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The problem of stochastic averaging of the decayed dynamics of the output state population of a one-step
transformation process with constant deterministic forward transition rate and randomly varying return transition
rate is solved in approximation where random variation is modeled as a dichotomous stochastic process. The form
of the obtained solution represented as a product between bimodal sigmoid rise of average population and its
unimodal exponential decay is shown to largely be dependent on the stochastic frequency and amplitude
parameters. For example, at high stochastic frequency, the behavior of population is reduced to that of a decayed
one-step deterministic system. However, for resonance stochastic amplitude at low stochastic frequency, such
behavior coincides with that of three-exponential rise-decay kinetics typical rather of a three-step deterministic
slowly decaying process. Thus, there is an equivalence between using a more complex deterministic kinetic model
and a less complex stochastic kinetic model for describing decayed dynamics of irreversible systems.
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Introduction

Many processes in physical, chemical and biological
systems, such as inelastic energy transfer in solids,
monomolecular reactions in liquids, biomacromolecular
conformational transformations in organisms, etc., are
one-step transformation processes which occur between
the input and the output states of the system and can be
described without using explicit knowledge of the laws
governing their specific physical behavior. In simple
cases, these processes can be depicted by state transition
diagrams of two states, one input and one output, between
which they take place [1, 2]. In complex cases, however,
both the input and the output states can be not steady but
irreversibly decaying with some constant rates, whereas
return transition rate be not constant but randomly varying
[2-4]. This complicates the description of the temporal
behavior of output state of the system for the need of an
averaging over the stochastic fluctuations involved in a
random process.

The corresponding two problems for describing the
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average dynamics of output state of a one-step
transformation process with single decay rate constant and
dichotomous fluctuations in forward and return transition
rate constants have been solved by the authors in papers
[2] and [4], respectively. In this paper, we consider the
problem of averaging the decayed dynamics in the case
where both an input and an output states of a one-step
transformation process are assumed to be decaying with
the same rate constants, while the return transformation
rate constant be augmented with a dichotomous stochastic
process. In section |, we formulate the statement of the
problem and present a solution to it in the time domain.
The limiting cases are analyzed in section Il. Finally, in
section Il the results obtained are discussed and
concluded.

I. Statement of the problem

Consider a pair of unstable excited states of one-step
transformation system, that is, input state |I > to which
the system is initially activated with probability 1, and
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output state |0 > which transforms from and to
corresponding input state with, respectively, a constant
forward transition rate f and a random return transition rate
r(t) =r + a(t) represented as a combination of a
constant in time part r and a zero-mean stochastic part
a(t) so that a(t) = 0 and r(t) = r, where the overbar
designates temporal average. In addition, each state is
regarded to be irreversibly decaying with a constant rate k
Then the kinetic scheme for such a decayed one-step
transformation system is as follows
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This scheme can serve as a useful template for many
processes. For example, different optically active solid-
state systems, composed of two and more qubits, suffer
from unstable and fluctuating excited states that are poorly
defined and need adequate kinetic schemes to describe
their average behavior [5]. Also, for photoassisted
transformations in polyimides, polymer chains are
scissioned, similarly to transformation processes in
scheme (1), so leading to the appearance of unstable free
radicals that in turn undergo decay processes to more
stable groups [6]. More else, by acting on the biomolecular
systems via changing the inner volume of allowed
conformations subject to thermal fluctuations, the high
compressive tension may increase the population of
unstable excited states and allow the modulation of
biochemical processes [7], such as the breakdown of
chemical bonds in the protein backbone and side groups to
form high-energy free radicals [6, 8]. Therefore, solving
the kinetic scheme (1) for different values of involved rate
constant parameters in analytical terms can help
understand main mechanisms underlying the randomly
modulated decayed dynamics of one-and multistep
transformation systems.

Note that from the physics point of view the afore-
introduced input and output states represent the one-
particle states of a nonequilibrium two-state excited
system coupled weakly to an equilibrium environment and
interacting with an external stochastic field [2, 3]. For
weak system-environment coupling strengths it is possible

to use the reduced description of the dynamics of these
states and be restricted in considering the temporal
behavior of their populations p; , (t) —only. Leaving aside
the details of this approach (cf. [2-4]) reduces the kinetic
equations for state populations of system (1) to the
following master equation

{ﬁ;(t) ==(f+ P + [r + a(®]po (O); 2
Po(t) = fpi(t) — [r + a(t) + klpo (t).

As this equation as well as scheme (1) is symmetrical
with respect to the decay rate constant k it is constructive
to use an exponentially decaying representation of the
form

Pr0(t) = m;0(t)exp (—kt) 3)

which reduces the system (2) to the master equation
{ﬁI(t) = —fm @) + [r + a(®)]ny (t); @)
1o (t) = fm;(©) — [r + a(©)]mo ().

for the stochastic steady-state populations mt; , (t) obeying
the normalization condition

m(8) + 1o (8) = 1 ®)

Using this condition reduces system of two equations
(4) to a one equation for only the population of output state

o(t) = f = [f + 7+ a(®]my(t) (6)

As population m,(t) is stochastic, integration of
Eq.(6) requires averaging over a stochastic process and
solving the result with respect to averages. However, this
demands the specification of the form of a stochastic
process a(t).

For definiteness, but without loss of generality, let
a(t) be a dichotomous stochastic process which is
exponentially correlated a(0)a(t) = g2exp(—2vt) and
performs random jumps between the two amplitude values
+o0 at a mean frequency v Then a(t) must obey the
equations (see, e.g. [2, 4])

[@®]? = 0% @) = —2va(t), a@®y() =

where y[a(t)] = y(t) is the stochastic functional, for
example, population p; o (t) or m; 4 (t).

Averaging of Eq.(6) leads to the unknown stochastic
correlation functional a(t)m,(t). Therefore, this equation
is not closed with respect to the average population of
output state 7, (t) and cannot be solved without using of
(7). Moreover, after differentiating of the averaged
equation (6) and then applying to it the formulae of
differentiation (7), we arrive to the one more unknown

a@®)y @) + a@®y) = a®)y(t) — 2va(®)y(t) )

correlation functional a(t)m,(t). However, multiplying
by a(t) the non-averaged equation (6) and averaging the
result with the use of (7), for that unknown functional we
obtain

a(®no(t) = —(f + Ma®my(t) — o?my(t) ®)

After some algebra this yields

To(®) + 2(f + 17 + V)T (0) + [(f + 1)(f + 7+ 2v) — 02mo(0) = f(f + 1 + 2v) 9)

Eq.(9) basically represents the equation governing the evolution of a steady-state population m,(t) of harmonic
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oscillator under the influence of external force f(f + r + 2v). This force defined with respect to output state |0 > of (1)
guarantees of reaching the stochastic equilibrium at ¢t — oo with the population

g =mo(t o ) =f(f +r+ 20)[(f +r)(f + 1+ 2v) —0?]7?

(10)

The corresponding equilibrium population attained due to the action of force r(f + r + 2v) — o2 on input state |1 >,

respectively, is

e =[r(f +r+2v) —d?][(f +)(f + 7+ 2v) —0?]!

(11

For the initial conditions no(b) =1, (0)=0, Eq. (9) is trivially solved yielding, due to (3) and (9), the following
solution of kinetic scheme (1) for the desired average decaying population p, (t) of output state

A1 exp(At)—Azexp (A1t)

o (t) _ f(f+r+2v) [

(F+r)(f+r+2v)—02

where A, , = —(f +r +v) ¥+ vv2 + g2. A 3D graph of
this solution is shown in Fig. 1(a). As we see, endowing
the return rate constant with a stochastic process
substantially modifies the behavior of decayed output
population in (1), particularly in the region of low
stochastic frequencies Vv (Fig. 1(b)). Hence it is
constructive to analyze the limiting cases of (12).

Il. Limiting cases

First of all, in the case of very high stochastic
frequency v > o; f;r, expression (12) reproduces the
well-known deterministic two-state decayed kinetics

f [1 _ e—(f+r)t]e—kt
f+r

Po(®) = (13)

This corresponds to the limit of negligibly small
intensity of dichotomous stochastic fluctuations
y=(0%/v) >0 (14)

However, in the case of nearly zero stochastic
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A1—2z

frequency v — 0, which formally corresponds to the
opposite limit of extremely high stochastic intensity

y=(0%/v) > o (15)
there is the difference between using of the corresponding
relation (15) in the case of almost zero stochastic
amplitude o = 0 and in the case of resonant stochastic
amplitude o = r, respectively, provided that generally
0 < o <. Indeed, in the first case, it is straightforward
to arrive at the deterministic decayed dynamics (13). On
the contrary, in the second case, the distinctly decaying
behavior of output state of a one-step system (1) emerges

— _ f(f+r)
po(t) =17

(1 _ Aleﬂ.zt_lzelllt) e—kt
A4z

PR (16)

This signifies a type of a stochastic resonance
observed, for example, in few-level atomic systems and
two-dimensional excitable lattices in high intensity
fluctuating fields [2, 4, 9, 10].

At the same time, in the low decay rate constant limit
k <« |Ay,| for resonant in amplitude o = 7 and zero in
frequency v=20 stochastic when

process,

Fig. 1. Evolution of the average population p, (t) (12) of the output state of a decayed one-step process (1)
depending on the control parameters: (a) 3D graph of the population (12) as a function of time t and rate k at fixed
parameters of stochastic amplitude and frequency, deterministic rate constants f = 2,7 = 1,6 = 1,v = 1073
(in the inverse of time units); (b) curves of population (12) calculated at fixed rate parameters f = 2,r = 1,0 = 1,
k = 0.1 for two different values of the stochastic frequency v = 10~3and v = 103 illustrating limiting cases.
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M =—(f+2r) and A, = —f, solution (16) can be dichotomous (7). The form of solution for population
represented as appears to be a product between its bimodal sigmoid rise
and unimodal exponential decay (12). At high stochastic

f(f+2r) + 2r(f+2r) + 2fr

- —kt —(f+ant —ft f ith t to stochasti lit t
oo (D = F(f + r)[ e e e ] (17) requency with respect to stochastic amplitude and rate

constants v > o; f; r, the sigmoid rise of population turns

out to be unimodal (Fig. 1(b), orange curve) typical for a

It is noteworthy that such solution exactly coincides  decayed one-step deterministic relaxation process [2].
with the solution for population of output state of the Rather, at low stochastic frequency v «< o;f;r, this
following three-step decayed deterministic kinetic scheme  sigmoid rise remains bimodal (Fig. 1(b), blue curve), but
(cf. [3]) in such a way that, in condition of resonant stochastic
amplitude o =~ r, an expression (12) becomes analogous

f f+r k . . P LU
= — to the three-exponential sigmoid rise and decay Kinetics
|A > < > e 0>= (18) (17) characteristic of a three-stage deterministic decay
process (18) (see, e.g. [3, 11,12]).
This scheme, consisted of three states, that is, initially In conclusion, a decayed one-step transformation

activated state |A >, intermediate state |/ > and output kinetic scheme (1) with deterministic forward transition
state |0 >, and containing the particular forward rate rate constant f and randomly varying return transition rate
constants fand f + r, as well as return rate constantsband ~ constant  + a(t) can be regarded to be equivalent to a
r — b, and decay rate constant k, is typical of modeling the decayed three-step kinetic scheme (18) with deterministic

three-stage decay processes in many physical, chemical ~ forward transition rate constants f;f +r

and biological systems, such as optoelectronic systems, deterministic return transition rate constants b;d,
ceramic composites and ionic channels [3, 11-13]. provided that conditions of a stochastic resonance and
Therefore, in situation when some rate constants in a high intensity for fluctuations in return rate constant both
three-step decaying system (18) are incomplete or  hold. This forecasts an alternative in using different
uncertain, which is often the case, instead of a complex  Kinetic models of various complexity for describing the
slowly decayed three-step scheme (18) we can use a far ~ behavior of irreversible systems slowly decaying in

simpler slowly decayed one-step kinetic scheme (1) with characteristic deterministic and stochastic regimes.
a return transition rate showing high intense random _ )
variability in stochastic resonance regime. Conflicts of interest
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B.I. Tecnenko, O.JI. Kanitanuyk

YcepeaneHna 3racarya JMHAMIKA OTHOKPOKOBOI'O MpoIecy NepeTBOPEeHH 3
BHUIIAIKOBO-3MiHHOK IIBHAKICTIO 3BOPOTHOIO NEPEX0Oay

ITncmumym meopemuunoi gisuxu im. M.M. Boeonobosa, Hayionanvna Axademis Hayx Yxpainu, Kuig, Ykpaiua,
alkapt@bitp.kiev.ua; vtes@bitp.kiev.ua

Bupimeno npobieMy CTOXaCTHYHOTO yCEpEeIHEHHS 3racarodoil JMHAMIKH 3aCEICHOCTI BUXITHOTO CTaHy IS
MPOIIECY OAHOKPOKOBOTO MEPETBOPEHHS 3 IMOCTIHHOK IETEPMiHICTUYHOK MIBHIKICTIO MPSIMOTO MEPEXOay Ta
BUMAIKOBO-3MIHHOIO MIBHAKICTIO 3BOPOTHOTO MEPEXOAy Y HaONMIDKEHHI, ¢ BUMAIKOBA Bapiallisi MOJCITIOETHCS
JUXOTOMIYHUM CTOXaCTHYHUM TIporiecoM. [lokazaHo, o oTpruMaHuil po3B’sI30K, SIKMH MPEICTABISIETHCS Y BUTIISIL
no0yTKy OIMOJAIbBHOrO  CHI'MOINAIBHOTO  3pOCTY  YCEpPEIHEHOI 3aceleHocTi Ta 1 yHIMOZAJIBHOTO
EKCIIOHCHIIaJIFHOTO CIaay, MICTUTh 3HA4YHY 3aJICXKHICTH BiJl MApaMeTpPiB CTOXACTHYHOI YaCTOTH ¥ aMILTITyIH.
Hampuknan, 3a gyske BUCOKOi CTOXaCTHYHOI YaCTOTH MOBEIIHKA 3aCEJICHOCTI 3BOJUTHCS IO TaKOl ISl 3racarodoi
OJTHOKPOKOBOI IeTepMiHICTHYHOT cucTeMu. OHAK 32 HU3bKOI CTOXaCTHYHOI YaCTOTH i pe30HAHCHOI CTOXaCTHYHOT
aMIUTITYAX 151 TIOBEIiHKA CITIBIIQJA€E 3 TaKOK IS TPhOX-EKCIIOHEHIIaJbHOI KIHETHKH 3pPOCTY-CIIaay, CKOpime
TUTIOBOIO JJIS1 TPHKPOKOBOTO NETEPMIHICTUYHOTO TPOLECY, IO MOBUIBHO 3aracae. TOOTO iCHY€e eKBiBaJICHTHICTh
MiX CKJIQTHIIIOFO IETePMiHICTHYHOIO KIHETHIHOIO MOJIEIUTIO Ta MPOCTIMIOK0 CTOXACTHYHOIO KIHSTHIHOKO MOEIIIIO
y NPHUKJIAJaHHI 0 ONHUCY 3racaroyoi TMHAMIKH HEOOOPOTHUX CHUCTEM.

KurouoBi ciroBa: 3racaroua quHaMika, OJHOKPOKOBHIT POIEC IEPETBOPEHHS, BUIAJKOBO-3MiHHA IIBHIKICTH
Hepexomy.
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