A Review of the some aspects for the development of ZnO based photocatalysts for a variety of applications

Authors

  • O.E. Baibara I.M. Frantsevych Institute for Problems of Material Science National Academy of Sciences of Ukraine
  • M.V. Radchenko I.M. Frantsevych Institute for Problems of Material Science National Academy of Sciences of Ukraine
  • V.A. Karpyna I.M. Frantsevych Institute for Problems of Material Science National Academy of Sciences of Ukraine
  • A.I. Ievtushenko I.M. Frantsevych Institute for Problems of Material Science National Academy of Sciences of Ukraine

DOI:

https://doi.org/10.15330/pcss.22.3.585-594

Keywords:

zinc oxide, photocatalysis, photodegradation, nanostructures, antibacterial properties

Abstract

Today, one of the most important problems for humanity is the pollution of the environment with various organic compounds that worsen the health of the peoples. The most dangerous pollutants are complex compounds that do not degrade under natural conditions. One way to solve the problem of pollution is to use photocatalysis to degrade harmful compounds. Zinc oxide nanostructures exhibit attractive photocatalytic and antibacterial properties due to the increased reactivity of the nanoparticle surface, which allows the efficient decomposition of organic pollutants. In this review, various methods for enhancing the photoefficiency of ZnO nanostructures are considered. It is shown that ZnO nanoparticles with specific surfaces (spherical, nanowires, nanoflowers), which are characterized by a high surface area, have a high removal rate of various pollutants. Such methods of improving the photocatalytic properties of ZnO as the band gap engineering, doping with metal/nonmetal, the combination of  ZnO with other materials, formation of hybrid structures are considered.

Author Biographies

M.V. Radchenko, I.M. Frantsevych Institute for Problems of Material Science National Academy of Sciences of Ukraine

кандидат  фізико-математичних наук, старший науковий співробітник Інституту проблем матеріалознавства ім. І.М. Францевича, НАН України

V.A. Karpyna, I.M. Frantsevych Institute for Problems of Material Science National Academy of Sciences of Ukraine

кандидат  фізико-математичних наук, старший науковий співробітник Інституту проблем матеріалознавства ім. І.М. Францевича, НАН України

A.I. Ievtushenko, I.M. Frantsevych Institute for Problems of Material Science National Academy of Sciences of Ukraine

кандидат  фізико-математичних наук, старший дослідник, завідувач відділу Інституту проблем матеріалознавства ім. І.М. Францевича, НАН України.

References

K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Water Res. 88, 428 (2016); https://doi.org/10.1016/j.watres.2015.09.045.

P. Chowdhary, A. Raj, R.N. Bharagava, Chemosphere 194, 229 (2018); https://doi.org/10.1016/j.chemosphere.2017.11.163.

P. Franco, O. Sacco, I. De Marco, V. Vaiano, Catalysts. 346, 1 (2019); https://doi.org/10.3390/catal9040346.

S.H. Khan, B. Pathak, Environmental Nanotechnology, Monitoring and Management 13, 100290 (2020); https://doi.org/10.1016/j.enmm.2020.1002.

M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D.J.d. Aberasturi, I.R. de Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, M. Mahmoudi, Trends Biotechnol. 30, 499 (2012); https://doi.org/10.1016/j.tibtech.2012.06.004.

Cuicui Hu, Lu Lu, Yanjie Zhu, Rong Li, Yanjun Xing, Mater. Chem. Phys. 217, 182 (2018); https://doi.org/10.1016/j.matchemphys.2018.06.068.

Z. Fan, J.G. Lu, J. Nanosci. Nanotechnol. 5, 1561 (2005); https://doi.org/10.1166/jnn.2005.182.

Attarad Ali, Abdul-Rehman Phull and Muhammad Zia, Nanotechnology Reviews 7(5), 413 (2018); https://doi.org/10.1515/ntrev-2018-0067.

T. Jin, D. Sun, Y. Su, H. Zhang, H.J. nSue, J Food Sci. 74, 46 (2009); https://10.1111/j.17503841.2008.01013.x.

L. Zhang, Y. Jiang, Y. Ding, J Nanopart Res 9, 479 (2007); https://doi.org/10.1007/s11051-006-9150-1.

R.B. Reed, D.A. Ladner, C.P. Higgins, P. Westerhoff, J.F. Ranville, Environ. Toxicol. Chem. 31, 93 (2012); https://doi.org/10.1002/etc.708.

S. Malato, J. Blanco, A. Vidal, C. Richter, Appl Catal B Environ. 37, 1 (2002); https://doi.org/10.1016/S0926-3373(01)00315-0.

Wang Kuo-Hua, Tsai Huan-Hung, Hsieh Yung-Hsu, Chemosphere 36, 2763 (1998); https://doi.org/10.1016/s0045-6535(97)10235-1.

J-M. Herrmann, Catal Today. 53, 115 (1999); https://doi.org/10.1016/S0920-5861(99)00107-8.

C.-O.O. Mauren, O.J. Nnaumeka, A.N. Basil, O.E. Emeka, International Letters of Chemistry, Physics and Astronomy 81, 16 (2019); https://doi.org/10.18052/www.scipress.com/ILCPA.81.18.

D. Rajamanickam, M. Shanthi, Arab J Chem. 9, 1858 (2016); https://doi.org/10.1016/j.arabjc.2012.05.006.

P. Banerjee, S. Chakrabarti, S. Maitra, B.K. Dutta, Ultrason Sonochem 19, 85 (2012); https://doi.org/10.1016/j.ultsonch.2011.05.007.

F. Wang, X. Qin, Z. Guo, Y. Meng, L. Yang, Y. Ming, Ceram Int. 39, 8969 (2013); https://doi.org/10.1016/j.ceramint.2013.04.096.

Y. Fang, Z. Li, S. Xu, D. Han, D. Lu, J Alloy Compd. 575, 359 (2013); https://doi.org/10.1016/j.jallcom.2013.05.183.

S.K. Lim, S.-H. Hwang, S. Kim, H. Park, Sens Actuators B Chem. 160, 94 (2011).

S. Jiao, K. Zhang, S. Bai, H. Li, S. Gao, H. Li, Electrochim Acta. 111, 64 (2013); http://dx.doi.org/10.1016/j.electacta.2013.08.050.

D.Y. Jiang, J.X. Zhao, M. Zhao, Q.C. Liang, S. Gao, J.M. Qin, J. Alloy Compd. 532, 31 (2012); http://dx.doi.org/10.1016/j.jallcom.2012.03.114.

X. Ma, J. Zhang, J. Lu, Z. Ye, Appl Surf Sci. 257, 1310 (2010); https://doi.org/10.1016/j.apsusc.2010.08.057.

W. Ouyang, J. Zhu, Mater Lett. 62, 124 (2008); https://doi.org/10.1016/j.matlet.2007.12.051.

N. Zhang, R. Yi, R. Shi, G. Gao, G. Chen, X. Liu, Mater Lett. 63, 35 (2009); https://doi.org/10.1016/j.matlet.2008.11.046.

C-H. Lee, D-W. Kim, Thin Solid Films 546, 38 (2013); https://doi.org/10.1016/j.tsf.2013.05.029.

P. Hu, N. Han, D. Zhang, J.C. Ho, Y. Chen, Sens Actuators B Chem. 169, 74 (2012); https://doi.org/10.1016/j.snb.2012.03.035.

C. Wang, Z. Chen, H. Hu, D. Zhang, Phys B Condens Matter. 404, 4075 (2009).

E.S. Jang, J-H. Won, S-J. Hwang, J-H. Choy, Adv Mater. 18, 3309 (2006); https://doi.org/10.1002/adma.200601455.

X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, Sci Rep. 4, 4596 (2014); https://doi.org/10.1038/srep04596.

S. Zavar, Arab J Chem. 10, 67 (2017); https://doi.org/10.1016/j.arabjc.2012.07.011.

N.K. Hassan, M.R. Hashim, M. Bououdina, Ceram Int. 39, 7439 (2013); https://doi.org/10.1016/j.ceramint.2013.02.088.

D. Ju, H. Xu, J. Zhang, J. Guo, B. Cao, Sens Actuators B Chem. 201, 444 (2014); https://doi.org/10.1016/j.snb.2014.04.072.

S. Yue, J. Lu, J. Zhang, Mater Chem Phys. 117, 657 (2009).

Reza Mahdavi, S. Siamak Ashraf Talesh, Adv. Powder Technol. 28, 1418 (2017); https://doi.org/10.1016/j.apt.2017.03.014.

M. Ahmed, E. Ahmed, Yuewei Zhang, N.R. Khalid, Jianfeng Xu, M. Ullah, Zhanglian Hong, Curr Appl Phys. 13, 697 (2013); https://doi.org/10.1016/j.cap.2012.11.008.

Yumin Wang, Xia Zhang, Chao Hou, Nano-Structures & Nano-Objects. 16, 250 (2018); https://doi.org/10.1016/j.nanoso.2018.07.001.

Angelica Gonçalves Oliveira, Jessica de Lara Andrade, Maiara Camotti Montanha, Sandro Marcio Lima, Luis Humberto da Cunha Andrade, Ana Adelina Winkler Hechenleitner, Edgardo Alfonso Gomez Pineda, Daniela Martins Fernandes de Oliveira, J. Environ. Manage. 240, 485 (2019); https://doi.org/10.1016/j.jenvman.2019.03.124.

Chun Li, Ruisheng Hu, Tingting Zhou, Haitao Wu, Kunpeng Song, Xiaoxia Liu, Ruida Wang, Mater. Lett. 124, 81 (2014); https://doi.org/10.1016/j.matlet.2014.03.056.

Tio Mahardika, Nur Ajrina Putri, Anita Eka Putri , Vivi Fauzia, Liszulfah Roza, Iwan Sugihartono, Yuliati Herbani, Results Phys. 13, 102209 (2019); https://doi.org/10.1016/j.rinp.2019.102209.

Yutong Liu, Qiuping Zhang, Ming Xu, Huan Yuan, Yu Chen, Jiaxi Zhang, Kaiyi Luo, Jingquan Zhang, Biao You, Appl. Surf. Sci. 476, 632 (2019); https://doi.org/10.1016/j.apsusc.2019.01.137.

Xueli Li, Sisi He, Xuesheng Liu, Junsu Jin, Hong Meng, Ceram. Int. 45, 494 (2019); https://doi.org/10.1016/j.ceramint.2018.09.195.

Qun Ma, Xiangzhou Lv, Yongqian Wang, Jieyu Chen, Opt. Mater. 60, 86 (2016); https://doi.org/10.1016/j.optmat.2016.07.014.

M.N. Goswami, P.K. Mahapatra, Physica E. 104, 254 (2018); https://doi.org/10.1016/j.physe.2018.07.042.

Nimisha N. Kumaran, K. Muraleedharan, J. Water Process Eng.17, 264 (2017); https://doi.org/10.1016/j.jwpe.2017.04.014.

I. Neelakanta Reddy, Ch. Venkata Reddy, M. Sreedhar, Jaesool Shim, Migyung Cho, Dongseo Kim, Mater. Sci. Eng. B. 240, 33 (2019); https://doi.org/10.1016/j.mseb.2019.01.002.

Numan Salah, A. Hameed, M. Aslam, Saeed S. Babkair, F.S. Bahabri, J. Environ. Manage. 177, 53 (2016); https://doi.org/10.1016/j.jenvman.2016.04.007.

Jihui Lang, Jiaying Wang, Qi Zhang, Xiuyan Li, Qiang Han, Maobin Wei, Yingrui Sui, Dandan Wang, Jinghai Yang, Ceram. Int. 42, 14175 (2016); https://doi.org/10.1016/j.ceramint.2016.06.042.

P. Visali, R. Bhuvaneswari, Optik. 202, 16706 (2019); https://doi.org/10.1016/j.ijleo.2019.163706.

N. Zarei, M.A. Behnajady, Desalination and Water Treatment. 32, 1 (2015); https://doi.org/10.1080/19443994.2015.1083479.

A. Samanta, M.N. Goswami, P.K. Mahapatra, Physica E: Low dimensional Systems and Nanostructures. 104, 87 (2018); https://doi.org/10.1016/j.physe.2018.07.042.

C. Abed, C. Bouzidi, H. Elhouichet, B. Gelloz, M. Ferid, Applied Surface Science. 349, 855 (2015); https://doi.org/10.1016/j.apsusc.2015.05.078.

T. Jia, W. Wang, F. Long, Z. Fu, H. Wang, Q. Zhang, J. Alloys Compd. 484, 410 (2009); https://doi.org/10.1016/j.jallcom.2009.04.153.

N. Clament Sagaya Selvam, J. Judith Vijaya, L. John Kennedy, Journal of Colloid and Interface Science. 407, 215 (2013); https://doi.org/10.1016/j.jcis.2013.06.004.

S. Anandan, M. Miyauchi, Electrochemistry 79, 842 (2011); 10.5796/electrochemistry.79.842.

K. Qi, B. Cheng, J. Yu, W. Ho, J. Alloys Compd. 727, 792 (2017); https://doi.org/10.1016/j.jallcom.2017.08.142.

A. Hui, J. Ma, J. Liu, Y. Bao, J. Zhang, J. Alloys Compd. 696, 639 (2017); https://doi.org/10.1016/j.jallcom.2016.10.319.

X. Li, Z. Hu, J. Liu, D. Li, X. Zhang, J. Chen, J. Fang, Appl. Catal. B 195, 29 (2016); https://doi.org/10.1016/j.apcatb.2016.05.002.

H. Benhebal, M. Chaib, C. Malengreaux, S.D. Lambert, A. Leonard, M. Crine, B. Heinrichs, J. Taiwan Inst. Chem. Eng. 45, 249 (2014); https://doi.org/10.1016/j.jtice.2013.04.003.

J. Lv, F. Shang, G. Pan, F. Wang, Z. Zhou, C. Liu, W. Gong, Z. Zi, X. Chen, G. He, J. Mater. Sci. Mater. Electron. 25, 882 (2014); https://doi.org/10.1007/s10854-013-1660-x.

H. Zhao, F. Tian, R. Wang, R. Chen, Adv. Sci. Eng. 3, 3 (2014); https://doi.org/10.1166/rase.2014.1050.

Y. Zong, Z. Li, X. Wang, J. Ma, Y. Men, Ceram. Int. 40, 10375 (2014); 10.1016/j.ceramint.2014.02.123.

R. Raji, K.G. Gopchandran, Journal of Hazardous Materials. 368, 345 (2019); https://doi.org/10.1016/j.jhazmat.2019.01.052.

X. Bian, K. Hong, X. Ge, R. Song, L. Liu, J. Phys. Chem. C. 119, 1700 (2015); https://doi.org/10.1021/jp5108312.

C. Borgohaina, K.K. Senapatia, K.C. Sarmab, P. Prodeep, J. Mol. Catal. A. Chem. 363, 495 (2012); https://doi.org/10.1016/j.molcata.2012.07.032.

R.B. Reed, D.A. Ladner, C.P. Higgins, P. Westerhoff, J.F. Ranville, Environ. Toxicol. Chem. 31, 93 (2012); https://doi.org/10.1002/etc.708.

Y. Zhang, R.T. Nayak, H. Hong, W. Cai, Curr. Mol. Med. 13, 1633 (2013).

R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fie ´vet, Nano Lett. 6, 866 (2006); https://doi.org/10.1021/nl052326h.

K. Kasemets, A. Ivask, H.-C. Dubourguier, A. Kahru, Toxicol. In Vitro. 23, 1116 (2009); https://doi.org/10.1016/j.tiv.2009.05.015.

R. Jalal, E.K. Goharshadi, M. Abareshi, M. Moosavi, A. Yousefi, P. Nancarrow, Mater. Chem. Phys. 121, 198 (2010); https://doi.org/10.1016/j.matchemphys.2010.01.020.

A. Lipovsky, Y. Nitzan, A. Gedanken, R. Lubart, Nanotechnology 22, 105101 (2011); https://doi.org/10.1088/0957-4484/22/10/105101.

Amna Sirelkhatim, Shahrom Mahmud, Azman Seeni, Noor Haida Mohamad Kaus, Ling Chuo Ann, Siti Khadijah Mohd Bakhori, Habsah Hasan & Dasmawati Mohamad, Nano-Micro Lett. 7, 219 (2015); https://doi.org/10.1007/s40820-015-0040-x.

T. Xia, M. Kovochich, M. Liong, L. Ma¨dler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, A.E. Nel, ACS Nano. 2, 2121 (2008); https://doi.org/10.1021/nn800511k.

J. Sawai, E. Kawada, F. Kanou, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, J. Chem. Eng. Jpn. 29, 627 (1996); https://doi.org/10.1252/jcej.29.627.

S. Pal, Y.K. Tak, J.M. Song, Appl. Environ. Microbiol. 73, 1712 (2007); https://doi.org/10.1128/AEM.02218-06.

H. Yang, C. Liu, D. Yang, H. Zhang, Z. Xi, J. Appl. Toxicol. 29, 69 (2009); https://doi.org/10.1002/jat.1385.

E. Russo, N. Gaglianone, S. Baldassari, B. Parodi, S. Cafaggi, C. Zibana, M. Donalisio, V. Cagno, D. Lembo, G. Caviglioli, Colloids Surf. B Biointerfaces 118, 117 (2014); https://doi.org/10.1016/j.colsurfb.2014.03.037.

S. Chaudhuri, J.A. Symons, J. Deval, Antivir. Res. 155, 76 (2018); https://doi.org/10.1016/j.antiviral.2018.05.005.

H.F. Hang, H.R. Peng, H.Y. Song, Z.T. Qi, X.H. Miao, W.S. Xu, J. Virol. Meth. 222, 150 (2015); https://doi.org/10.1016/j.jviromet.2015.06.010.

H. Ghaari, A. Tavakoli, A. Moradi, A. Tabarraei, F. Bokharaei-Salim, M. Zahmatkeshan, M. Farahmand, D. Javanmard, S.J. Kiani, M. Esghaei, V. Pirhajati-Mahabadi, S.H. Monavari, A. Ataei-Pirkooh, J. Biomed. Sci. 26, 1 (2019); https://doi.org/10.1186/s12929-019-0563-4.

N.A. Mazurkova, Y.E. Spitsyna, N.V. Shikina, Z.R. Ismagilov, S.N. Zagrebel’nyi, E.I. Ryabchikova, Nanotechnol. Russ. 5, 417 (2010); https://doi.org/10.1134/S1995078010050174.

B. Surnar, M.Z. Kamran, A.S. Shah, U. Basu, N. Kolishetti, S. Deo, D.T. Jayaweera, S. Daunert, S. Dhar, ACS Nano. 13, 11034 (2019); https://doi.org/10.1021/acsnano.9b02807.

Downloads

Published

2021-09-26

How to Cite

Baibara, O., Radchenko, M., Karpyna, V., & Ievtushenko, A. (2021). A Review of the some aspects for the development of ZnO based photocatalysts for a variety of applications . Physics and Chemistry of Solid State, 22(3), 585–594. https://doi.org/10.15330/pcss.22.3.585-594

Issue

Section

Review

Most read articles by the same author(s)