Impurity states in non-concentric spherical core-shell quantum dot

Authors

  • I. Bilynskyi Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine; Kryvyi Rih State Pedagogical University, Kryvyi Rih, Ukraine
  • R. Leshko Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine
  • O. Leshko Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine
  • H. Terletska Middle Tennessee State University, Murfreesboro, TN, USA
  • R. Pazuyk Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine
  • Kh. Voitovych Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.1.98-103

Keywords:

energy spectrum, core-shell quantum dot, shifted core, hydrogenic impurity

Abstract

It was suggested the model of the non-concentric spherical core-shell quantum dot with hydrogenic impurity. It has been defined that the electron energy spectrum as a function of both an impurity and the core location. The splitting and degeneration of energy levels has been discussed. It is shown that displacing the core of a quantum dot or impurity in opposite directions can lead to alternate splitting and degeneracy of the energy levels of excited states. In certain configurations of arrangements, compensatory effects associated with the partial restoration of spherical symmetry in the field are observed.

References

Zhixing Gan, Xinglong Wu, Hao Xu, Ning Zhang, Shouping Nie and Ying Fu, Electron transition pathways of photoluminescence from 3C-SiC nanocrystals unraveled by steady-state, blinking and time-resolved photoluminescence measurements, Journal of Physics D: Applied Physics, 49(27), 49 275107 (2016); https://doi.org/10.1088/0022-3727/49/27/275107.

Nicole Amecke, André Heber, Frank Cichos, Distortion of power law blinking with binning and thresholding, J Chem Phys, 140, 114306 (2014); https://doi.org/10.1063/1.4868252.

Ying Fu, Johnny Jussi, Louise Elmlund, Simon Dunne, Qin Wang, and Hjalmar Brismar, Intrinsic blinking characteristics of single colloidal CdSe-CdS/ZnS core-multishell quantum dots, Phys. Rev. B., 99, 035404 (2019), https://doi.org/10.1103/PhysRevB.99.035404.

Ruimin Wang, Yanpeng Zhang, Chenli Gan, Javed Muhammad, and Min Xiao, Controlling blinking in multilayered quantum dots, Applied Physics Letters, 96, 151107 (2010); http://dx.doi.org/10.1063/1.3396985.

Xia Ran, Congcong Chen, Zhongran Wei, Zhen Chi, Yatao Pan, Yanmin Kuang, Xiaojuan Wang, Lijun Guo, Shell-dependent blinking and ultrafast carrier dynamics in CdxZn1-xSeyS1-y@ZnS core/shell quantum dots, Journal of Luminescence, 248, 118953 (2022); https://doi.org/10.1016/j.jlumin.2022.118953.

Cornelius Krasselt and Christian von Borczyskowski, Electric Field Dependent Photoluminescence Blinking of Single Hybrid CdSe/CdS-PMMA Quantum Dots, J. Phys. Chem. C, 125(28), 15384 (2021); https://pubs.acs.org/doi/10.1021/acs.jpcc.1c01438.

Jau Tang; R. A. Marcus,. Mechanisms of fluorescence blinking in semiconductor nanocrystal quantum dots, J. Chem. Phys., 123, 054704 (2005); https://doi.org/10.1063/1.1993567.

Benard Omogo, Feng Gao, Pooja Bajwa, Mizuho Kaneko, and Colin D. Heyes, Reducing Blinking in Small Core–Multishell Quantum Dots by Carefully Balancing Confinement Potential and Induced Lattice Strain: The “Goldilocks” Effect, ACS Nano, 10(4), 4072 (2016); https://doi.org/10.1021/acsnano.5b06994.

Taekjip Ha, How nanocrystals lost their blink, Nature. 459, 649 (2009); https://doi.org/10.1038/459649a.

Figen Karaca Boz, Beyza Nisanci, Saban Aktas, S. Erol Okan, Energy levels of GaAs/AlxGa1-xAs/AlAs spherical quantum dot with an impurity, Applied Surface Science, 387(30), 76 (2016); https://doi.org/10.1016/j.apsusc.2016.06.035.

V.A. Holovatsky, О.M. Voitsekhivska, M. Ya. Yakhnevych, The effect of magnetic field and donor impurity on electron spectrum in spherical core-shell quantum dot, Superlattices and Microstructures, 116, 9 (2018); https://doi.org/10.1016/j.spmi.2018.02.006.

R.Ya. Leshko, I.V. Bilynskyi. The hole energy spectrum of an open spherical quantum dot within the multiband model, Physica E: Low-dimensional Systems and Nanostructures, 110, 10 (2019); https://doi.org/10.1016/j.physe.2019.01.024.

V. Holovatsky, M. Chubrey, O. Voitsekhivska. Effect of electric field on photoionisation cross-section of impurity in multilayered quantum dot, Superlattices and Microstructures, 14, 106642 (2020); https://doi.org/10.1016/j.spmi.2020.106642.

D. Makhlouf, M. Choubani, F. Saidi, H. Maaref, Applied electric and magnetic fields effects on the nonlinear optical rectification and the carrier's transition lifetime in InAs/GaAs core/shell quantum dot, Materials Chemistry and Physics, 267, 124660 (2021); https://doi.org/10.1016/j.matchemphys.2021.124660.

Anupam Sahu, Dharmendra Kumar, Core-shell quantum dots: A review on classification, materials, application, and theoretical modeling, Journal of Alloys and Compounds, 924(30), 166508 (2022); https://doi.org/10.1016/j.jallcom.2022.166508.

V.A. Holovatsky, M.V. Chubrei, C.A. Duque, Core-shell type-II spherical quantum dot under externally applied electric field, Thin Solid Films, 747, 139142 (2022); https://doi.org/10.1016/j.tsf.2022.139142.

A. Jbeli, N. Zeiri, N. Yahyaoui, P. Baser, M. Said, Electronic and optical properties of CdSe/ZnSe core/shell QDs within centered hydrogenic impurity and their tunability when subjected to an external electric field, Physica B: Condensed Matter, 672, 415458 (2024); https://doi.org/10.1016/j.physb.2023.415458.

V.А. Holovatsky, O.M. Voitsekhivska, M.Ya. Yakhnevych, Optical properties of GaAs/AlxGa1-xAs/GaAs quantum dot with off-central impurity driven by electric field, Condensed Matter Physics, 21(1), 13703 (2018); https://doi.org/10.5488/CMP.21.13703.

R.Ya. Leshko, I.V. Bilynskyi, O.V. Leshko, M.A. Slusarenko, Electron energy spectrum of the non-concentric spherical core-shell quantum dot, Micro and Nanostructures, 181, 207615 (2023); https://doi.org/10.1016/j.micrna.2023.207615.

Gary Zaiats, Diana Yanover, Roman Vaxenburg, Arthur Shapiro, Aron Safran, Inbal Hesseg, Aldona Sashchiuk and Efrat Lifshitz. PbSe/CdSe Thin-Shell Colloidal Quantum Dots, Z. Phys. Chem., 229, 3 (2015); https://doi.org/10.1515/zpch-2014-0625.

Li Shu-Shen, Xia Jian-Bai. Application of Plane Wave Method to the Calculation of Electronic States of Nano-Structures, Chinese Physics Letters, 23, 1896 (2006); https://doi.org/10.1088/0256-307X/23/7/066.

Shu-Shen Li and Jian-Bai Xia. Binding energy of a hydrogenic donor impurity in a rectangular parallelepiped-shaped quantum dot: Quantum confinement and Stark effects, Journal of Applied Physics, 101, 093716 (2007); http://dx.doi.org/10.1063/1.2734097.

Djillali Nasri, Nadir Sekkal, General properties of confined hydrogenic impurities in spherical quantum dots, Physica E: Low-dimensional Systems and Nanostructures, 42, 2257 (2010); https://doi.org/10.1016/j.physe.2010.04.028.

R.Ya. Leshko, I.V. Bilynskyi, O.V. Leshko, V.B. Hols'kyi, Electron energy spectrum of the spherical GaAs/AlxGa1-xAs quantum dot with several impurities on the surface, Condensed Matter Physics, 26(2), 23704 (2023); https://doi.org/10.5488/CMP.26.23704.

Downloads

Published

2024-03-01

How to Cite

Bilynskyi, I., Leshko, R., Leshko, O., Terletska, H., Pazuyk, R., & Voitovych, K. (2024). Impurity states in non-concentric spherical core-shell quantum dot. Physics and Chemistry of Solid State, 25(1), 98–103. https://doi.org/10.15330/pcss.25.1.98-103

Issue

Section

Scientific articles (Physics)