Regularities of Stress-Corrosion Cracking of Pipe Steel 09G2S at Cathodic Polarization in a Model Soil Environment

Authors

  • L.I. Nyrkova E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine
  • P.E. Lisovy E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine
  • L.V. Goncharenko E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine
  • S.O. Osadchuk E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine
  • V.A. Kostin E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine
  • A.V. Klymenko E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine

DOI:

https://doi.org/10.15330/pcss.22.4.828-836

Keywords:

low-carbon steel 09G2S of pipe assortment, coefficients of properties degradation, slow rate deformation, potentiometry, stress-corrosion cracking, hydrogen embrittlement, local anodic dissolution

Abstract

Peculiarities of corrosion-mechanical fracture of 09G2S pipe steel samples in the conditions of cathodic protection were investigated. It was established that depending on the level of protective potential, stress-corrosion cracking of pipe steel of a ferrite-pearlite class 09G2S can occur by different mechanisms. The range of protective potentials was determined, at which the anodic dissolution and hydrogen embrittlement occur simultaneously during the fracture of steel, namely from -0.85 V to -1.0 V. The existence of the above mechanisms is confirmed by the change in the strength and viscosity properties of the steel and the morphology of the fractures. For steels of other manufacturing technology and grades, these potential areas may differ.

References

A. Ya. Krasovskii, I. V. Lokhman, I.V. Orynyak. Strength of Materials 44 (2), 129 (2012), https://doi.org/10.1007/s11223-012-9366-5.

National Energy Board, Report of Public Inquiry concerning Stress Corrosion Cracking on Canadian Oil and Gas Pipelines, MH-2-95, November (1996).

L. Poberezhny, A. Yavorsky, V. Tsyh, A. Stanetsky, A. Grytsanchuk, Scientific and technical journal «Technogenic and ecological safety» 1, 24 (2017).

M Roche. The problematic of disbonding of coatings and corrosion with buried pipelines cathodically protected in: EFC WP16, 10th meeting, EUROCORR’2004, Nice, Sept. 14, 2004.

D. Melot, Paugam, G., Roche, M. Journal of Protective Coatings & Linings, pp. 18-31, 2009 (https://www.paintsquare.com/library/articles/Disbondments_of_Pipeline_Coatings_and_Their_Effects_on_Corrosion_Risks.pdf)

R. N. Parkins, W. K. Blanchard, B.S. Delanty. Corrosion 50 (5), 394 (1994), https://doi.org/10.5006/1.3294348.

J.B. Choi, B.K. Goo, J.C Kim, Y.J. Kim, W.S.Kim, International Journal of Pressure Vessels and Piping 80 (2), 121 (2003), https://doi.org/10.1016/S0308-0161(03)00005-X.

K.J. Yeom, Y.K. Lee, K.H. Oh, W.S. Kim, Engineering Failure Analysis, 57, 553 (2015), https://doi.org/10.1016/j.engfailanal.2015.07.024.

V. Khrutba, G Weigang, O. Stegniy, Ecological safety, 24 (2), 75 (2017).

R.I. Bogdanov, I.V. Ryakhovskyh, Scientific and practical youth seminar, vil. Razvilka, Moscow distr., 15 –16 of Apryl, 2015.

J.A. Beavers, G. Neil, External Corrosion of Oil and Natural Gas Pipelines. ASM Handbook, 13C, Corrosion: Environments and Industries (№ 05145), Corrosion in Specific Industries, 1015.

B. Fang, A. Atrens, J. Wang, E.Z.Han Zhu, W. Ke, Journal of Materials Science 38, 127 (2003), https://doi.org/10.1023/A:1021126202539.

R.L Wenk, 5th Symp. On Line Pipe Research, Catalog No. L30174 (American Gas Association, Arlington, VA, 1974, T-1.

Eslami A., B. Fang, R. Kania, B. Worthingham, J. Been, R. Eadie, W. Chen, Corrosion Science, 52, 3750 (2010), https://doi.org/10.1016/j.corsci.2010.07.025Get rights and content.

B.S. Delanty, J. O’Beirne, Oil Gas Journal, 15, 39 (1992).

S. Wang, W. Chen, F. King:, Corrosion, Vol. 58 (6), 526 (2002), https://doi.org/10.5006/1.3277644.

R. Chu, W. Chen, S.H. Wang, F. King, T.R. Jack, R.R. Fessler, Corrosion, 60 (3), 275 (2004), https://doi.org/10.5006/1.3287732.

L. Niu, Y.F. Cheng, Applied surface science, 253 (21), 8626 (2007), https://doi.org/10.1016/j.apsusc.2007.04.066.

F.M. Song, Corrosion science, 51 (11), 2657 (2009), https://doi.org/10.1016/j.corsci.2009.06.051.

J.Q. Wang, A. Atrens, Corrosion Science, 45 (10), 2199 (2003), https://doi.org/10.1016/S0010-938X(03)00044-1.

L. Poberezhnyi, P. Maruschak, O. Prentkovskis, I. Danyliuk, T. Pyrig, J. Brezinová. Archives of Civil and Mechanical Engineering, 16(3), 524-536 (2016), https://doi.org/10.1016/j.acme.2016.03.003.

T. Vilkys, V. Rudzinskas, O. Prentkovskis, J. Tretjakovas, N. Višniakov, P. Maruschak, Metals 8 (5), 346 (2018), https://doi.org/10.3390/met8050346.

M. Chausov, P. Maruschak, A. Pylypenko., A. Sorochak In Degradation Assessment and Failure Prevention of Pipeline Systems, 189 (2021), https://link.springer.com/chapter/10.1007/978-3-030-58073-5_15.

R. Galván-Martínez, R.Orozco-Cruz, A. Carmona-Hernández, E. Mejía-Sánchez, M. A Morales-Cabrera, A. Contreras, Metals, 9 (12), 1 (2019), https://doi.org/10.3390/met9121353.

Z.Y. Liua, X.G. Li, Y.F. Cheng, Electrochimica Acta, 60 (15), 259 (2012), https://doi.org/10.1016/j.electacta.2011.11.051.

S.C. Silva, A.B. Silva, M.C. Folena, R. Barker, A. Neville, J.P. Gomes, Engineering Failure Analysis, 104550, (2020), https://doi.org/10.1016/j.engfailanal.2020.104550.

J. Capelle, J. Gilgert, I. Dmytrakh, G. Pluvinage, International journal of hydrogen energy, 33 (24), 7630 (2008), https://doi.org/10.1016/j.ijhydene.2008.09.020.

[28] Corrosion of metals and alloys — Stress corrosion testing — Part 1: General guidance on testing procedures. ISO 7539-1:2012.

Steel and alloys. Methods for detection and determination of grain size. GOST 5639-82.

R Antunes de Sena, І. Napoleão Bastos, G. Mendes Platt, International Scholarly Research Notices. Article ID 103715, 6 pages, (2012).

B. Gu, J. L. Luo, W.Z. Mao, X. Yu, Corrosion, 55 (3), 312 (1999), https://doi.org/10.5006/1.3283993.

T.M. Ahmed, S.B. Lambert, A. Plumtree, R. Sutherby, Corrosion, 53 (7), 581 (1997), https://doi.org/10.5006/1.3290290.

B. Gu, J. Luo, X. Mao, Corrosion, 55(1) 96 (1999), https://doi.org/10.5006/1.3283971.

Unified system of corrosion and ageing protection. Metals, alloys, coatings, products. Test methods of hydrogen embrittlement. GOST R 9.915-2010.

Z.Y. Liu, X.G. Li, Y.F. Cheng, Corrosion Science, 55, 54 (2012), https://doi.org/10.1016/j.corsci.2011.10.002.

L. Nyrkova, Engineering Failure Analysis, 116, 104757 (2020), https://doi.org/10.1016/j.engfailanal.2020.104757.

L.І. Nyrkova, S.О. Osadchuk, А.О. Rybakov, S.L. Mel’nychuk, Materials Science, 55, 625 (2020), https://doi.org/10.1007/s11003-020-00352-x.

Downloads

Published

2021-12-30

How to Cite

Nyrkova, L., Lisovy, P., Goncharenko, L., Osadchuk , S., Kostin , V., & Klymenko, A. (2021). Regularities of Stress-Corrosion Cracking of Pipe Steel 09G2S at Cathodic Polarization in a Model Soil Environment. Physics and Chemistry of Solid State, 22(4), 828–836. https://doi.org/10.15330/pcss.22.4.828-836

Issue

Section

Scientific articles (Technology)