The The effect of iron on precipitation hardening in the Cu-Ni-Mn alloys

Array

Authors

  • O.V. Sukhova Oles Honchar Dnipro National University

DOI:

https://doi.org/10.15330/pcss.22.3.487-493

Keywords:

Сu–Ni–Mn–Fe alloys, precipitation hardening, annealing, mechanical properties, performance characteristics

Abstract

The peculiarities in the structure and properties formation of precipitation-hardened Сu–Ni–Mn–Fe alloys within the concentration range of Ni (19.3–21.0 %), Mn (19.5–20.5 %), Fe (0.6–2.7 %), Cu – balance (in wt. %) were investigated in this work. The methods of quantitative metallography, X-ray analysis, scanning electron microscopy, energy-dispersive spectroscopy and differential thermal analysis were applied. Two solid solutions based on a-Cu differing in composition and hardness were found in the structure of the cast Сu–Ni–Mn–Fe alloys. The temperature ranges of solutions’ formation were determined as (1010±10) °С and (890±10) °С, correspondingly. NiMn phase was also formed at (405±15) °С due to precipitation hardening. In the Сu–Ni–Mn–Fe alloys annealed at 500 and 900 °С for 60–750 hours, the volume fraction and size of NiMn precipitates increased with prolonging annealing time and lowering annealing temperature. As iron content was raised up to 2.7 wt. %, the density of NiMn precipitates increased, especially during first 60 hours of annealing at 900 °С. By adding iron, oxidation resistance was improved, but melting temperature and fluidity did not yield any significant change. Hardness of the Сu–Ni–Mn–Fe alloys with higher iron contents increased by 10 НRB on average. However, when test temperature was raised up to 400 °С, tensile strength decreased (by ~1.3 times) and elongation dropped markedly (by ~10 times).

References

А.М. Zakharov, Industrial Non-Ferrous Metal Alloys (Metallurgy, Moscow, 1980).

О.V. Sukhova, V.А. Polonskyy, К.V. Ustinоvа, Metallofizika i Noveishie Tekhnologii 40(11), 1475 (2018); https://doi.org/10.15407/mfint.40.11.1475.

M. Schutze, R. Feser, R. Bender, Corrosion Resistance of Copper and Copper Alloys (Wiley-VCH, Weinheim, 2011).

O.V. Sukhova, V.A. Polonskyy, K.V. Ustinova, Voprosy Khimii i Khimicheskoi Tekhnologii 6(121), 77 (2018); https://doi.org/10.32434/0321-4095-2018-121-6-77-83.

S.R. Wright, F.H. Cocks, L. Gettleman, Journal of Dental Research 59(4), 708 (1980); https://doi.org/10.1177/00220345800590040701.

О.V. Sukhova, V.А. Polonskyy, К.V. Ustinоvа, Materials Science 55(2), 285 (2019); https://doi.org/10.1007/s11003-019-00302-2.

M. Naboka, J. Giordano, Copper Alloys: Preparation, Properties and Applications (Nova Science Publishers Inc., UK, 2013).

S. Sharma, X.N. Dong, P. Wei, C. Long, Key Engineering Materials 837, 102 (2020); https://doi.org/10.4028/www.scientific.net/KEM.837.102.

S.I. Ryabtsev, V.А. Polonskyy, О.V. Sukhova, Powder Metallurgy and Metal Ceramics 58(9-10), 567 (2020); https://doi.org/10.1007/s11106-020-00111-2.

V.G. Efremenko, Yu.G. Chabak, K. Shimizu, A.G. Lekatou, V.I. Zurnadzhy, A.E. Karantzalis, H. Halfa, V.A. Mazur, B.V. Efremenko, Materials and Design 126, 278 (2017); https://doi.org/10.1016/j.matdes.2017.04.022.

J.P. Chubb, J. Billingham, Journal of Metals 30, 20 (1978); https://doi.org/10.1007/BF03354350.

W.H. Sun, H.H. Xu, Y. Du, S.H. Liu, Computer Coupling of Phase Diagrams and Thermochemistry 33(4), 642 (2009); https://doi.org/10.1016/j.calphad.2009.07.003.

P.M. Prysyazhnyuk, Metallurgical and Mining Industry 12, 346 (2015).

V.E. Bazhenov, M.V. Pikunov, V.V. Cheverikin, Metallurgical and Materials Transactions A 46, 843 (2015); https://doi.org/10.1007/s11661-014-2648-8.

E. Schuermann, B. Prinz, Zeitschrift fȕr Metallkunde 65(9), 593 (1974).

H. Kang, Z. Yang, X. Yang, J. Li, W. He, Z. Chen, E. Guo, L.-D. Zhao, T. Wang, Materials Today Physics 17, 100332 (2020); https://doi.org/10.1016/j.mtphys.2020.100332.

R. Wang, Y. Fu, G. Xie, Z. Hao, S. Zhang, X. Liu, Metals 10, 1528 (2020); https://doi.org/10.3390/met10111528.

W. Xie, Q. Wang, X. Mi, G. Xie, D. Liu, X. Gao, Y. Li, Transactions of Nonferrous Metals Society of China 25(10), 3247 (2015); https://doi.org/10.1016/s1003-6326(15)63960-7.

M. Miki, S. Hori, Journal of The Japan Institute of Metals and Materials 46(3), 301 (1982); https://doi.org/10.23333320/jinstmet1952.46.3_301.

I.M. Spiridonova, O.V. Sukhova, A.P. Vashchenko, Metallofizika i Noveishie Tekhnologii 21(2), 122 (1999).

I.M. Spiridonova, E.V. Sukhovaya, V.F. Butenko, А.P. Zhudra, А.I. Litvinenko, А.I. Belyi, Powder Metallurgy and Metal Ceramics 32(2), 139 (1993) (https://doi.org/10.1007/BF00560039).

P.M. Brune, Masters Theses, 7850 (2017); https://scholarsmine.mst.edu/masters_theses /7850.

I.M. Spiridonova, E.V. Sukhovaya, S.B. Pilyaeva, О.G. Bezrukavaya, Metallurgical and Mining Industry 3, 58 (2002).

O.V. Sukhova, Y.V. Syrovatko, Metallofizika i Noveishie Tekhnologii 33(Special Issue), 371 (2011).

T.A. Shihab, L.S. Shlapak, N.S. Namer, P.M. Prysyazhnyuk, O.O. Ivanov, M.J. Burda, Journal of Physics Conference Series 1741, 012031 (2021); https://doi.org/10.1088/1742-6596/1741/1/012031.

J. Zou, L. Shi, H. Shi, Q. Feng, S. Liang, Materials Research Express 7, 056504 (2020); https://doi.org/10.1088/2053-1591/ab8bld.

N. Koji, S. Shairo, Technical Reports of Sumitomo Light Metals 22(1-2), 22 (1981).

P. Sakiewicz, R. Nowosielski, R. Babilas, Indian Journal of Engineering and Materials Sciences 22(4), 389 (2015).

S. Hocker, P. Binkele, S. Schmauder, Applied Physics 115, 679 (2014); https://doi.org/10.1007/s00339-013-7850-9.

Y. Wang, J. Yin, X. Liu, R. Wang, H. Hou, J. Wang, Progress in Natural Science: Materials International 27(4), 460 (2017); https://doi.org/10.1016/j.pnsc.2017.06.005.

N. Taiji, H. Mitsuhiro, Journal of Iron and Steel Institute 67(14), 2085 (1981).

V.G. Rivlin, G.V. Raynor, International Metals Review 28(1), 23 (1983); https://doi.org/10.1179/imtr.1983.28.1.23.

S. Reeh, D. Music, M. Ekholm, I. Abrikosov, J.M. Schneider, Physical Review B. Condensed Matter and Materials Physics 87, 22 (2013); https://doi.org/10.1103/PhysRevB.87.224103.

О.V. Sukhova, К.V. Ustinоvа, Functional Materials 26(3), 495 (2019); https://doi.org/10.15407/fm26.03.495.

O.P. Ostash, V.V. Kulyk, T.M. Lenkovskiy, Z.A. Duriagina, V.V. Vira, T.L. Tepla, Archives of Materials Science and Engineering 90(2), 49 (2018); https://doi.org/10.5604/01.3001.0012.0662.

A.P. Vashchenko, I.M. Spiridonova, E.V. Sukhovaya, Metallurgia 39(2), 89 (2000).

Z. M. Rykavets, J. Bouquerel, J.-B. Vogt, Z. A. Duriagina, V. V. Kulyk, T. L. Tepla, L. I. Bohun, T. M. Kovbasyuk, Progress in Physics of Metals 20(4), 620 (2019); https://doi.org/10.15407/ufm.20.04.620.

Z.A. Duryagina, S.A. Bespalov, A.K. Borysyuk, V.Ya. Pidkova, Metallofizika i Noveishie Tekhnologii 33(5), 615 (2011).

I.М. Spyrydonova, O.V. Sukhova, G.V. Zinkovskij, Metallurgical and Mining Industry 4(4), 2 (2012).

P.M. Prysyazhnyuk, T.A. Shihab, V.H. Panchuk, Materials Science 52(11), 188 (2016); https://doi.org/10.1007/s11003-016-9942-0.

O.V. Sukhova, Y.V. Syrovatko, Metallofizika i Noveishie Tekhnologii 41(9), 1171 (2019); https://doi.org/10.15407/mfint.41.09.1171.

Yu.D. Мyshkо, V.G. Nechyporenko, A.N. Gladchenko, N.V. Matkovskyy, N.E. Gonchak, Chemical and Oil Machine Building 6, 28 (1983).

G.V. Samsonov, Yu.G. Tkachenko, V.F. Berdikov, Carbides and Carbide-Based Alloys (Naukova dumka, Kyiv, 1976).

Published

2021-08-31

How to Cite

Sukhova, O. (2021). The The effect of iron on precipitation hardening in the Cu-Ni-Mn alloys: Array. Physics and Chemistry of Solid State, 22(3), 487–493. https://doi.org/10.15330/pcss.22.3.487-493

Issue

Section

Scientific articles (Technology)