Role of the impurities in 2D spin crossover nanoparticle: Monte Carlo study

Authors

  • V. Ivashko Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
  • O. Krulikovskyi Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, Suceava, Romania; Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
  • A. Samila Yuri Fedjkovych Chernivtsy National University, Chernivtsy, Ukraine

DOI:

https://doi.org/10.15330/pcss.24.3.509-514

Keywords:

spin crossover, Ising-like model, Monte Carlo method, spin transition, thermal hysteresis

Abstract

This work is devoted to the study of the impurities effect in 2D spin crossover nanosystem in frame work of an Ising-like model. Results were obtained by means of Monte Carlo modeling technique, based on the heat bath algorithm. It is shown, that the impurities change the system’s thermal hysteresis width and shift the spin transition curves (HS → LS). In this manner, impurities can act as an additional influence parameter on the transition curves. The considered effect is not significant, but nevertheless should be taken into account in the developing process of nanoscale devices based on spin crossover compounds.

References

M. A. Halcrow, Spin-crossover materials: properties and applications (Wiley, Chichester, 2013); https://doi.org/10.1002/9781118519301.

P. Gütlich, H. A. Goodwin, Spin crossover in transition metal compounds I-III (Springer, Berlin, 2004); https://link.springer.com/book/10.1007/b40394-9.

O. Kahn, Molecular magnetism (VCH, New York, 1993).

G. Molnár, S. Rat, L. Salmon, W. Nicolazzi, A. Bousseksouhttps, Spin Crossover Nanomaterials: From Fundamental Concepts to Devices, Advanced Materials, 30(1), 1703862 (2018); https://doi.org/10.1002/adma.201703862.

G. Molnár, L. Salmon, W. Nicolazzi, F. Terki, A. Bousseksou, Emerging properties and applications of spin crossover nanomaterials, Journal of Materials Chemistry C, 2(8), 1360-1366 (2014); https://doi.org/10.1039/C3TC31750A.

H. J. Shepherd, G. Molnár, W. Nicolazzi, L. Salmon, A. Bousseksou, Spin Crossover at the Nanometre Scale, European Journal of Inorganic Chemistry, 2013(5-6), 653-661 (2013); https://doi.org/10.1002/ejic.201201205.

O. Kahn, C. J. Martinez, Spin-Transition Polymers: From Molecular Materials Toward Memory Devices, Science, 279(5347) 44 (1998); https://doi.org/10.1126/science.279.5347.44.

T. Matsumoto, G. N. Newton, T. Shiga, S. Hayami, Y. Matsui, H. Okamoto, R. Kumai, Y. Murakami, H. Oshio, Programmable spin-state switching in a mixed-valence spin-crossover iron grid, Nature Communications, 5, 3865 (2014); https://doi.org/10.1038/ncomms4865.

D. Gao, Y. Liu, B. Miao, C. Wei, J.-G. Ma, P. Cheng, G.-M. Yang, Pressure Sensor with a Color Change at Room Temperature Based on Spin-Crossover Behavior, Inorganic Chemistry, 57(20), 12475 (2018); https://doi.org/10.1021/acs.inorgchem.8b02408.

H. Constant-Machado, J. Linares, F. Varret, J. G. Haasnoot, J. P. Martin, J. Zarembowitch, A. Dworkin, A. Bousseksou, Dilution Effects in a Spin Crossover System, Modelled in Terms of Direct and Indirect Intermolecular Interactions, Journal de Physique I, 6(9), 1203 (1996); https://doi.org/10.1051/jp1:1996124.

R. Tanasa, C. Enachescu, A. Stancu, F. Varret, J. Linares, E. Codjovi, Study of impurities effect in spin crossover compounds using first order reversal curves (FORC) method, Polyhedron, 26(9-11), 1820 (2007); https://doi.org/10.1016/j.poly.2006.09.079.

C. Enachescu, L. Stoleriu, A. Stancu, A. Hauser, Study of the relaxation in diluted spin crossover molecular magnets in the framework of the mechano-elastic model, Journal of Applied Physics, 109(7), 07B111 (2011); https://doi.org/10.1063/1.3556702.

A. Desaix, O. Roubeau, J, Jeftic, J. G. Haasnoot, K. Boukheddaden, E. Codjovi, J. Linarès, M. Noguès, F. Varret, Light-induced bistability in spin transition solids leading to thermal and optical hysteresis, The European Physical Journal B, 6, 183 (1998); https://doi.org/10.1007/s100510050540.

F. Varret, K. Boukheddaden, C. Chong, A. Goujon, B. Gillon, J. Jeftic, A. Hauser, Light-induced phase separation in the [Fe(ptz)6] (BF4)2 spin-crossover single crystal, Europhys Lett, 77(3), 30007 (2007); https://doi.org/10.1209/0295-5075/77/30007.

K. Boukheddaden, I. Shteto, B. Hoô, F. Varret, Dynamical model for spin-crossover solids. I. Relaxation effects in the mean-field approach, Physical Review, B 62(22), 14796 (2000); https://doi.org/10.1103/PhysRevB.62.14796.

K. Boukheddaden, I. Shteto, B. Hoô, F. Varret, Dynamical model for spin-crossover solids. II. Static and dynamic effects of light in the mean-field approach, Physical Review B, 62(22), 14806 (2000); https://doi.org/10.1103/PhysRevB.62.14806.

R. Li, G. Levchenko, F. J. Valverde-Muñoz, A. B. Gaspar, V. V. Ivashko, Q. Li, B. Liu, M. Yuan, H. Fylymonov, J. A. Real, Pressure tunable electronic bistability in Fe(II) Hofmann-like two-dimensional coordination polymer [Fe(Fpz)2Pt(CN)4]: a comprehensive experimental and theoretical study, Inorganic Chemistry, 60(21), 16016 (2021); https://doi.org/10.1021/acs.inorgchem.1c02318.

N. Kawashima, N. Ito, Y. Kanada, Algorithms for Monte Carlo Simulations of the Ising Models on a Simple Cubic Lattice, International Journal of Modern Physics C, 4(3), 525 (1993); https://doi.org/10.1142/S0129183193000537.

O. Fesenko, L. Yatsenko, Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies (Springer, Cham, 2015); https://doi.org/10.1007/978-3-319-18543-9.

T. Kawamoto, Sh. Abea, Thermal hysteresis loop of the spin-state in nanoparticles of transition metal complexes: Monte Carlo simulations on an Ising-like model, Chemical Communications, 31, 3933 (2005); https://doi.org/10.1039/B506643C.

C.-M. Jureschi, J. Linares, A. Boulmaali, P. R. Dahoo, A. Rotaru, Y. Garcia, Pressure and Temperature Sensors Using Two Spin Crossover Materials, Sensors, 16(2), 187 (2016); https://doi.org/10.3390/s16020187.

C. M. Jureschi, J. Linares, A. Rotaru, M. H. Ritti, M. Parlier, M. M. Dîrtu, M. Wolff, Y. Garcia, Pressure Sensor via Optical Detection Based on a 1D Spin Transition Coordination Polymer, Sensors, 15(2), 2388 (2015); https://doi.org/10.3390/s150202388.

J. Linares, E. Codjovi, Y. Garcia, Pressure and Temperature Spin Crossover Sensors with Optical Detection, Sensors, 12(4), 4479 (2012); https://doi.org/10.3390/s120404479.

S. Guerroudj, R. Caballero, F. De Zela, C. Jureschi, J. Linares, K. Boukheddaden, Monte Carlo - Metropolis Investigations of Shape and Matrix Effects in 2D and 3D Spin-Crossover Nanoparticles, Journal of Physics: Conference Series, 738, 012068 (2016); https://doi.org/10.1088/1742-6596/738/1/012068.

A. Rotaru, M. M. Dîrtu, C. Enachescu, R. Tanasa, J. Linares, A. Stancu, Y. Garcia, Calorimetric measurements of diluted spin crossover complexes [FexM1-x(btr)2(NCS)2]H2O with MII = Zn and Ni, Polyhedron, 28(13), 2531 (2009); https://doi.org/10.1016/j.poly.2009.04.046.

Iu. V. Gudyma, A. Iu. Maksymov, V. V. Ivashko, Study of pressure influence on thermal transition in spin-crossover nanomaterials, Nanoscale Research Letters, 9, 691 (2014); https://doi.org/10.1186/1556-276X-9-691.

V. Ivashko, O. Angelsky, Properties of 2D hexagonal spin-crossover nanosystem: a Monte Carlo study, Applied Nanoscience, 10(12), 4487 (2020); https://doi.org/10.1007/s13204-020-01420-z.

Downloads

Published

2023-09-24

How to Cite

Ivashko, V., Krulikovskyi, O., & Samila, A. (2023). Role of the impurities in 2D spin crossover nanoparticle: Monte Carlo study. Physics and Chemistry of Solid State, 24(3), 509–514. https://doi.org/10.15330/pcss.24.3.509-514

Issue

Section

Scientific articles (Physics)