Unconventional superconductivity in PdxBi2Se3 whiskers

Authors

  • A.A. Druzhinin Lviv Polytechnic National University, Lviv, Ukraine
  • I.P. Ostrovskii Lviv Polytechnic National University, Lviv, Ukraine
  • Yu.M. Khoverko Lviv Polytechnic National University, Lviv, Ukraine
  • M.P. Mykytiuk Lviv Polytechnic National University, Lviv, Ukraine

DOI:

https://doi.org/10.15330/pcss.24.3.558-563

Keywords:

whiskers, superconductivity, bismuth selenium, Curie temperature

Abstract

Studies of temperature dependence of magnetoresistance for PdxBi2Se3 whiskers in the temperature range 1.6-77K in  magnetic field up to 10 T were carried out. Crystals were grown by chemical transport reaction method in  closed bromide system. The source and crystallization zone temperatures were 1100 K and 780 K, respectively. Doping of the crystals was carried out during the growth process with  palladium impurity to concentrations of (1 – 2) × 1019 cm−3. In the low-temperature region beginning at a temperature of 5 K and reaching a temperature 3.5 K, a sharp decrease in resistance was observed, which is associated with the transition to  superconducting state. Based on the analysis of the temperature dependence of the resistance at fixed magnetic fields, the Curie temperature Tc1=5.3 K and Tc2=3.5 K as well as the upper critical magnetic field Bc2=1.45 T and 0.25 T were determined. The established parameters indicates in II type supercondor. This is indicated by the ratio Δ0/kBTc = 2.0, which exceeds BCS limit of 1.76 and indicates a relatively large value of the superconducting gap Δ0=0.8 meV. The determined ratio A/γ2, which establishes the relationship between the electron-electron and electron-phonon interaction, is about of 2ao, which indicates a strong fermionic interaction with phonons in the PdxBi2Se3 superconductor. The estimated value of the ratio of the Curie temperature to the effective Fermi temperature equal to 0.04 also falls within the range of 0.01 ⩽ Tc/TF ⩽ 0.1, which confirms the unconventional superconductivity in the investigated whiskers.

References

H.Yi, L.H. Hu, Y. Wang, et al. Crossover from Ising- to Rashba-type superconductivity in epitaxial Bi2Se3/monolayer NbSe2 heterostructures, Nat. Mater., 21, 1366 (2022); https://doi.org/10.1038/s41563-022-01386-z.

C Z. Chang, P.Wei, & J.S. Moodera, Breaking time reversal symmetry in topological insulators, Mrs Bulletin, 39(10), 867 (2014); https://doi.org/10.1557/mrs.2014.195.

M. Kriener, K. Segawa, Zhi Ren, S. Sasaki, Y. Ando, Bulk Superconducting Phase with a Full Energy Gap in the Doped Topological Insulator CuxBi2Se3, Phys. Rev. Lett. 106, 127004 (2011); https://doi.org/10.1103/PhysRevLett.106.127004.

T. Kawai, C. Wang, Y. Kandori, Y. Honoki, K.Matano, T. Kambe, G.-Q.Zheng, Direction and symmetry transition of the vector order parameter in topological superconductors CuxBi2Se3, Nat Commun, 11(1), 1 (2020); https://doi.org/10.1038/s41467-019-14126-w.

Y.S. Hor, A.J. Williams, J.G. Checkelsky, P. Roushan, J. Seo, Q.Xu, H.W.Zandbergen, A.Yazdani, N.P. Ong, R.J. Cava, Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator. Phys Rev Lett, 104(5), 057001 (2010); https://doi.org/10.1103/PhysRevLett.104.057001

K. Matano, M. Kriener, K. Segawa, Y. Ando, G.-Q. Zheng, Spin-rotation symmetry breaking in the superconducting state of CuxBi2Se3. Nat Phys 12(9), 852 (2016);

https://doi.org/10.48550/arXiv.1512.07086

Z. Liu, X. Yao, J. Shao, M. Zuo, L. Pi, S. Tan, C. Zhang, Y. Zhang, Superconductivity with Topological Surface State in SrxBi2Se3, J. Am. Chem. Soc., 137, 10512 (2015); https://doi.org/10.1021/jacs.5b06815

Z. Li, M. Wang, D. Zhang, N. Feng, W. Jiang, C. Han, W. Chen, M. Ye, C. Gao, J. Jia, et al., Possible structural origin of superconductivity in Sr-doped Bi2Se3. Phys Rev Materials, 2(1), 014201 (2018); https://doi.org/10.1103/PhysRevMaterials.2.014201

Y. Pan, A. Nikitin, G. Araizi, Y. Huang, Y. Matsushita, T. Naka, A. De Visser, Rotational symmetry breaking in the topological superconductor SrxBi2Se3 probed by upper-critical field experiments. Sci Rep, 6(1), 1 (2016); https://doi.org 10.1038/srep28632.

Jiayuan Hu, Wenxiang Jiang, Qi Lu, Chenhang Xu, Jiangtao Wu, Jinlong Jiao, Guohua Wang, Jie Ma, Dong Qian, Manipulating the magneto-resistance of Bi2Se3 thin films by strontium doping. Journal of Applied Physics, 132 (9): 095302 (2022); https://doi.org/10.1063/5.0092075.

M. M. Sharma, P. Rani, L. Sang, X. L.Wang, & V. P. S. Awana, Superconductivity below 2.5 K in Nb0.25Bi2Se 3 topological insulator single crystal, Journal of Superconductivity and Novel Magnetism, 33, 565 (2020); https://doi.org/10.48550/arXiv.1911.08108.

B. Lawson, P. Corbae, G. Li, F. Yu, T. Asaba, C. Tinsman, Y.Qiu, J.E. Medvedeva, Y.S. Hor, L. Li, Multiple fermi surfaces in superconducting Nb-doped Bi2Se3. Phys Rev B 94(4), 041114 (2016); https://doi.org/10.1103/PhysRevB.94.041114.

T. Asaba, B. Lawson, C.Tinsman, L. Chen, P. Corbae, G. Li, Y. Qiu, Y.S. Hor, L. Fu, L. Li, Rotational symmetry breaking in a trigonal superconductor Nb-doped Bi2Se3, Phys Rev X, 7(1), 011009 (2017); https://doi.org/10.1103/PhysRevX.7.011009.

K. Kobayashi, T.Ueno, H. Fujiwara, T.Yokoya, J. Akimitsu, Unusual upper critical field behavior in Nb-doped bismuth selenides, Phys Rev B, 95(18), 180503 (2017); https://doi.org/10.1103/PhysRevB.95.180503.

J. Wang, F.Jiao, D. Zhang, M. Chang, L. Cai, Y. Li, C.Wang, S. Tan, Q. Jing, B. Liu, et al., Investigate the Nb doping position and its relationship with bulk topological superconductivity in NbxBi2Se3 by X-ray photoelectron spectra, J Phys Chem Solids, 137, 109208 (2020); https://doi.org/10.1016/j.jpcs.2019.109208.

S.M. Kevy, H.E. Lund, L.Wollesen, K.J. Dalgaard, Y.-T. Hsu, S.Wiedmann, M. Bianchi, A.J.U. Holt, D. Curcio, D. Biswas, et al., Structural and electronic inhomogeneity of superconducting Nb-doped Bi2Se3, Phys Rev B, 103(8), 085107 (2021); https://doi.org/10.1103/PhysRevB.103.085107.

Z Sharma, M., Sang, L., Rani, P., Wang, X., Awana, V. Bulk superconductivity below 6 k in PdBi2Te3 topological single crystal, J Supercond Nov Magn 1 (2020);

https://doi.org/10.48550/arXiv.1912.09647.

A. Vashist, Y. Singh, The ht and pt phase diagram of the superconducting phase in Pd: Bi2Te3, J Supercond Nov Magn 29(8), 1975–1979 (2016); https://doi.org/10.1007/s10948-016-3499-x.

N.S. Liakh-Kaguy, A.A. Druzhinin, I.P. Ostrovskii, Yu.N. Khoverko, Magnetoresistance of Bi2Se3 Whiskers at Low Temperatures, Physics and Chemistry of Solid State, 16 (2), 194, (2017); https://doi.org/10.15330/pcss.18.2.194-197.

A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. Liakh-Kaguy, & V.Troshina, Magneto-transport properties of Bi2Se3 whiskers: superconductivity and weak localization, Molecular Crystals and Liquid Crystals, 701(1), 82 (2020); https://doi.org/10.1080/15421406.2020.1732565.

A.A. Druzhinin, N.S. Liakh-Kaguy, I.P. Ostrovskii, Y.M. Khoverko, & K. Rogacki, Superconductivity and Kondo effect of PdxBi2Se3 whiskers at low temperatures, Journal of Nano- and Electronic Physics, 9(5), 5013-1 (2017); https://doi.org/10.21272/jnep.9(5).05013.

P. Zareapour, A.Hayat, S. Zhao, et al., Proximity-induced high-temperature superconductivity in the topological insulators Bi2Se3 and Bi2Te3, Nat Commun , 3, 1056 (2012); https://doi.org/10.1038/ncomms2042.

L. Wray, S.Y. Xu, Y. Xia, et al. Observation of topological order in a superconducting doped topological insulator, Nature Phys., 6, 855 (2010); https://doi.org/10.1038/nphys1762

Mingtao Li, Yifei Fang, Curtis Kenney-Benson, and Lin Wang, Superconductivity and electron–phonon interaction in SrxBi2Se3 under pressure, New Journal of Physics, 23, 083011(2021); 1 https://doi.org/0.1088/1367-2630/ac14cf.

Y. Fang, W. L.You, & M. Li, Unconventional superconductivity in CuxBi2Se3 from magnetic susceptibility and electrical transport, New Journal of Physics, 22(5), 053026 (2020); https://doi.org/10.1088/1367-2630/ab7fca.

Adrian Hillier, Robert Cywinski, The classification of superconductors using muon spin rotation, Applied Magnetic Resonance, 13(1) (1997); https://doi.org/10.1007/BF03161973.

Uemura, Y. J. Classifying superconductors in a plot of Tc versus Fermi temperature TF, Physica C: Superconductivity, 185, 733 (1991); https://doi.org/10.1016/0921-4534(91)91590-Z.

J.Wang, K.Ran, S. Li, et al., Evidence for singular-phonon-induced nematic superconductivity in a topological superconductor candidate Sr0.1Bi2Se3. Nat Commun , 10, 2802 (2019); https://doi.org/10.1038/s41467-019-10942-2.

M. T. Li, Y. F. Fang, J. C. Zhang, H. M. Yi, X. J. Zhou, & C. T. Lin, Magnetotransport study of topological superconductor Cu0.10Bi2Se3 single crystal. Journal of Physics: Condensed Matter, 30(12), 125702, (2018); https://doi.org/10.1088/1361-648X/aaaca1.

Downloads

Published

2023-09-26

How to Cite

Druzhinin, A., Ostrovskii, I., Khoverko, Y., & Mykytiuk, M. (2023). Unconventional superconductivity in PdxBi2Se3 whiskers. Physics and Chemistry of Solid State, 24(3), 558–563. https://doi.org/10.15330/pcss.24.3.558-563

Issue

Section

Scientific articles (Physics)