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In this paper, we consider the eguations of non-axisymmetric oscillations of discretely reinforced multilayer
cylindrica shellsof elliptical section. When analyzing the € ements of the elastic structure, arefinement model of
the theory of shells and rods of the Timoshenko type is used. The numerical method of solving the dynamic
equations is based on the integro- interpol ation method of constructing the finite-difference schemes for equations
with discontinuous coefficients. The problem of dynamic behavior of a three-layer longitudinal-transversal
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I ntr oduction

The evaluation of the stress-strain date of a three-
layer cylindrical shell with discrete ribbed filler is a
rather complex task, the solution of which requires the
development of certain theoretical models of layered
plates and membranes. The implementation of these
models causes the need to improve and devel op effective
numerical methods for calculating these structural
elements. The complexity of constructing mechanical
models of multilayer shells and the application of
fundamentally different kinematic and static hypotheses
leads to a large variety of calculation schemes and
equations [1 - 22]. It is known that when constructing
multilayer shell variants, there are two main approaches
to congtructing mathematical models that are based on
the use of unified hypotheses for the entire package [3, 5,
7-11, 14-22] and hypotheses that take into account the
kinematic and gatic characteristics of each layer [ 1, 6].
In accordance with the terminology proposed in [3, 6],
the model and the theory of the second approach are
called "discrete-structural” when considering three-layer
shells with ribbed filler, the following approaches are
also valid: the constructive-orthotropic model of three-
layer membranes and the model taking into account the
discrete location of the filler dements . Within the
framework of the second approach axisymmetric and
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non-axisymmetric oscillations of three-layer shells with
ribbed filler under non-stationary loads [11, 12] are
considered.

|. Formulation of the problem

A three-layer cylindrical shell of an dliptic section
with discrete longitudinal and transverse ribbed filler
under the action of internal digtributed non-stationary
load is considered. The inhomogeneous three-layer
elastic structure is two cylindrical shells of an elliptical
cross-section (internal and external sheathing), which are
rigidly interconnected by a system of longitudinal and
transverse discrete ribs. Schematic representation of the
original design ispresented in Fig. 1

The coefficients of the first quadratic form and the
curvature of the coordinate surface of the initial shellsare
taken asfollows

A=l k, =0, 6h)
A, =(a’cos’a, +b’sin’a,)"?,

k, =ab, (a’cos’a, +b’sin’a,) *? k=1,2;

where &, and b, — the axis of the dlipse, which

characterizes the cross-section of the corresponding
cylindrical shell.
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Fig. 1. Schematic representation of athree-layer cylindrical shell of an elliptic cross-section with adiscrete
longitudinal and transverse ribbed filler.

It is accepted that the deformed state of the inner and
outer sheathing (respectively, indices 1 and 2) can be
determined by the generalized vectors of displacements
of the corresponding medial surfaces
U, = (ui,u3,u3.j 1,j 3)" and
U,=(u?uzu?j’2j2". When considering the
elements of the discrete filler it is assumed that the
deformed state of the rib, directed aong the axis a,, is

determined by the vector of the center line displacement
of the cross section of the i-th rib
Ui =(U;,Uy,Ug,j 5,) »). ad the deformed state of
the transverse j-th rib, directed along the axis a ,,, can be
determined by a generalized vector of displacements
Uj = (U, Uy, Ugj o 4500 2j)T (2, 11].

To derive equation of oscillation of a three-layer
elastic dtructure with a discrete filler, the variational
principle of the dationary position of Hamilton-
Ostrogradsky [2] is used. After standard transformations
in the variational equation, taking into account the
expressions for the potential and kinetic energies for the
sheaths and edges in [2,11], we obtain two groups of
equations. The equation of oscillations three-layered
cylindrical shell dliptical cross section with discrete
longitudina-transversefiller written as:

- for internal and external linings

ﬂsl ‘ITSZ o
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reinforcing ribs (4), the designations of the type [S]

correspond to the total action of the values of the forces -
moments of the smooth cylindrical shell of the dliptic
section on the j-th reinforcement rib.

In the equations (2) — (4) Uy, U,, Us, ] 4,] 5 —
components of a generalized motion vector of the median
surface of theshdl; r, r., r J. — densitys materid shell
i-th, j-th ribs respectively; h — the thickness of the shell;
h, =05(h+h); h — height of the cross-section of

the i-th rib; hq. =0,5(h+hj); h; — Height of the
cross-section of the j- th rib. Values [f], = - 7,

ne f* —the value of the functions on the right and Ieft
on therupture line (line designing the center of gravity of
the i-th rib on the median surface of the cylindrical shell).
Accordingly, quantities are determined

[f],=f"-
The values of effort-moments in the equations of
oscillation for the shell (2) are reated to the

corresponding values of deformation by the following
relations

Tu=Bulen+ney). T»=Byle,tnel). ©
T13 = BlBe131 23 - 23e231 S sze121
Mll = Dll (kll +n2k22) !
Mzz = Dzz (kzz +n k11) H = D12k121
_ Ty, _ Tu,
=—, e +k,u,,
11 ﬂsl 2 = ﬂSZ
o = o, S, + Ty
12— T[SZ ﬂsl 13 1 ﬂsl
e23:f2+%' Uz,
ko = _Ti. T, T
1m - ﬂsl 22 ﬂSZ 12 ﬂSZ ﬂsl
In ratios (5) the following notation is introduced:
Bll = Elh ! BZZ = EZh !
1-np, 1-np,

2:

)12
- qr2 +
Figtt swhere E, E,, G,, G;, G5, N, N, — physical and

9
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B, =Gy,h, B;=Gsh, By =Gyh,
:El—h3 _Ez—hs D.= E
gy 2 gy T R

mechanical parameters of orthotropic shell material.

The values of effort-moments in the oscillation
equations for the i-th rib (3) are related to the
corresponding values of the deformations according to
therelations

EIFellI
My = Eillik11i1 My,

:&-ic'L €,
- |1-[Sl’ 22i

‘ﬂu ,:L ,:L_
ﬂsl 12§ ﬂsl’ 11 ﬂsl

In ratios (6) E, G, — physical and mechanical
F, I

I
parameters of the cross-section of i -th rib.

The values of effort-moments in the oscillation
equations for the j-th rib (4) are related to the

corresponding values of the deformations according to
therelations

G F e12| ' -rl3i

=Gl

i'cri

‘ﬂuz

=GFey (6
Kz

hcﬂlz

€13 =] 1t

parameters of ribs material; 1i» lgi — geometric

llj EFellj’ 12j G FelZJ’ 13j G Felsj (7)
Mllj = Ejlljkllj’ 12 _Gjltorjkle’
Tu 1 1
L W hCJ l Py
fis, TIs,
flus _Tia _ ﬂJ 2
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e3=j1 s 11 s, 11 s

In ratios (7) E;, G; - physical and mechanica

parameters of ribs materid; F;, 1,;, |, — geometric
parameters of the cross-section of | -th rib.
The equations of oscillations (2)-(7) ae

supplemented by the corresponding boundary and initial
conditions.

Il. Research results

2.1. Numerical algorithm.
The numerical algorithm for the solution of the
initial boundary value problem (2) — (7) is based on the

application of the integro-interpolation method of
constructing difference relations on the gpatia
coordinates S, S, and the explicit approximation of the
timecoordinate t [2, 11].

According to the initial formulation of the problem,
the solution is sought in a smooth domain (equation (2),
(5)) and is glued on lines of discontinuities (equations
(3), (4)). Let us build solutions in a smooth region

D={s,£s£sy;Sp£S,ES,y}. Choose a
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subregion D 1 D,

Dy ={Su12 £ 8 £Shw2) Su12 £ £ S0}
and integrate the equation of oscillation (2) in this sub-
region. As a result, we obtain such a difference in the
ratio of finding solutionsin the (n+1) -th time layer.

Tn S:Hl/z S:I 1/2

1k+/2,1 ~ 1]k 2]

Ds,
S<+1/2 | S( 1/2,1 TZI;k,Hl/Z
Ds, Ds,
k

+_§I(ngk,l+1/2 Tnkl 1/2) =r h(uzkl)tt '

Tn

13k+1/2,1

=rhuy e, ®

Tn
22k,1-1/2 +

Tn Tn

13k-1/2,1 23k, 1+1/2
Ds, Ds,
k
- _ZI(Tng,Hl/Z ngkl 1/2) + 3k| =r h(u;k,l )ft !

2
Mn Hn

Mn
11k+1/2,1 ~ 11k-1/2,1 + k- 1/2

Tn

23k |- 1/2

n
Hk,l+1/2

Ds,2
2 (I fk,l )ft 1

( 132y T 3k 1/2, D=0 —

n n
Hk+1/2,| - Hk—l/Z,I

Ds,

+ M;2k,|+1/2 - M;2k,|-1/2 _
Ds,
1, . ) h® .
- E(T23k,l+1/2 + T 02) =1 E(J 2 )it -
So in difference ratios the values of generaized

displacements U,,U,,Us,,] ,,j , are corrdlated to the

whole nodes of the spatial difference grid, and the values
of effort-moments (correspondingly deformations) are

correlated to half-knots (k+1/2,1), (k,1 £1/2). To

obtain the agreed difference relations for effort-moments
of the equation (5), they are integrated by region

Dy ={Su1 £ £S5 S110 £ £ S0}
Dy ={Sk £8, £ St S0 £S, £ Sy}

etc. In ratios (8) the notation of difference derivativesis
introduced according to [11]. Similarly constructed value
difference equations fluctuations reinforcing i-th and j-th
ribs. The above mentioned approach to the construction
of difference schemes allows us to fulfill the law of
conservation of the total mechanical energy of the output
elagtic system at a difference level.

2.2. Numerical results.

As a partial case of a three-layer cylindrical shell of
an dliptic section, the problem of forced fluctuations of
three-layer cylindrical shells of circular cross section
with a longitudinal-transverse discrete ribbed filler with
internally distributed pulsed loading is considered.

The problem of forced fluctuations of a three-layer
cylindrical shell with a discrete longitudinal-transverse
ribbed filler with internal distributed pulse loading is
considered. It is assumed that the edges of the shell and
the elements of the longitudina filler are rigidly fixed.
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The boundary conditions for this case x=0, x=L
have the following form
Uy =u; =uy =j ;=) ;=0 k=12;
Uy =Uy =Uy =] 4 =] 5 =0, i =1]1.

The initia conditions for the given system of

equations are zero. The problem was considered in the

following  geometric  and  physical-mechanical

parameters:

L/h =80, h=h, T
— h=h, j=1J;

R/h =20, h=2h,i=11;

E/=E2=E =E, =7x0"
nj=n’ =03 r,=r,=r, =r, =2740, kym’,
where R ,h, — the radius of the middie surface and

thickness of the inner lining; L — length of construction.
Considered the case of a longitudinal-transverse discrete
filler at | =4 and J =3, When the discrete e ements
are evenly spaced along the spatial coordinates between
the inner and outer sheaths. Centers of cross-sectional
gravity of discrete elements of the aggregate are
projected onto the corresponding middle surfaces of the

pandls along the lines y. = (i - DpR/2, i=1, 4 and
X = jL/4, j =1, 3. Normal impulse load was given in
the form P = A>{h (t)-h- T)], where  h (t) -

Heaviside's function, A—load amplitude, T —load time.
Inthe calculationsit waslaid A=10° Pa; T =500 °s.
The results of calculations of this task are shown in
Figure 2. The curve with index 1 corresponds to the
value of the inner shell, and the curve with the index 2
corresponds to the value of the outer shell. In particular,

the dependence of the value U, between the longitudinal

edges on the axis of symmetry on the spatial coordinate x
at time t =7.5T . Based on the presented material, the
location of the transverse discrete reinforcing ribs

(% =]jL/4, ] =1, 3) — these are points of connection
of curves with indexes 1 and 2. In fig. 3 shows the
dependence of the magnitude U; along the center of the

weight of the cross section of the longitudina discrete
edge from the spatial coordinate x a the instant of time

t =7.5T . In this case, there is one curve, depicted in
the figure. The comparison of the values of U, along the

symmetry line between the ribs (Fig. 2) and the
longitudinal ribs find it possible to characterize the effect
of the longitudinal-transverse discrete aggregate on the
distribution of the kinematic parameters of the output
elagtic structure. Calculations of the stress-strain state of
the dynamic behavior of the three-layer membranes,
taking into account the ribbed filler, were carried out on a
time interval t=40T, 60T. In this paper, the
characteristic dependences of the stress-strain state of the
three-layer shell are presented. In particular, moments of
time when the corresponding kinematic and static values
reached the maximum values were considered. It was
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observed that the maximum of the values of U, along the

Ug'los, m

variational principle, we obtain the equations of

t=75T, vy= pR/4
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Fig. 2. Dependence of the value Uz between the edges on the axis of symmetry on the spatial coordinate X at the
instant of timet =7.5T .
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Fig. 3. The dependence of the value U, along the center line of the cross-sectional dimension of the longitudinal
discrete edge from the spatial coordinate x at the ingtant of time t = 7.5T .

symmetry line between the edges and aong the edge is
reached a the time t =7.5T , where T — duration of

non-stationary load. Comparative analysis values U,

Along the edges (Fig. 3) and value U, the line of
symmetry between the ribs shows (Fig.2), that the
difference in maximum values of U, reaches an order of
1.8times.

Conclusions

In this paper, based on the Hamilton-Ostrogradsky
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oscillation of three-layer cylindrical shells of an dliptic
section with discrete ribbed filler. When considering the
elements of an elagtic structure, models of shells and ribs
ae used in accordance with the hypothesis of
Tymoshenko. An effective numericl method is
developed for solving the obtained equations, which is
based on the application of integro-interpol ation relations
by spatial coordinates and an explicit finite-difference
scheme in time coordinate. The solution of the problem
of the dynamic behavior of a three-layer cylindrical shell
of an dliptic section with discrete ribbed filler under the
action of a pulsed load is obtained. The analysis of the
received resultsis given.
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A.B. IlaBarok

JAnHaMika TPUIIAPOBOI HUJIIHAPUYHOI 000JJOHKH eJIINTUHYHOIO nepepisy 3
M03/10BKHbLO-TONEPEYHNM PeOPUCTUM AUCKPETHUM HANIOBHIOBaYeM

Inemumym mexanivu Hayionanvnoi akademii nayk Yipainu im. CI1. Tumowenka, eyn. Hecmeposa 3, 03057,
Kuis, Yrpaina, aniutapavliiuk@gmail.com

B po6oti po3risnaroThes piBHAHHA HEOCECMMETPUYHUX KOJIMBaHb JUCKPETHO MiAKPIIUICHUX TPHUILAPOBUX
LTI HAPUYHUX 000JIOHOK eINTHYHOro nepepidy. [Ipu aHani3i eneMeHTiB IPyXKHOI CTPYKTYPH BUKOPHCTOBYEThCS
YTOYHIOIOYA MOJIEIb TeOpii 000JIOHOK 1 cTeprkHIB ThIy Trmorenka. JlocnimKeHo 3a1ady TUHAMIYHOT IIOBEAiHKU
TPHUILIAPOBOI IO3/I0BKHBO-TIONEPEYHO] MiJKPIIUICHO! IIIHAPUYHOI OOOJOHKH EJINTHYHOIO Iepepisy MpH
PO3MOAIIEHOMY HECTalliOHAPHOMY HaBAHTaKCHHI.

KiouoBi cioBa: TpumapoBa muTiHApHYHA OOOJIOHKA, SJNINTHYHWI Tepepis, Teopis TUIy THMOIIEHKa,
BUMYILICH] KOJIMBaHHS, YUCEIbHUI PO3B’ S30K.
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