The Phase Еquilibrium in the HgS–Ga2S3–Bi(Sb)2S3 Systems

Authors

  • O.V. Smitiukh Lesya Ukrainka Volyn National University, Lutsk, Ukraine
  • I.I. Petrus’ Lesya Ukrainka Volyn National University, Lutsk, Ukraine

DOI:

https://doi.org/10.15330/pcss.24.3.467-476

Keywords:

phase diagram, solidus, quasi-binary system, liquidus surface projection

Abstract

Phase equilibria in the quasi-ternary systems HgS–Ga2S3–Bi(Sb)2S were studied by physico-chemical analysis methods on 177 alloys that were synthesized by direct single-temperature method. Phase diagrams of the quasi-binary systems HgS–Bi2S3 and Ga2S3–Bi2S3, six vertical sections (HgGa2S4–HgBi2S4, HgGa2S4–Bi2S3, HgGa6S10–Bi2S3, HgGa6S10–HgBi2S4, HgGa2S4–Sb2S3, and HgS–“GaSbS3”), and liquidus surface projections were investigated. Due to large primary crystallization region of mercury thiogallate, particularly at the HgGa2S4–Bi2S3 and HgGa2S4–HgBi2S4 sections, and low temperature (950-1050 K), the growth of single crystals of mercury thiogallate is possible using solution-melt method.

References

M. V. Kabanov, Yu. M. Andreev, V. V. Badikov, and P. P. Geiko, Parametric frequency converters based on new nonlinear crystals, Russ. Phys. J., 46(8). 835 (2003); https://doi.org/10.1023/B:RUPJ.0000010980.77569.84.

R. Nitsche, H. U. Bölsterli and M. Lichtensteiger, Crystal growth by chemical transport reactions - Binary, ternary, and mixed-crystal chalcogenides, J. Phys. Chem. Solids. 21(3-4), 199 (1961); https://doi.org/10.1016/0022-3697(61)90098-1.

P.G. Schunemann, T.M. Pollak, Synthesis and Growth of HgGa2S4 crystals, J. Crystal growth. 174, 278 (1997); https://doi.org/10.1016/S0022-0248(96)01158-X.

R. C. Sharma, Y. J. L Chang, C. Guminski, The Hg-S (mercury-sulfur) system, JPE, 14(1), 100 (1993);. https://doi.org/10.1007/bf02652168.

A. Zavrazhnov, S. Berezin, A. Kosykov, et al. The phase diagram of the Ga–S system in the concentration range of 48.0–60.7 mol% S,. J. Therm. Anal. Calorim,.. 134, 483 (2018); https://doi.org/10.1007/s10973-018-7124-z.

J.C. Lin, R.C. Sharma, & Y.A. Chang, The Bi-S (Bismuth-Sulfur) system. JPE. 17. p 132 (1996.); https://doi.org/10.1007/BF02665790.

N.Kh. Abrykosov, V.F. Bankyna, L.V. Poretskaia, y dr. Poluprovodnykovye khalkohenidy i splavy na ikh osnove, Moscow: Nauka 1975. 173 pages (In Russian).

State Diagrams of Binary Metallic Systems: Handbook: M.: Mashinostroenie (edited by Lyakisheva N.P.), 1996. 1. 992 pages.

P. Bayliss, W. Nowacki, Refinement of the crystal structure of stibnite, Sb2S3. ZEKGA, 135. p 308 (1972.); https://doi.org/10.1524/zkri.1972.135.16.308.

Scavnicar S. Stibnite. A redetermination of atomic positions. Z.Kristall. 114, 85 (1960.); https://doi.org/10.1524/zkri.1960.114.16.85.

W.G. Mumme, J.A. Watts, HgBi2S4: Crystal structure and relationship with the pavonite homologous series. Acta Cryst., B 36, 1300 (1980.); https://doi.org/10.1107/S0567740880005973.

H. Schwer, V.Kraemer, The crystal structures of CdAl2S4, HgAl2S4, and HgGa2S4. Z.Kristall. 190, 103 (1990); https://doi.org/10.1524/zkri.1989.190.14.103

Števko Martin, Sejkora, Jiří, and Peterec Dušan. Grumiplucite from the rudňany deposit, Slovakia: A second world-occurrence and new data, Journal of Geosciences (Czech Republic), 60 (4). P. 269 (2015); https://doi.org/10.3190/jgeosci.200.

Alsulami Abdullah, Al-Zahrani H.Y.S., Optical characteristics of chemically deposited MnSb2S4 thin films. Physica B: Condensed Matter, 657. Article number 414786 (2023); https://doi.org/10.1016/j.physb.2023.414786.

Rahnamaye H.A. Aliabad, M. Mousavi, A. Abareshi, First-principles calculations of optoelectronic and thermoelectric properties of HgGa2S4 chalcopyrite under pressure effect, Materials Science and Engineering: B. 272, 115336 (2021.).

I.A. Zharikov, V.Yu. Rud, Yu.V. Rud, V.V. Davydov, N.N. Bykova, Photosensitivity of structures based on AIIBIII2CVI4 monocrystals, Journal of Physics: Conference Series. 1038(1). 012100 (2018).

I. D. Olekseyuk, I. I. Mazurets, O. V. Parasyuk, Phase equilibria in the HgS–Ga2S3–GeS2 system, Journal of Alloys and Compounds. 417(1-2). p 131 (2006); https://doi.org/10.1016/j.jallcom.2005.09.036.

N. A. Il’yasheva, E. F. Sinyakova, B. G. Nenashev, and I. V. Sinyakov. Izv. Akad. Nauk SSSR, Neorg. Mater. 21(11) 1860 (1985), Neorg. Mater. Engl. Transl. 21, 1618 (1985).

M.B. Babanly, A.A. Kurbanov, A.A. Kuliev, Phase equilibria and intermolecular interaction in the HgS–Sb2S3(Bi2S3) systems. Izv. AN SSSR, Inorgan.Materials. 16( 3). p 547 (1980).

W. S. Brower, H. S. Parker, R. S. Roth, Synthesis of mercury bismuth sulfide HgBi2S4, Mater. Res. Bull. 1973. 8, 859 (1973); ); https://doi.org/10.1016/0025-5408(73)90193-1.

M. Guittard, M.-P, Pardo, C. Ecrepont, Phase diagram of the system Bi2S3-Ga2S3. С.R.Acad. Sci. Paris. 307, 141 (1988).

S. Barnier, M. Guittard, C. Julien and A. Chilouet, Etude de l'environnement de l'antimoine dans les verres gallium-antimoine-soufre en liaison avec le diagramme de Phase et les spectres d'absorption infrarouge Study of the antimony environment in gallium-antimony-sulphur glasses - Phase diagram and infrared absorption investigations. Mater. Res. Bull. 28 (5), 399 (1993).

L. Akselrud, and Yu. Grin, WinCSD: Software Package for Crystallographic Calculations (Version 4), J. Appl. Cryst, 47, 803 (2014); https://doi.org/10.1107/S1600576714001058.

Downloads

Published

2023-09-14

How to Cite

Smitiukh, O. ., & Petrus’, I. (2023). The Phase Еquilibrium in the HgS–Ga2S3–Bi(Sb)2S3 Systems. Physics and Chemistry of Solid State, 24(3), 467–476. https://doi.org/10.15330/pcss.24.3.467-476

Issue

Section

Scientific articles (Chemistry)