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In this paper, we consider the equations of non-axisymmetric oscillations of discretely reinforced multilayer 
cylindrical shells of elliptical section. When analyzing the elements of the elastic structure, a refinement model of 
the theory of shells and rods of the Timoshenko type is used. The numerical method of solving the dynamic 
equations is based on the integro- interpolation method of constructing the finite-difference schemes for equations 
with discontinuous coefficients. The problem of dynamic behavior of a three-layer longitudinal-transversal 
reinforced cylindrical shell of an elliptical section under a distributed nonstationary load is investigated. A 
solution of the problem on dynamic behaviour of the three-layered cylindrical shell with some discrete 
longitudinal-transverse ribbed filler is considered for distributed non-stationary loading. 
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Introduction 

The evaluation of the stress-strain state of a three-
layer cylindrical shell with discrete ribbed filler is a 
rather complex task, the solution of which requires the 
development of certain theoretical models of layered 
plates and membranes. The implementation of these 
models causes the need to improve and develop effective 
numerical methods for calculating these structural 
elements. The complexity of constructing mechanical 
models of multilayer shells and the application of 
fundamentally different kinematic and static hypotheses 
leads to a large variety of calculation schemes and 
equations [1 - 22]. It is known that when constructing 
multilayer shell variants, there are two main approaches 
to constructing mathematical models that are based on 
the use of unified hypotheses for the entire package [3, 5, 
7-11, 14-22] and hypotheses that take into account the 
kinematic and static characteristics of each layer [ 1, 6]. 
In accordance with the terminology proposed in [3, 6], 
the model and the theory of the second approach are 
called "discrete-structural" when considering three-layer 
shells with ribbed filler, the following approaches are 
also valid: the constructive-orthotropic model of three-
layer membranes and the model taking into account the 
discrete location of the filler elements . Within the 
framework of the second approach axisymmetric and 

non-axisymmetric oscillations of three-layer shells with 
ribbed filler under non-stationary loads [11, 12] are 
considered. 

I. Formulation of the problem 

A three-layer cylindrical shell of an elliptic section 
with discrete longitudinal and transverse ribbed filler 
under the action of internal distributed non-stationary 
load is considered. The inhomogeneous three-layer 
elastic structure is two cylindrical shells of an elliptical 
cross-section (internal and external sheathing), which are 
rigidly interconnected by a system of longitudinal and 
transverse discrete ribs. Schematic representation of the 
original design is presented in Fig. 1 

The coefficients of the first quadratic form and the 
curvature of the coordinate surface of the initial shells are 
taken as follows 
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where ka  and kb  – the axis of the ellipse, which 
characterizes the cross-section of the corresponding 
cylindrical shell. 
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It is accepted that the deformed state of the inner and 
outer sheathing (respectively, indices 1 and 2) can be 
determined by the generalized vectors of displacements 
of the corresponding medial surfaces 
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elements of the discrete filler it is assumed that the 
deformed state of the rib, directed along the axis 1α , is 
determined by the vector of the center line displacement 
of the cross section of the i-th rib 

),,,,( iiiiii uuuU 21321 ϕϕ= , and the deformed state of 

the transverse j-th rib, directed along the axis 2α , can be 
determined by a generalized vector of displacements 

T
jjjjjj uuuU ),,,,( 21321 ϕϕ= [2, 11]. 

To derive equation of oscillation of a three-layer 
elastic structure with a discrete filler, the variational 
principle of the stationary position of Hamilton-
Ostrogradsky [2] is used. After standard transformations 
in the variational equation, taking into account the 
expressions for the potential and kinetic energies for the 
sheaths and edges in [2,11], we obtain two groups of 
equations. The equation of oscillations three-layered 
cylindrical shell elliptical cross section with discrete 
longitudinal-transverse filler written as: 
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In ratios (3), the magnitudes of the type 
,][,][,][ iii TTS 2322  ii MH ][,][ 22  correspond to the 

total value of the forces-moments of the outer and inner 
sheaths acting on the i-th discrete element of the filler. 
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Fig. 1. Schematic representation of a three-layer cylindrical shell of an elliptic cross-section with a discrete 

longitudinal and transverse ribbed filler. 
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In the equations of oscillation of the discrete 
reinforcing ribs (4), the designations of the type jS][  
correspond to the total action of the values of the forces - 
moments of the smooth cylindrical shell of the elliptic 
section on the j-th reinforcement rib. 

In the equations (2) – (4) 21321 ϕϕ ,,,, uuu  – 
components of a generalized motion vector of the median 
surface of the shell; ji ρρρ ,,  – densitys material shell 
і-th, j-th ribs respectively; h – the thickness of the shell; 

)(, ici hhh += 50 ; ih  – height of the cross-section of 

the i-th rib; )(, jcj hhh += 50 ; jh  – Height of the 

cross-section of the j- th rib. Values −+ −= fff i][ , 

де ±f  – the value of the functions on the right and left 
on the rupture line (line designing the center of gravity of 
the i-th rib on the median surface of the cylindrical shell). 
Accordingly, quantities are determined 

−+ −= fff j][ . 
The values of effort-moments in the equations of 

oscillation for the shell (2) are related to the 
corresponding values of deformation by the following 
relations 
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In ratios (5) the following notation is introduced: 
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where 2123131221 νν ,,,,,, GGGEE  – physical and 
mechanical parameters of orthotropic shell material. 

The values of effort-moments in the oscillation 
equations for the i-th rib (3) are related to the 
corresponding values of the deformations according to 
the relations 
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In ratios (6) ii GE ,  – physical and mechanical 

parameters of ribs material; criii IIF ,, 1  – geometric 
parameters of the cross-section of i -th rib. 

The values of effort-moments in the oscillation 
equations for the j -th rib (4) are related to the 
corresponding values of the deformations according to 
the relations 
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In ratios (7) jj GE ,  – physical and mechanical 

parameters of ribs material; torjjj IIF ,, 1  – geometric 

parameters of the cross-section of j -th rib. 
The equations of oscillations (2)-(7) are 

supplemented by the corresponding boundary and initial 
conditions. 

II. Research results 

2.1. Numerical algorithm.  
The numerical algorithm for the solution of the 

initial boundary value problem (2) – (7) is based on the 
application of the integro-interpolation method of 
constructing difference relations on the spatial 
coordinates 1s , 2s  and the explicit approximation of the 
time coordinate t  [2, 11]. 

According to the initial formulation of the problem, 
the solution is sought in a smooth domain (equation (2), 
(5)) and is glued on lines of discontinuities (equations 
(3), (4)). Let us build solutions in a smooth region 
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subregion DDkl ⊂1 , 
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and integrate the equation of oscillation (2) in this sub-
region. As a result, we obtain such a difference in the 
ratio of finding solutions in the )( 1+n -th time layer. 
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So in difference ratios the values of generalized 
displacements 21321 ϕϕ ,,,, uuu  are correlated to the 
whole nodes of the spatial difference grid, and the values 
of effort-moments (correspondingly deformations) are 
correlated to half-knots )/,(),,/( 2121 ±± lklk . To 
obtain the agreed difference relations for effort-moments 
of the equation (5), they are integrated by region 
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etc. In ratios (8) the notation of difference derivatives is 
introduced according to [11]. Similarly constructed value 
difference equations fluctuations reinforcing i-th and j-th 
ribs. The above mentioned approach to the construction 
of difference schemes allows us to fulfill the law of 
conservation of the total mechanical energy of the output 
elastic system at a difference level. 

2.2. Numerical results.  
As a partial case of a three-layer cylindrical shell of 

an elliptic section, the problem of forced fluctuations of 
three-layer cylindrical shells of circular cross section 
with a longitudinal-transverse discrete ribbed filler with 
internally distributed pulsed loading is considered. 

The problem of forced fluctuations of a three-layer 
cylindrical shell with a discrete longitudinal-transverse 
ribbed filler with internal distributed pulse loading is 
considered. It is assumed that the edges of the shell and 
the elements of the longitudinal filler are rigidly fixed. 

The boundary conditions for this case Lxx == ,0  
have the following form 

;,, 21021321 ====== kuuu kkkkk ϕϕ  

.,, Iiuuu iiiii 1021321 ====== ϕϕ  
The initial conditions for the given system of 

equations are zero. The problem was considered in the 
following geometric and physical-mechanical 
parameters: 
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where kk hR , – the radius of the middle surface and 

thickness of the inner lining; L – length of construction. 
Considered the case of a longitudinal-transverse discrete 
filler at 4=I  and 3=J , When the discrete elements 
are evenly spaced along the spatial coordinates between 
the inner and outer sheaths. Centers of cross-sectional 
gravity of discrete elements of the aggregate are 
projected onto the corresponding middle surfaces of the 
panels along the lines 4121 ,,/)( =−= iRiyi π  and 

314 ,,/ == jjLx j . Normal impulse load was given in 

the form [ ])()( TttAP −−⋅= ηη1
3 , where )(tη – 

Heaviside's function, A – load amplitude, T – load time. 
In the calculations it was laid 610=A  Pa; 61050 −⋅=T s. 

The results of calculations of this task are shown in 
Figure 2. The curve with index 1 corresponds to the 
value of the inner shell, and the curve with the index 2 
corresponds to the value of the outer shell. In particular, 
the dependence of the value 3u  between the longitudinal 
edges on the axis of symmetry on the spatial coordinate x 
at time 7.5t T= . Based on the presented material, the 
location of the transverse discrete reinforcing ribs 
( 314 ,,/ == jjLx j ) – these are points of connection 
of curves with indexes 1 and 2. In fig. 3 shows the 
dependence of the magnitude 3u  along the center of the 
weight of the cross section of the longitudinal discrete 
edge from the spatial coordinate x at the instant of time 

7.5t T= . In this case, there is one curve, depicted in 
the figure. The comparison of the values of 3u  along the 
symmetry line between the ribs (Fig. 2) and the 
longitudinal ribs find it possible to characterize the effect 
of the longitudinal-transverse discrete aggregate on the 
distribution of the kinematic parameters of the output 
elastic structure. Calculations of the stress-strain state of 
the dynamic behavior of the three-layer membranes, 
taking into account the ribbed filler, were carried out on a 
time interval TTt 6040 ÷= . In this paper, the 
characteristic dependences of the stress-strain state of the 
three-layer shell are presented. In particular, moments of 
time when the corresponding kinematic and static values 
reached the maximum values were considered. It was 
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observed that the maximum of the values of 3u  along the 

symmetry line between the edges and along the edge is 
reached at the time 7.5t T= , where Т – duration of 
non-stationary load. Comparative analysis values 3u  

Along the edges (Fig. 3) and value 3u  the line of 
symmetry between the ribs shows (Fig.2), that the 
difference in maximum values of 3u  reaches an order of 
1.8 times. 

Conclusions 

In this paper, based on the Hamilton-Ostrogradsky 

variational principle, we obtain the equations of 

oscillation of three-layer cylindrical shells of an elliptic 
section with discrete ribbed filler. When considering the 
elements of an elastic structure, models of shells and ribs 
are used in accordance with the hypothesis of 
Tymoshenko. An effective numerical method is 
developed for solving the obtained equations, which is 
based on the application of integro-interpolation relations 
by spatial coordinates and an explicit finite-difference 
scheme in time coordinate. The solution of the problem 
of the dynamic behavior of a three-layer cylindrical shell 
of an elliptic section with discrete ribbed filler under the 
action of a pulsed load is obtained. The analysis of the 
received results is given. 
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Fig. 2. Dependence of the value 3u  between the edges on the axis of symmetry on the spatial coordinate x at the 
instant of time 7.5t T= . 
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Fig. 3. The dependence of the value 3u  along the center line of the cross-sectional dimension of the longitudinal 
discrete edge from the spatial coordinate x at the instant of time 7.5t T= . 
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А.В. Павлюк 

Динаміка тришарової циліндричної оболонки еліптичного перерізу з 
поздовжньо-поперечним ребристим дискретним наповнювачем 

Інститут механіки Національної академії наук України ім. С.П. Тимошенка, вул. Нестерова 3, 03057,  
Київ, Україна, aniutapavliuk@gmail.com 

В роботі розглядаються рівняння неосесиметричних коливань дискретно підкріплених тришарових 
циліндричних оболонок еліптичного перерізу. При аналізі елементів пружної структури використовується 
уточнююча модель теорії оболонок і стержнів типу Тимошенка. Досліджено задачу динамічної поведінки 
тришарової поздовжньо-поперечної підкріпленої циліндричної оболонки еліптичного перерізу при 
розподіленому нестаціонарному навантаженні. 

Ключові слова: тришарова циліндрична оболонка, еліптичний переріз, теорія типу Тимошенка, 
вимушені коливання, чисельний розв’язок. 
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