Ways to Improve the Efficiency of ТіО2-based Photocatalysts (Review)

  • I.F. Mironyuk Vasyl Stefanyk Precarpathian National University
  • L.M. Soltys Vasyl Stefanyk Precarpathian National University
  • T.R. Tatarchuk Vasyl Stefanyk Precarpathian National University
  • V.I. Tsinurchyn Vasyl Stefanyk Precarpathian National University
Keywords: titanium dioxide, photocatalysis, degradation, photocatalytic activity, doping

Abstract

Water and air pollutants pose a significant environmental problem worldwide and photocatalysis is one way to address this global issue. Photocatalytic degradation of toxic substances under the influence of visible electromagnetic radiation is widely used for wastewater treatment. The most promising method of pollutant removal is the use of photocatalysts based on titanium (IV) oxide, which are recognized as one of the most effective due to chemical resistance, non-toxicity and low cost. However, their practical application is limited by the rapid recombination of photogenerated charge carriers and the selective absorption of light in the UV region due to the large width of band gap. To solve this scientific and practical problem, it is necessary to modify the surface, for example, through metallic or nonmetallic doping, in order to increase its photocatalytic activity due to additional absorption in the visible range of the spectrum. This review presents an analysis of current research on ways to increase the efficiency of TiO2-based photocatalysts.

References

T. Tatarchuk, A. Peter, B. Al-Najar, J. Vijaya, M. Bououdina, Nanotechnol. Environ. Sci. 1-2, 209 (2018) (doi:10.1002/9783527808854.ch8).

J. Wen, X. Li, W. Liu, Y. Fang, J. Xie, Y. Xu, Cuihua Xuebao/Chinese J. Catal. 36(12), 2049 (2015) (doi:10.1016/S1872-2067(15)60999-8).

R.M. Mohamed, D.L. McKinney, W.M. Sigmund, Mater. Sci. Eng. R Reports 73(1), 1 (2012) (doi:10.1016/j.mser.2011.09.001).

T.A. Doncova, I.N. Ivanenko, I.M. Astrelin, Hіmіya, fіzyka ta tekhnologіya poverhnі 6(1), 85 (2015).

S.V. Ryabov, S.І. Sіnel'nіkov, O.A. Opanasenko, Polіmernyi Zhurnal 35(2), 126 (2013).

A. Fujishima, K. Honda, Nature 238, 37 (1972) (doi:10.1038/238037a0).

K. Nakata, A. Fujishima, J. Photochem. Photobiol. C Photochem. Rev. 13(3), 169 (2012) (doi:10.1016/j.jphotochemrev.2012.06.001).

S. Feng, M. Wang, Y. Zhou, P. Li, W. Tu, Z. Zou, APL Mater. 3(10), 104416 (2015) (doi:10.1063/1.4930043).

Y.H. Chung, K. Han, C.Y. Lin, D. O’Neill, G. Mul, B. Mei, C.M. Yang, Catal. Today, (2019) (doi:10.1016/j.cattod.2019.07.042).

H. Abdullah, M.M.R. Khan, H.R. Ong, Z. Yaakob, J. CO2 Util., 22, 15 (2017) (doi:10.1016/j.jcou.2017.08.004).

A.I. Kriukov, A.L. Stroiuk, S.Ya. Kuchmiy, V.D. Pokhodenko, Nanofotokataliz (Akademperi, Kiev, 2013).

J. Moellmann, S. Ehrlich, R. Tonner, S. Grimme, J. Phys. Condens. Matter, 24(42), 424206 (2012) (doi:10.1088/0953-8984/24/42/424206).

N. Rahimi, R.A. Pax, E.M.A. Gray, Prog. Solid State Chem. 44(3), 86 (2016) (doi:10.1016/j.progsolidstchem.2016.07.002).

A. Bumajdad, M. Madkour, Physical Chemistry Chemical Physics 16(16), 7146 (2014) (doi:10.1039/c3cp54411g).

I. Ali, M. Suhail, Z.A. Alothman, A. Alwarthan, RSC Adv. 8(53), 30125 (2018) (doi:10.1039/c8ra06517a).

H. Park, Y. Park, W. Kim, W. Choi, J. Photochem. Photobiol. C Photochem. Rev. 15, 1 (2013) (doi:10.1016/j.jphotochemrev.2012.10.001).

J.Y. Park, C. Lee, K.W. Jung, D. Jung, Bull. Korean Chem. Soc. 30(2), 402 (2009) (doi:10.5012/bkcs.2009.30.2.402).

C. Yogi, K. Kojima, T. Takai, N. Wada, J. Mater. Sci. 44(3), 821 (2009) (doi:10.1007/s10853-008-3151-7).

H. Agbe, E. Nyankson, N. Raza, D. Dodoo-Arhin, A. Chauhan, G. Osei, V. Kumar, K.H. Kim, J. Ind. Eng. Chem. 72, 31 (2019) (doi:10.1016/j.jiec.2019.01.004).

A. Ayati, A. Ahmadpour, F.F. Bamoharram, B. Tanhaei, M. Mänttäri, M. Sillanpää, Chemosphere 107, 163 (2014) (doi:10.1016/j.chemosphere.2014.01.040).

S. Oros-Ruiz, R. Gómez, R. López, A. Hernández-Gordillo, J.A. Pedraza-Avella, E. Moctezuma, E. Pérez, Catal. Commun. 21, 72 (2012) (doi:10.1016/J.CATCOM.2012.01.028).

W. Hou, Z. Liu, P. Pavaskar, W.H. Hung, S.B. Cronin, J. Catal. 277(2), 149 (2011) (doi:10.1016/J.JCAT.2010.11.001).

J. Singh, K. Sahu, B. Satpati, J. Shah, R.K. Kotnala, S. Mohapatra, J. Phys. Chem. Solids 135, 109100 (2019) (doi:10.1016/j.jpcs.2019.109100).

M. Scarisoreanu, A.G. Ilie, E. Goncearenco, A.M. Banici, I.P. Morjan, E. Dutu, E. Tanasa, I. Fort, M. Stan, C.N. Mihailescu, C. Fleaca, Appl. Surf. Sci. 509, 145217 (2020) (doi:10.1016/J.APSUSC.2019.145217).

M.M. Khan, S. Kalathil, J. Lee, M.H. Cho, Bull. Korean Chem. Soc. 33(5), 1753 (2012) (doi:10.5012/bkcs.2012.33.5.1753).

T.C. Pan, S.H. Wang, Y.S. Lai, J.M. Jehng, S.J. Huang, Appl. Surf. Sci. 296, 189 (2014) (doi:10.1016/j.apsusc.2014.01.077).

K. Nanaji, R.K. Siri Kiran Janardhana, T.N. Rao, S. Anandan, J. Alloys Compd. 794, 662 (2019) (doi:10.1016/J.JALLCOM.2019.04.283).

A. Gołąbiewska, W. Lisowski, M. Jarek, G. Nowaczyk, M. Michalska, S. Jurga, A. Zaleska-Medynska, Mol. Catal. 442, 154 (2017) (doi:10.1016/J.MCAT.2017.09.004).

A.K.P.D. Savio, J. Fletcher, F.C. Robles Hernández, Ceram. Int. 39(3), 2753 (2013) (doi:10.1016/j.ceramint.2012.09.042).

C.-C. Wang, P.-H. Chou, Y.-H. Yu, C.-C. Kei, Electrochim. Acta 284, 211 (2018) (doi:10.1016/J.ELECTACTA.2018.07.164).

R. Han, J. Liu, N. Chen, G. Wang, Y. Guo, H. Wang, RSC Adv. 9, 34862 (2019) (doi:10.1039/c9ra05480d).

Z. Zafar, I. Ali, S. Park, J.-O. Kim, Ceram. Int. 46(3), 3353 (2020) (doi:10.1016/J.CERAMINT.2019.10.045).

P. Manojkumar, E. Lokeshkumar, A. Saikiran, B. Govardhanan, M. Ashok, N. Rameshbabu, J. Alloys Compd. 825, 154092 (2020) (doi:10.1016/J.JALLCOM.2020.154092).

P.D. Bhange, S.V. Awate, R.S. Gholap, G.S. Gokavi, D.S. Bhange, Mater. Res. Bull. 76, 264 (2016) (doi:10.1016/J.MATERRESBULL.2015.12.041).

V. Binas, V. Stefanopoulos, G. Kiriakidis, P. Papagiannakopoulos, J. Mater. 5(1), 56 (2019) (doi:10.1016/j.jmat.2018.12.003).

F. Han, V.S.R. Kambala, R. Dharmarajan, Y. Liu, R. Naidu, Environ. Technol. Innov. 12, 27 (2018) (doi:10.1016/J.ETI.2018.07.004).

M. Safari, R. Talebi, M.H. Rostami, M. Nikazar, M. Dadvar, J. Environ. Heal. Sci. Eng. 12(1), 1 (2014) (doi:10.1186/2052-336X-12-19).

I. Ganesh, A.K. Gupta, P.P. Kumar, P.S. Chandra Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Processing and Application of Ceramics 6(1), 21 (2012).

M. Ismael, J. Environ. Chem. Eng. 8(2), 103676 (2020) (doi:10.1016/J.JECE.2020.103676).

D. Komaraiah, E. Radha, J. Sivakumar, M.V. Ramana Reddy, R. Sayanna, Surfaces and Interfaces 17, 100368 (2019) (doi:10.1016/J.SURFIN.2019.100368).

M.J. Valero-Romero, J.G. Santaclara, L. Oar-Arteta, L. van Koppen, D.Y. Osadchii, J. Gascon, F. Kapteijn, Chem. Eng. J. 360, 75 (2019) (doi:10.1016/J.CEJ.2018.11.132).

M. Hinojosa – Reyes, R. Camposeco – Solis, F. Ruiz, V. Rodríguez – González, E. Moctezuma, Mater. Sci. Semicond. Process. 100, 130 (2019) (doi:10.1016/J.MSSP.2019.04.050).

M.S. Mohseni-Salehi, E. Taheri-Nassaj, M. Hosseini-Zori, J. Photochem. Photobiol. A Chem. 356, 57 (2018) (doi:10.1016/J.JPHOTOCHEM.2017.12.027).

S.J. Armaković, M. Grujić-Brojčin, M. Šćepanović, S. Armaković, A. Golubović, B. Babić, B.F. Abramović, Arab. J. Chem. 12, 5355 (2019) (doi:10.1016/J.ARABJC.2017.01.001).

[45Z.M. El-Bahy, A.A. Ismail, R.M. Mohamed, J. Hazard. Mater., 166 (1), 138 (2009) (doi:10.101/j.jhazmat.2008.11.022).

N. us Saqib, R. Adnan, I. Shah, Environ. Sci. Pollut. Res. 23, 15941 (2016) (doi:10.1007/s11356-016-6984-7).

V. Štengl, S. Bakardjieva, N. Murafa, Mater. Chem. Phys. 114(1), 217 (2009) (doi:10.1016/j.matchemphys.2008.09.025).

R.R. Nair, J. Arulraj, K.R. Sunaja Devi, Mater. Today Proc. 3(6), 1643 (2016) (doi:10.1016/J.MATPR.2016.04.054).

V. Kumaravel, S. Mathew, J. Bartlett, S.C. Pillai, Appl. Catal. B Environ. 244, 1021 (2019) (doi:10.1016/j.apcatb.2018.11.080).

P.G. Smirniotis, T. Boningari, D. Damma, S.N.R. Inturi, Catal. Commun. 113, 1 (2018) (doi:10.1016/J.CATCOM.2018.04.019).

J. Marques, T.D. Gomes, M.A. Forte, R.F. Silva, C.J. Tavares, Catal. Today 326, 36 (2019) (doi:10.1016/J.CATTOD.2018.09.002).

E. Acayanka, J.-B. Tarkwa, K.N. Nchimi, S.A.Y. Voufouo, A. Tiya-Djowe, G.Y. Kamgang, S. Laminsi, Surfaces and Interfaces 17, 100361 (2019) (doi:10.1016/J.SURFIN.2019.100361).

R. Quesada-Cabrera, C. Sotelo-Vázquez, M. Quesada-González, E.P. Melián, N. Chadwick, I.P. Parkin, J. Photochem. Photobiol. A Chem. 333, 49 (2017) (doi:10.1016/J.JPHOTOCHEM.2016.10.013).

M. Zalas, Catal. Today, 230, 91 (2014) (doi:10.1016/J.CATTOD.2013.12.032).

O.A. Osin, T. Yu, X. Cai, Y. Jiang, G. Peng, X. Cheng, R. Li, Y. Qin, S. Lin, Front. Chem., 6, 192 (2018) (doi:10.3389/fchem.2018.00192).

J. Zhang, Z. Xing, J. Cui, Z. Li, S. Tan, J. Yin, J. Zou, Q. Zhu, W. Zhou, Dalt. Trans. 47 (14), 4877 (2018) (doi:10.1039/c8dt00262b).

H. Shindume L, Z. Zhao, N. Wang, H. Liu, A. Umar, J. Zhang, T. Wu, Z. Guo, J. Nanosci. Nanotechnol. 19(2), 839 (2018) (doi:10.1166/jnn.2019.15745).

J.-H. Lee, J.-I. Youn, Y.-J. Kim, I.-K. Kim, K.-W. Jang, H.-J. Oh, Ceram. Int. 41(9), 11899 (2015) (doi:10.1016/J.CERAMINT.2015.05.157).

W.H.M. Abdelraheem, M.K. Patil, M.N. Nadagouda, D.D. Dionysiou, Appl. Catal. B Environ. 241, 598 (2019) (doi:10.1016/J.APCATB.2018.09.039).

H.L. Hoşgün, M.T.A. Aydın, J. Mol. Struct. 1180, 676 (2019) (doi:10.1016/J.MOLSTRUC.2018.12.056).

M. Ratova, R. Klaysri, P. Praserthdam, P.J. Kelly, Vacuum 149, 214 (2018) (doi:10.1016/J.VACUUM.2018.01.003).

R. Klaysri, M. Ratova, P. Praserthdam, P.J. Kelly, Nanomaterials 7, 113 (2017) (doi:10.3390/nano7050113).

J. He, G. Zi, Z. Yan, Y. Li, J. Xie, D. Duan, Y. Chen, J. Wang, J. Environ. Sci. 26(5), 1195 (2014) (doi:10.1016/S1001-0742(13)60475-1).

E. Ovodok, H. Maltanava, S. Poznyak, M. Ivanovskaya, A. Kudlash, N. Scharnagl, J. Tedim, Mater. Today Proc., 5 (9), 17422 (2018) (doi:10.1016/J.MATPR.2018.06.044).

R. Purbia, R. Borah, S. Paria, Inorg. Chem. 56(16), 10107 (2017) (doi:10.1021/acs.inorgchem.7b01864).

S. Guo, S. Han, M. Haifeng, C. Zeng, Y. Sun, B. Chi, J. Pu, J. Li, Mater. Res. Bull. 48(9), 3032 (2013) (doi:10.1016/J.MATERRESBULL.2013.04.056).

X. Feng, P. Wang, J. Hou, J. Qian, Y. Ao, C. Wang, J. Hazard. Mater. 351, 196 (2018) (doi:10.1016/J.JHAZMAT.2018.03.013).

J. Niu, P. Dai, G. Qi, Q. Zhang, B. Yao, X. Yu, C. Liu, Integr. Ferroelectr. 176, 150 (2016) (doi:10.1080/10584587.2016.1250601).

S.R. Gul, M. Khan, B. Wu, Z. Yi, Mater. Res. Express 4(6), 065502 (2017) (doi:10.1088/2053-1591/aa75e8).

T. Boningari, S.N.R. Inturi, M. Suidan, P.G. Smirniotis, Chem. Eng. J. 339, 249 (2018) (doi:10.1016/J.CEJ.2018.01.063).

L.G. Devi, R. Kavitha, Mater. Chem. Phys. 143(3), 1300 (2014) (doi:10.1016/J.MATCHEMPHYS.2013.11.038).

S. Modanlu, A. Shafiekhani, Sci. Rep. 9(1), 1 (2019) (doi:10.1038/s41598-019-53189-z).

G.D. Gena, T.H. Freeda, K.M. Prabu, Int. J. Sci. Res. Phys. Appl. Sci. 6(2), 1 (2018) (doi:10.26438/ijsrpas/v6i2.14).

D.-H. Lee, B. Swain, D. Shin, N.-K. Ahn, J.-R. Park, K.-S. Park, Mater. Res. Bull. 109, 227 (2019) (doi:10.1016/J.MATERRESBULL.2018.09.027).

D. Liu, R. Tian, J. Wang, E. Nie, X. Piao, X. Li, Z. Sun, Chemosphere 185, 574 (2017) (doi:10.1016/J.CHEMOSPHERE.2017.07.071).

Q. Gao, F. Si, S. Zhang, Y. Fang, X. Chen, S. Yang, Int. J. Hydrogen Energy 44(16), 8011 (2019) (doi:10.1016/J.IJHYDENE.2019.01.233).

X. Zhao, J., Li, W., Li, X., & Zhang, RSC Adv. 7(35), 21547 (2017) (doi:10.1039/c7ra00850c).

C. Li, Z. Sun, R. Ma, Y. Xue, S. Zheng, Microporous Mesoporous Mater. 243, 281 (2017) (doi:10.1016/J.MICROMESO.2017.02.053).

Q. Wang, S. Zhu, Y. et al. Liang, J Nanopart Res. 19, 72 (2017) (doi:10.1007/s11051-017-3765-2).

Q. Wang, S. Zhu, Y. Liang, Z. Cui, X. Yang, C. Liang, A. Inoue, Mater. Res. Bull. 86, 248 (2017) (doi:10.1016/J.MATERRESBULL.2016.10.026).

L.G. Devi, R. Kavitha, Appl. Catal. B Environ. 140-141, 559 (2013) (doi:10.1016/j.apcatb.2013.04.035).

Published
2020-06-15
How to Cite
Mironyuk, I., Soltys, L., Tatarchuk , T., & Tsinurchyn , V. (2020). Ways to Improve the Efficiency of ТіО2-based Photocatalysts (Review). Physics and Chemistry of Solid State, 21(2), 300-311. https://doi.org/10.15330/pcss.21.2.300-311
Section
Scientific articles