The First Principle Approach in Estimating Bulk Modulus Based on Explicit Expression of Canonical Partition Function

Array

Authors

  • H. Mangelli University of Neyshabur
  • M. Vafaeei University of Neyshabur
  • N. Mansoori Oghaz Farhangian University
  • B. Haghighi University of Neyshabur

DOI:

https://doi.org/10.15330/pcss.21.1.61-67

Keywords:

Bulk Modulus, Canonical Partition Function, Density, Gruneisen Parameter, Statistical Mechanics

Abstract

The bulk modulus is one of the most important characteristic features of solids. Accordingly, we have developed a statistical-mechanical treatment based on an equation which enables us to calculate the bulk modulus for solids with the minimum manifold of input data. In our model, a conjunction between Gruneisen parameter and canonical partition function has been established. We have found out that the volume dependency of Gruneisen parameter is critical in estimating bulk modulus. The result for hexagonal closed- packed (hcp) iron is very good and commensurate with the best measurements. This framework can be extended to the other elemental solids or a variety of compounds.

References

B. Haghighi, A. Hassani Djavanmardi, M. Najafi and M.M. Papari, J. Theor. & Comput. Chem. 2, 371 (2003) (https://doi.org/10.1142/S0219633603000689).

B. Haghighi, A. Hassani Djavanmardi, M.M. Papari and M. Najafi, J. Theor. & Comput. Chem. 4, 69 (2004) (https://doi.org/10.1142/S021963360400091X).

J. Moghadasi Absardi, M. M. Papari, L. Mohammad-Aghaie and B. Haghighi, Bull. Chem. Soc. Japan 81, 1219 (2008).

A. E. Nasrabad, N. Mansoori Oghaz and B. Haghighi , Transport Properties of Mie (14,7) Fluids, J. Chem. Phys. 129, 024507 (2008) (https://doi.org/10.1063/1.2953331).

N. Mansoori Oghaz, D. Shahidi, E. Ghiamati and B. Haghighi, Chem. Phys. 369, 59 (2010) (https://doi.org/10.1016/j.chemphys.2010.02.003).

N. M. Oghaz, E. Ghiamati, B. Haghighi, A. E. Nasrabad, M. M. Papari and M. Bamdad, J. Mol. Liq. 165, 55 (2012) (https://doi.org/10.1016/j.molliq.2011.10.008).

M. M. Papari, S. Amighi, M. Kiani, D. Mohammad-Aghaie and B. Haghighi, J. Mol. Liq. 175, 61 (2012) (https://doi.org/10.1016/j.molliq.2012.08.013).

N. Mansoori Oghaz, B. Haghighi, M. M. Alavianmehr and E. Ghiamati, J. Sol. Chem. 42, 54 (2013) (https://doi.org/10.1021/jp044393q).

M. M. Alavianmehr , S. M. Hosseini , B. Haghighi and J. Moghadasi, Chem. Eng. Sci. 122, 622 (2015) (https://doi.org/10.1016/j.ces.2014.10.009).

M. M. Papari, D. Mohammad-Aghaie, B. Haghighi and A. Boushehri, Fluid Phase Equil 232, 122 (2005) (https://doi.org/10.1016/j.fluid.2005.03.022).

M. Kardar, Statistical Physics of particles (Cambridge University press, 2007).

J. M. Prausnitz, R. N. Litchtenthaler and E. G. de Azevedo, Moleular Thermodynamics of Fluid-Phase Equilibria, Third Edition (Prentice Hall, New Jersey, 1999).

B. C. Eu, Generalized Thermodynamics: The Thermodynamics of Irreversible Processes and Generalized Hydrodynamics (Kluwer, Dordrecht, 2002).

D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1976).

T. Padamanabhan, Statistical Mechanics of Gravitating System, Phys. Rep. 188, 285 (1990) (https://doi.org/10.1016/0370-1573(90)90051-3).

E. Ziambaras and E. Schroder, Phys. Rev. B 68, 064112 (2003) (https://doi.org/10.1103/PhysRevB.68.064112).

Singh P K, Indian J Pure & App Phys 49, 829 (2011).

G. I. Cui, R. I. Yu and L. R. Chen, Physica B 348, 404 (2004) (https://doi.org/10.1016/j.physb.2004.01.003).

J. Garai and A. Laugier, J. App. Phys. 101, 023514 (2007) (https://doi.org/10.1016/j.physb.2004.01.003).

B. P. Singh and S. K. Srivastava and K. Dinesh, Physica B 349, 401 (2004) (https://doi.org/10.1016/j.physb.2003.12.020).

M. Kumar, Physica B 365, 1 (2005) (https://doi.org/10.1016/j.physb.2005.04.007).

M. L. Klein, Ann. Rev. Phys. Chem. 36, 525 (1985) (https://doi.org/10.1146/annurev.pc.36.100185.002521).

S. K. Ma, Statistical Mechanics (World Scientific, Philadelphia, 1985).

F. J. Pierce F J, Microscopic Thermodynamics (International Textbook Company, Pennsylvania, 1966).

J. Avsec and M. Oblak, Int. J. Heat & Mass Transfer 50, 4331 (2007) (https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.064).

O. L. Anderson, Equation of States for Geophysics and Ceramic Science (Oxford University Press, New York, 1995).

O. L. Anderson, Geophys. J. Int. 143, 279 (2000) (https://doi.org/10.1046/j.1365-246X.2000.01266.x).

J. Shanker, B. P. Singh and H. K. Baghel, Physica B 387, 409 (2007) (https://doi.org/10.1016/j.physb.2006.04.026).

L. Burakovsky and D. L. Preston, J. Phys. Chem. Solids 65, 1581 (2004) (https://doi.org/10.1016/j.jpcs.2003.10.076).

A. C. Holt and M. Ross, Phys Rev B 1, 2700 (1970) (https://doi.org/10.1103/PhysRevB.1.2700).

N. L. Vocadlo and G. D. Price, Phys. Earth Planet Int. 82, 261 (1994).

A. Sparavigna, Phys. Rev. B, 56, 7775 (1997) (https://doi.org/10.1103/PhysRevB.56.7775).

S. S. Kushwash, Phys. Earth Planet Int. 149, 201 (2005) (https://doi.org/10.1016/j.pepi.2004.09.010).

O. L. Anderson, D. G.Isaak and V. E. Nelson, J. Phys. Chem. Solids 64, 2125 (2003) (https://doi.org/10.1016/S0022-3697(03)00112-4).

E. G. Moroni and T. Jarlborg, Europhys. Lett. 33, 223 (1996) (https://doi.org/10.1209/epl/i1996-00324-1).

G. Steinle-Neumann and L. Stixrude, Phys. Rev. B 60, 791 (1999) (https://doi.org/10.1103/PhysRevB.60.791).

K. Sushil, Physica B 367, 114 (2005) (https://doi.org/10.1016/j.physb.2005.06.004).

X.C. Peng, L.I. Xing and Z.H. Fang, Physica B 394, 111 (2007) (https://doi.org/10.1103/PhysRevB.68.064112).

Downloads

Published

2020-03-28

How to Cite

Mangelli, H., Vafaeei, M., Mansoori Oghaz, N., & Haghighi, B. (2020). The First Principle Approach in Estimating Bulk Modulus Based on Explicit Expression of Canonical Partition Function: Array. Physics and Chemistry of Solid State, 21(1), 61–67. https://doi.org/10.15330/pcss.21.1.61-67

Issue

Section

Scientific articles