Light sources based on CdTe/CdS/ZnS heterostructures

Authors

  • M.M. Slyotov Yuri Fedjkovych Chernivtsy National University, Chernivtsy, Ukraine
  • O.M. Slyotov Yuri Fedjkovych Chernivtsy National University, Chernivtsy, Ukraine
  • O.V. Кinzerska Yuri Fedjkovych Chernivtsy National University, Chernivtsy, Ukraine
  • T.M. Мazur Ivano Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine
  • I.V. Horichok Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • M.P. Mazur Ivano Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.1.136-141

Keywords:

CdTe/CdS/ZnS heterostructure, isovalent substitution, light sources, high quantum intensity

Abstract

The optimal modes of isovalent substitution and the CdTe/CdS/ZnS heterostructure obtained for the first time were established, the main parameters of the band structure of the constituent heterolayers and the characteristics of the obtained radiation sources were determined. The high quantum efficiency η ≈ 12-14 % of surface ZnS is caused by isovalent impurities. The band structure parameters of the obtained isovalently substituted CdS layers of atypical cubic modification and their luminescence efficiency of η ≈ 7-8 % were established. The emission of the resulting layers is localized in the edge region of the material and is formed by interband emitting transitions and the dominant annihilation of bound excitons.

References

A. Sadao Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors. (New Jersey: Wiley, 2009).

T.M. Mazur, M.M. Slyotov, V.V. Prokopiv, O.M. Slyotov, M.P. Mazur, Light emitters based on II-VI chalcogenides with nanostructured surface, Molecular Crystals and Liquid Crystals, 752(1), 95 (2023); https://doi.org/10.1080/15421406.2022.2091276.

O. Ermakov Applied optoelectronics. (M.: Tekhnosfera, 416, 2004).

М. Slyotov, T. Mazur, V. Prokopiv, Oleksii Slyotov, Myroslav Mazur, Sources of optical radiation based on ZnTe/ZnSe/ZnS heterostructures, Materials Today: Proceedings, 62, 5763 (2022); https://doi.org/10.1016/j.matpr.2022.03.476.

H. Nykyforchyn, V. Kyryliv, O. Maksymiv, V. Kochubei, R. Boyko, V. Dovhunyk, Wear resistance of the surface nanocrystalline structure under an action of diethyleneglycol medium. Applied Nanoscience, 9(5), 1085 (2019);

https://doi.org/10.1007/s13204-018-0690-3.

A.N. Georgobiani and M.K. Sheinkman, Physics of A2B6 compounds (M. Mir, 320, 1986)

T. Mazur, M. Mazur, M. Halushchak, Surface-Barrier CdTe Diodes for Photovoltaics, Journal of Nano- and Electronic Physics, 15(2), 02004-1 (2023); https://doi.org/10.21272/jnep.15(2).02006.

D.V Korbutyak, S.V. Melnichuk, E.V Korbut, & M.M. Borisyuk, (2000). Cadmium telluride: impurity-defect states and detector properties (Ivan Fedorov: Kyiv, 198, 2000).

I.V. Gorichok, P.M. Fochuk, Y.V. Verzhak, T.O. Parashchuk, D.M. Freik, O.E. Panchuk, ... & R.B. James, Compensation mechanism of bromine dopants in cadmium telluride single crystals, Journal of Crystal Growth, 415, 146 (2015); https://doi.org/10.1016/j.jcrysgro.2014.11.005.

B. Naidych, T. Parashchuk, I. Yaremiy, M. Moyseyenko, O. Kostyuk, O. Voznyak, ... & L. Nykyruy, Structural and thermodynamic properties of Pb-Cd-Te thin films: Experimental study and DFT analysis, Journal of Electronic Materials, 50, 580 (2021); https://doi.org/10.1007/s11664-020-08561-5.

R. Ahiska, D. Freik, T. Parashchuk, & I Gorichok, Quantum chemical calculations of the polymorphic phase transition temperatures of ZnS, ZnSe, and ZnTe crystals, Turkish Journal of Physics, 38(1), 125 (2014); https://doi.org/10.3906/fiz-1301-7.

Y. P. Saliy, L. I. Nykyruy, R. S. Yavorskyi, & S. Adamiak, The surface morphology of CdTe thin films obtained by open evaporation in vacuum, Journal of nano-and electronic physics, 9(5) (2017); https://doi.org/10.21272/jnep.9(5).05016.

V.I. Fistul, Atoms of dopants in semiconductors (state and behavior), (Fizmatlit: Moskva, 432, 2004).

T. Mazur, V. Prokopiv, L. Turovska, Quasi-chemistry of intrinsic point defects in cadmium telluride thin films, Molecular Crystals and Liquid Crystals, 671(1), 85 (2018); https://doi.org/10.1080/15421406.2018.1542088.

M. M. Slyotov, А. M. Slyotov, The sources of radiation in the short-wave range on the basis of II-VI heterolayers, Journal IAPGOS, 4(4), (2018).

Yu.V. Vorobiev, V.I. Dobrovolsky, V.I. Stryha, Semiconductor research methods. (Vyshcha schola: Kyiv, 232, 1988).

S.V. Bulyarskiy, V.I. Fistul, Termodinamika i kinetika vzaimodeystvuyushchikh defektov v poluprovodnikakh. (M. Nauka. Fizmatlit, 352, 1997).

T. M. Mazur, M. M. Slyotov, O. M. Slyotov, M. P. Mazur, Light Emitters Based on CdTe Doped with Isovalent Impurities, Physics and chemistry of solid state, 23(2), 317 (2022); https://doi.org/10.15330/pcss.23.2.317-321.

V.P. Makhniy, M.M. Slyotov, E.V. Stets, I.V. Tkachenko, V.V. Gorley, P.P. Horley, Application of modulation spectroscopy for determination of recombination center parameters, Thin Solid Films, 450, 222 (2004).

Gavrilenko V.I, Grekhov A.M., Korbutyak D.V., Litovchenko V.G. Optical properties of semiconductors. Directory (Naukova Dumka, Kyiv, 608, 1987).

V.P. Gribkovsky, The theory of absorption and emission of light in semiconductors (Science and technology, Minsk, 464, 1975).

Ya.E. Pokrovsky, Radiative recombination in semiconductors (M. Science, 304, 1972)

Era Koh, D.W. Langer, Luminescence of ZnSe near the band edge under strong laser light excitation. J. Luminescence, 1-2, 514 (1970)

S. Zi, Physics of semiconductor devices (M. Mir, 352, 1984).

P. Yu, M. Cardona, Fundamentals of semiconductor physics (M. Fizmatlit, 560, 2002).

Published

2024-03-12

How to Cite

Slyotov, M., Slyotov, O., Кinzerska O., Мazur T., Horichok, I., & Mazur, M. (2024). Light sources based on CdTe/CdS/ZnS heterostructures. Physics and Chemistry of Solid State, 25(1), 136–141. https://doi.org/10.15330/pcss.25.1.136-141

Issue

Section

Scientific articles (Physics)

Most read articles by the same author(s)

1 2 > >>