Experimental studies of a new thermoelectric material based on semiconductor solid solution Ti1-xAlxNiSn

Authors

  • Yu. Stadnyk Ivan Franko National University of Lviv, Lviv, Ukraine
  • V.A. Romaka Lviv Polytechnic National University, Lviv, Ukraine
  • L. Romaka Ivan Franko National University of Lviv, Lviv, Ukraine
  • A. Horyn Ivan Franko National University of Lviv, Lviv, Ukraine
  • V. Pashkevych Lviv Polytechnic National University, Lviv, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.1.157-163

Keywords:

Semiconductor, Electric conductivity, thermopower coefficient, Fermi level

Abstract

The structural, electrokinetic, and energetic properties of the Ti1-xAlxNiSn semiconductor solid solution, obtained by introducing of Al atoms into the structure of the TiNiSn half-Heusler phase by substituting Ti atoms in the crystallographic position 4a, were studied. It is shown that in the range of concentrations = 0–0.01, Al atoms mainly replace Ni atoms in the 4c position, generating acceptor states. It was established that at temperatures = 80–160 K, the ratio of concentrations of ionized acceptor and donor states in n-Ti1-xAlxNiSn, х = 0–0.04, is unchanged, but the concentration of donors is greater. At higher temperatures, ≥ 250 K, deep donor states that existed in n-TiNiSn as a result of "a priori doping" of the semiconductor are ionized. An additional mechanism for the generation of donor states in n-Ti1-xAlxNiSn when the tetrahedral voids of the structure are partially occupied by Al atoms was revealed. The concentration ratio of the generated donor-acceptor states determines the position of the Fermi level εF and the conductivity mechanisms of n-Ti1-xAlxNiSn. The studied semiconductor solid solution is a promising thermoelectric material.

References

Casper А., Graf T., Chadov S., Balke B., Felser C., Half-Heusler compounds: novel materials for energy and spintronic applications, Semicond. Sci. Technol. 27, 063001 (2012); https://doi.org/10.1088/0268-1242/27/6/063001.

Romaka V.A., Stadnyk Yu.V., Krayovskyy V.Ya., Romaka L.P., Guk O.P., Romaka V.V., Mykyychuk M.M., Horyn A.M., The latest heat-sensitive materials and temperature transducers, Lviv Polytechnic Publishing House, Lviv (2020); https://opac.lpnu.ua/bib/1131184. [in Ukrainian].

Anatychuk L.I., Thermoelements and thermoelectric devices. Reference book, Naukova dumka, Kyiv (1979). [in Russian].

Romaka V.A., Fruchart D., Stadnyk Yu.V., Tobola J., Gorelenko Yu.K., Shelyapina M.G., Romaka L.P., Chekurin V.F., Conditions for attaining the maximum values of thermoelectric power in intermetallic semiconductors of the MgAgAs structural type, Semiconductors 40(11), 1275 (2006); https://doi.org/10.1134/S1063782606110054.

Romaka V.A., Rogl P., Romaka V.V., Hlil E.K., Stadnyk Yu.V., Budgerak S.M., Features of a priori Heavy Doping of the n-TiNiSn Intermetallic Semiconductor, Semiconductors 45(7), 850 (2011); https://doi.org/10.1134/S1063782611070190.

Akselrud L., Grin Yu., WinCSD: software package for crystallographic calculations (Version 4), J. Appl. Cryst. 47, 803 (2014); https://doi.org/10.1107/S1600576714001058.

Shklovskii B.I. and Efros A.L., Electronic properties of doped semiconductors, Springer-Verlag, Berlin, Heidelberg (1984). https://doi.org/10.1007/978-3-662-02403-4.

Mott N.F. and Davis E.A., Electron processes in non-crystalline materials, Clarendon Press, Oxford (1979); https://doi.org/10.1002/crat.19720070420.

Romaka V.A., Hlil E.K., Skolozdra Ya.V., Rogl P., Stadnyk Yu.V., Romaka L.P., Goryn A.M., Features of the Mechanisms of Generation and “Healing” of Structural Defects in the Heavily Doped Intermetallic Semiconductor n-ZrNiSn, Semiconductors 43, 1115 (2009); https://doi.org/10.1134/S1063782609090024.

Published

2024-02-21

How to Cite

Stadnyk, Y., Romaka, V., Romaka, L., Horyn, A., & Pashkevych, V. (2024). Experimental studies of a new thermoelectric material based on semiconductor solid solution Ti1-xAlxNiSn. Physics and Chemistry of Solid State, 25(1), 157–163. https://doi.org/10.15330/pcss.25.1.157-163

Issue

Section

Scientific articles (Physics)

Most read articles by the same author(s)

1 2 3 > >>