Investigation of thermal properties of gadolinium doped carbon nanotubes

Authors

  • R.G. Abaszade Azerbaijan State Oil and Industry University, Baku, Azerbaijan; Azerbaijan University of Architecture and Construction, Baku, Azerbaijan
  • E.M. Aliyev University of Birmingham, Edgbaston, United Kingdom
  • A.G. Mammadov Azerbaijan State Oil and Industry University, Baku, Azerbaijan
  • E.A. Khanmamadova Azerbaijan State Oil and Industry University, Baku, Azerbaijan
  • A.A. Guliyev Azerbaijan State Oil and Industry University, Baku, Azerbaijan
  • F.G. Aliyev Azerbaijan University of Architecture and Construction, Baku, Azerbaijan
  • R.I. Zapukhlyak Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • H.F. Budak Eastern Anatolia High Technology Application and Research Center Office, Erzurum, Turkey
  • A.E. Kasapoglu Eastern Anatolia High Technology Application and Research Center Office, Erzurum, Turkey
  • T.O. Margitych Kyiv Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • A. Singh Department of Physics, University of Jammu, Jammu, India
  • S. Arya Department of Physics, University of Jammu, Jammu, India
  • E. Gür Eskisehir Osmangazi University, Eskisehir, Turkey
  • M.O. Stetsenko Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, PR China

DOI:

https://doi.org/10.15330/pcss.25.1.142-147

Keywords:

gadolinium, arc discharge method, MWCNT, TEM, TGA, specific heat capacity

Abstract

Thermal properties characterizations for 10% and 15% Gd doped multi wall carbon nanotubes (MWCNTs) were investigated. TGA/DSC and TEM techniques were used for characterization. The features of mass loss characteristics for synthesized nanocomposite carbon nanomaterials were investigated. The specific heat capacities of the samples at a constant pressure increased as the temperature increased.

References

Hira Ijaz, Asif Mahmood, Mohamed M. Abdel-Daim, Rai Muhammad Sarfraz, Muhammad Zaman, Nadiah Zafar, Sultan Alshehery, Mounir M. Salem-Bekhit, Mohammed Azam Ali, Lienda Bashier Eltayeb, Yacine Benguerba, Review on carbon nanotubes (CNTs) and their chemical and physical characteristics, with particular emphasis on potential applications in biomedicine, Inorganic Chemistry Communications, 155, 111020 (2023); https://doi.org/10.1016/j.inoche.2023.111020.

A. Anvari, The Influence of CNT Structural Parameters on the Properties of CNT and CNT-Reinforced Epoxy, International Journal of Aerospace Engineering, Article ID 4873426 (2020); https://doi.org/10.1155/2020/4873426.

M. Hassani, A. Tahghighi, M. Rohani, et al. Robust antibacterial activity of functionalized carbon nanotube- levofloxacine conjugate based on in vitro and in vivo studies. Sci.Rep. 12:10064 (2022); https://doi.org/10.1038/s41598-022-14206-w.

M. Stetsenko, T. Margitych, S. Kryvyi, L. Maksimenko, A. Hassan, S. Filonenko, B. Li, J. Qu, E. Scheer, S. Snegir, Nanoparticle Self-Aggregation on Surface with 1,6-Hexanedithiol Functionalization. Nanomaterials 10, 512 (2020); https://doi.org/10.3390/nano10030512.

D. Fu, H. Lim, Y. Shi, X. Dong, S. G. Mhaisalkar, Y. Chen, Sh. Moochhala, L.Li, Differentiation of gas molecules using flexible and all-carbon nanotube devices, Journal of Physical Chemistry C. 112(3), 650 (2008); https://doi.org/10.1021/jp710362r.

Rodríguez-Galván A, Rivera M, García-López P, Medina LA, Basiuk VA. Gadolinium-containing carbon nanomaterials for magnetic resonance imaging: Trends and challenges. J Cell Mol Med., 24(7), 3779 (2020), https://doi.org/10.1111/jcmm.15065.

F. Du, L. Zhang, L. Zhang, M. Zhang, A. Gong, Y. Tan, S. Zou, Engineered gadolinium-doped carbon dots formagnetic resonance imaging-guided radiotherapy of tumors, Biomaterials, 121, 109 (2017); https://doi.org/10.1016/j.biomaterials.2016.07.008.

Y. Hwang, S. H. Park, J. W. Lee, Applications of functionalized carbon nanotubes for the therapy and diagnosisof cancer, Polymers, 9(1), 13 (2017); https://doi.org/10.3390/polym9010013.

A. Vignes, O. Dufauda, L. Perrina, D. Thomas, J. Bouillard, A. Janès, C. Vallières, Thermal ignition and self-heating of carbon nanotubes: From thermokinetic study to process safety, Chemical Engineering Science 64, 4210 (2009); https://doi.org/10.1016/j.ces.2009.06.072.

D. Bom, R. Andrews, D. Jacques, J. Anthony, B. Chen, M. S. Meier, J. P. Selegue, Thermogravimetric Analysis of the Oxidation of Multiwalled Carbon Nanotubes: Evidence for the Role of Defect Sites in Carbon Nanotube Chemistry, Nano Lett. 2:615 (2002); https://doi.org/10.1021/nl020297u.

A.G. Bannov, M.V. Popov, P.B. Kurmashov, Thermal analysis of carbon nanomaterials: advantages and problems of interpretation, Journal of Thermal Analysis and Calorimetry 142, 349 (2020); https://doi.org/10.1007/s10973-020-09647-2.

M.A.Arshad, Thermo-oxidative decomposition of multi-walled carbon nanotubes: Kinetics and Thermodynamics, Fullerenes, nanotubes and carbon nanostruktures, 28, 23 (2020); https://doi.org/10.1080/1536383X.2020.1775591.

R.G. Abaszade, O.A. Kapush, S.A. Mamedova, A.M. Nabiyev, S.Z. Melikova, S.I. Budzulyak, Gadolinium doping influence on the properties of carbon nanotubes, Physics and Chemistry of Solid State, 21(3), 404 (2020); https://doi.org/10.15330/pcss.21.3.404-408.

R.G. Abaszade, M.B. Babanli, V.O. Kotsyubynsky, A.G. Mammadov, E. Gür, О.A. Kapush, M.O.Stetsenko, R.I.Zapukhlyak, Influence of gadolinium doping on structural properties of carbon nanotube, Physics and Chemistry of Solid State, 24(1), 153 (2023); https://doi.org/10.15330/pcss.24.1.153-158.

A.G. Mammadov, R.G. Abaszade, V.O. Kotsyubynsky, E.Y. Gur, I.Y. Bayramov, E.A. Khanmamadova, O.A. Kapush, Photoconductivity of carbon nanotubes, Technical and Physical Problems of Engineering, 14(3), 155 (2022).

A.G. Mammadov, R.G. Abaszade, M.B. Babanli, V.O. Kotsyubynsky, E. Gur, B.D. Soltabayev, T.O. Margitych M.O. Stetsenko, Photoconductivity of gadolinium-doped carbon nanotubes, Technical and Physical Problems of Engineering, 15, 56(3), 53 (2023).

R.G. Abaszade, E.M. Aliyev, M.B. Babanli, V.O. Kotsyubynsky, R.I. Zapukhlyak, A.G. Mammadov, H.F. Budak, A.E. Kasapoglu, E. Gür, T.O. Margitych, M.O. Stetsenko, Investigation of thermal properties of carbon nanotubes and carboxyl group-functionalized carbon nanotube, Physics and Chemistry of Solid State, 24(3), 530 (2023); https://doi.org/10.15330/pcss.24.3.530-535.

R.G. Abaszade, O.A. Kapush, A.M. Nabiyev, Properties carbon nanotubes doped with gadolinium, Journal of optoelectronics and biomedical materials, 12(3), 61 (2020);https://www.chalcogen.ro/61_AbaszadeRG.pdf

N.R Pradhan, H Duan, J. Liang, G.S. Iannacchione, The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes, Nanotechnology, 20, 245705 (2009); https://doi.org/10.1088/0957-4484/20/24/245705.

K.S. Patil, G.R. Gupta, Thermal investigations of multiwall carbon nanotubes, International Journal of Management, Technology And Engineering Volume IX, Issue I, (2019); https://ijamtes.org/gallery/187-jan19.pdf.

Downloads

Published

2024-03-12

How to Cite

Abaszade, R., Aliyev, E., Mammadov, A., Khanmamadova, E., Guliyev, A., Aliyev, F., … Stetsenko, M. (2024). Investigation of thermal properties of gadolinium doped carbon nanotubes. Physics and Chemistry of Solid State, 25(1), 142–147. https://doi.org/10.15330/pcss.25.1.142-147

Issue

Section

Scientific articles (Physics)

Most read articles by the same author(s)