).

G.L. Hansen, J.L. Schmit, T.N. Casselman, J. Appl. Phys. 53, 7099 (1982) (https://doi.org/10.1063/1.330018).

R. Passler, Phys. Status Solidi B 216, 975 (1999) (https://doi.org/10.1002/(SICI)1521-3951(199912)216:2<975::AID-PSSB975>3.0.CO;2-N).

H.C. Poon, Z.C. Feng, Y. P. Feng, M.F. Li, J. Phys.:Condens. Matter 7, 2783 (1995) (https://doi.org/10.1088/0953-8984/7/14/017).

C. Hermann, C. Weisbuch. Phys. Rev. B, 15, 823 (1977) (https://doi.org/10.1103/PhysRevB.15.823).

J. Brice, P. Capper (ed.), EMIS Datareviews Series No 3, (INSPEC, London, 1987).

W.Gebhardt, G. Schotz, R. Bhargava, (ed.), EMIS Datareviews Series No 17, (INSPEC/IEE London, 1997).

M. Gorska, W. Nazarewicz, Phys. Status Solidi B 65, 193 (1974) (https://doi.org/10.1002/pssb.2220650117).

J. Baars, F. Sorger, Solid State Comm. 10, 875 (1972) (https://doi.org/10.1016/0038-1098(72)90211-6).

R.K. Willardson, A.C. Beer (ed.), Semiconductors and Semimetals, (Academic Press, New York, San Francisco, London, 1975).

Ju.H. Velikov, A.P. Rusakov, Fiz. Tverd. Tela 13, 1157 (1971).

D.L. Rode, J.D. Wiley, Phys. Status Solidi B 56, 699 (1973) (https://doi.org/10.1002/pssb.2220560234).

B. Bonello, B. Fernandez, J. Phys. Chem. Solids 54, 209 (1993) (https://doi.org/10.1016/0022-

(93)90310-N).

D. Berlincourt, H. Jaffe, L.R. Shiozawa, Phys. Rev. 129, 1009 (1963) (https://doi.org/10.1103/PhysRev.129.1009).

Landolt- Bornstein Numerical Data and Functional Relationship in Science and Technology. New Series, (Springer Verlag, Berlin, 1984).

O.P. Malyk, J. Alloys Compd. 371, 146 (2004) (https://doi.org/10.1016/j.jallcom.2003.07.033).

N. Muthukumarasamy, R. Balasundaraprabhu, S. Jayakumar, and M.D. Kannan, Sol. Energ. Mat. Sol. C. 92, 851 (2008) (https://doi.org/10.1016/j.solmat.2008.02.005).

Published

2019-12-15

How to Cite

Malyk, O., & Syrotyuk, S. (2019). Electron Mobility in CdSexTe1-x (x = 0.25) Solid Solution: Ab Initio Calculation: Array. Physics and Chemistry of Solid State, 20(4), 338–344. https://doi.org/10.15330/pcss.20.4.338-344

Issue

Section

Scientific articles