Structure Formation and Corrosion Behaviour of Quasicrystalline Al–Ni–Fe Alloys

Authors

  • О.V. Sukhova The Oles’ Honchar Dnipropetrovs’k National University
  • V.A. Polonskyy The Oles’ Honchar Dnipropetrovs’k National University
  • К.V. Ustinovа The Oles’ Honchar Dnipropetrovs’k National University

DOI:

https://doi.org/10.15330/pcss.18.2.222-227

Keywords:

decagonal phase, microstructure, corrosion behaviour, stationary potential, electrochemical passivity zone

Abstract

The formation of quasicrystalline decagonal phase and related crystalline phases was investigated by a combination of optical metallography, powder X-ray diffraction, atomic absorption spectroscopy and differential thermal analysis. Corrosion behaviour of quasicrystal Al–Ni–Fe alloys was studied by gravimetric and potentiodynamic polarization experiments in saline and acidic solutions at room temperature. The decagonal phase exhibits two modifications (AlFe- and AlNi-based) depending on the composition. In Al72Ni13Fe15 alloy it coexists with monoclinic Al5FeNi phase. In Al71.6Ni23Fe5.4 alloy crystalline Al13(Ni,Fe)4, Al3(Ni,Fe)2, and Al3(Ni,Fe) phases are seen adjacent to the quasicrystalline decagonal phase. Stability of quasicrystal phase up to room temperature was shown to be connected with its incomplete decomposition during cooling at a rate of 50 K/min. Al72Ni13Fe15 alloy has more than twice larger volume fraction of this phase compared to that of Al71.6Ni23Fe5.4 alloy. A dependence of microhardness on composition was observed as well, with Al72Ni13Fe15 alloy having substantially higher values. In acidic solutions, Al71.6Ni23Fe5.4 alloy showed the best corrosion performance. In saline solutions, the investigated alloys remained mainly untouched by corrosion. Mass-change kinetics exhibited parabolic growth rate. 

References

[1] G. Marcon, S. Lay, Ann. Chim. Sci. Mater. 25(1), 21 (2000).
[2] H. Bitterlich, W. Loeser, L. Schultz, J. Phase Equilib. 23(4), 301 (2002).
[3] R. Rablbauer, G. Frommeyer, F. Stein, Mater. Sci. Eng. A 343(1–2), 301 (2003).
[4] G. Sauthoff, Intermetallics (Verlag Chemie, Weinheim, 1995).
[5] G. Sauthoff, Intermetallics 8(9–11), 1101 (2000).
[6] B.H. Zeifert, J. Salmones, J.A. Hernandez, R. Reynoso, N. Nava, E. Reguera, J.G. Cabanas-Moreno, G. Aguilar-Rios, J. Radioanal. Nucl. Chem. 245(3), 637 (2000).
[7] J.-B. Qiang, D.-H. Wang, C.-M. Bao, Y.-M. Wang, W.-P. Xu, M.-L. Song, C. Dong, J. Mater. Res. 16(9), 2653 (2001).
[8] A.D. Setyawan, D.V. Louzguine, K. Sasamori, H.M. Kimura, S. Ranganathan, A. Inoue, J. Alloys and Compounds 399(1–2), 132 (2005).
[9] G. Т. de Laissardiere, D. Nguyen-Manh, D. Mayou, Progress in Materials Science 50(6), 679 (2005).
[10] B. Grushko, K. Urban, J. Phil. Mag. B. 70(5), 1063 (1994).
[11] B. Grushko, T. Velikanova, Computer Coupling of Phase Diagrams and Thermochemistry 31, 217 (2007).
[12] I. Chumak, K. W. Richter, H. Ipser, Intermetallics. 15(11), 1416 (2007).
[13] L. Zhang, Y. Du, H. Xu, C. Tang, H. Chen, W. Zhang, J. Alloys and Compounds 454(1–2), 129 (2008).
[14] U. Lemmerz, B. Grushko, C. Freiburg, M. Jansen, Phil. Mag. Let. 69(3), 141 (1994).
[15] B. Grushko, U. Lemmerz, K. Fischer, C. Freiburg, Phys. Stat. Sol. 155(17), 17 (1996).
[16] O.V. Sukhova, Yu.V. Syrovatko, K.V. Ustinova, Visnik Dnipropetrovs’kogo universitetu. Seria Fizika, radioelektronika 22(1), 112 (2014).
[17] Е.В. Суховая, В.Л. Плюта, Е.В. Устинова, Фундаментальные и прикладные проблемы черной металлургии 29, 202 (2014).
[18] V.F. Bashev, O.V. Sukhova, К.V. Ustinovа, Строительство, материаловедение, машиностроение 74, 3 (2014).
[19] O.V. Sukhova, K.V. Ustinova, Visnik Dnipropetrovs’kogo universitetu. Seria Fizika, radioelektronika 23(1), 60 (2015).

Published

2017-06-15

How to Cite

Sukhova О., Polonskyy, V., & Ustinovа К. (2017). Structure Formation and Corrosion Behaviour of Quasicrystalline Al–Ni–Fe Alloys. Physics and Chemistry of Solid State, 18(2), 222–227. https://doi.org/10.15330/pcss.18.2.222-227

Issue

Section

Scientific articles