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For resonant tunnding structure with GaN — potential wells and AIN — potentia barriers, caculation of
internal fields caused by piezoel ectric and spontaneous polari zation was carried.

In the model the effective mass of an electron and a didectric continuum model using finite difference
method self-consistent solutions of the Schrodinger and Poisson system of equations taking into account the
contribution of piezoel ectric and spontaneous pol ari zations was found.

Based on the found solutions of the Schrédinger and Poisson system of equations for resonance tunneling
structure, which functioned as a cascade experimentaly realized a quantum cascade detector, calculation of the
potentid profile and the electron energy spectrum was carried. It was found, that caculated value of detected
energy is different from the experimentally obtained not more than 3 %.
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I ntr oduction

Significant scientific progress in the modern physics
of semiconductors is the study of the work of quantum
cascade detectors (QCD) [1-3], and the study of physical
processes occurring in  semiconductor  resonance
tunneling structures (RTS), which are their active
elements. Currently, in relation to the physical nature of
the processes occurring in the QCD can be distinguished
two of their types.

The first type QCD, the layers of which RTS are
based on arsenide compounds. GaAs, InAs, AlAS
GalnAs etc., the crystalline lattices of which belong to
the A"'BY group of symmetry. QCD of this type works in
the medium and far infrared spectra bands of
electromagnetic waves. Thus their work is possible only
at maintenance of low temperatures (cooling by liquid
nitrogen). The work of the QCD of this type is well
investigated experimentally [1-3] and theoretically [4-6].

The second type includes the QCD, the layers of
which RTS are based on anisotropic semiconductor
media, formed by nitride compounds GaN, AIN [7-9],
the crystalline lattices of which also belong to the A"'BY
symmetry group. An essentia feature of the A"'BY group
of nitridesisthat in the work of the QCD on their basis it
is necessary to take into account their anisotropic
properties. Since in elemental lattices of wurtzite type,
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which usualy have nitrides of the A"'BY group, the total
dipole moment of each lattice is uncompensated, as well
as on the heteroboundaries of multilayer RTS there is
inconsistency of lattice constants, which leads to the
emergence of spontaneous and  piezodectric
polarizations. Thus, the total macroscopic polarization
that occurs in the RTS layers creates an internal electric
field that substantially deforms the potentia profile of
the nanostructure. Deep potential wellsin the RTS layers
that provide the work of nanoscale devices in the near
infrared spectral bands of eectromagnetic waves and
their efficient functioning a significantly higher
temperatures determine the considerable scientific and
applied interest to the QCD based on the nitrides of the
A"BY group. However, despite a number of papers [10-
15] on the investigation of mechanisms of internal fields
occurrence in the RTS, a the moment there is no
consistent theory, which would alow to perform
calculations of potentia profiles for multilayer RTS of
cascades of QCD taking into account the contribution of
piezodlectric and spontaneous polarizations. This is due
to the fact that the approach to calculating the potential
RTS profiles proposed in the above-mentioned works is
rather rough, since it allows only the contribution of
interna fields to the magnitude of an effective potential
profile [10-13] or based on numerical modeling of
solutions of a sef-consistent system Schrédinger and
Poisson equations [14, 15]. It can also be implemented
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Fig. 1. Geometric scheme of multilayer RTS.

only on powerful computers.

In the proposed paper, taking into account the
contribution  of piezodectric and  spontaneous
pol arizations, self-consistent solutions of the Schrodinger
and Poisson equations are found. With their use, the
guantum-mechanica theory of dationary electronic
dtates in a flat RTS as an active band of QCD is
developed.

For the RTS of the experimentally investigated QCD
with GaN-potential wells and AIN-potentia barriers,
functionalized in the near infrared range, the sdf-
consistent calculation of the eectronic potential profile,
the dtationary energy spectrum and the value of the
detected energy was performed.

M) = mpfa(- 2 +a(z- %)+ &

5 y
:Oq(Z- Zyp) - a(z- 22p+1)]g+rm[q(2- ) +a(z- )]+

|. Self-consistent solutons of Shrodinger
and Poisson’s equations

A multilayer RTS, which is located so that in the
Catesian coordinate system, the OZ axis is
perpendicular to the boundaries of the separation of
nanostructure layers, is considered (Fig. 1). It is assumed
that the medium (0), (1), (3), (5), (6) correspond to the
semiconductor material  AIN, medium (2) — GaN,
medium (4) — AlgssGay 42N.

Using for an electron the model of effective masses
we have:

D)

+my[a(z- z3) +(z- Z4)],
where q(z) - Heaviside step function, z, ® -¥, z® ¥, a m=m@=m® =m® =m® =m®, m=m? i
m, =m® - effective electron masses in potential barriersand wells of RTS, respectively.

Similarly, for dielectric permittivity, RTS can be written:

\ ; )
e(2) :e‘o’iq(- 2+a(z 29)+ & (- 2pp) - a(z- zzpﬂ)]gw‘l’[q(z- 2)+a(z- 2,)]+

+ePg(z- 29 +a(z- z,)I,

e®=g® =g®=g® =g® g =@ jg,=e®
- dielectric permeability of RTS layers material.

Energy spectrum of an electron E, and its wave
functions Y (E,,Z) are determined by solving a sdlf-

consistent system of Schrodinger and Poisson equations:
_i h>dee 1 dY (2)0

+V(2)Y (2 = EY (2),
» 9

2dzgm(z) dz 4

di w(2)0__
w5 P

R T

fae

: (2

where I (Z) - free charge density inside RTS, and the
effective potential for an electron isfound as:
V(2) =DEc () +Vi (9 +Vo (D +Ve(9). 4
In theratio (4):
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.i.0.719(Eg(AII\I)- E,(GaN),z<0,0£2<2, 2 £2<2,2,£2<%,2>7

DE.(2=10,z£2<2,

: (5)

L0.719E, (Al)5Ga,N) - E,(GaN), z £2<z,

- potential RTS profile for the eectron, calculated
without taking into account the eectric fied of
piezoelectric and spontaneous polarizations, where the

dependence of the band gap width on temperature T for
a Al Ga, ,N semiconductor is given by the Varshni

empirical relation [13-15]:
a(x)T?
b(x)+T’

and the dependence on the value of X:

E,(xT) = E,(x0)- (6)

E, (x,0) = x* +1.59x +3.5;
a(x) = (2.15x* - 0,46x +0.94) K03,
b (x) =1561x” - 270x + 791
Intheratio (4):
V(D=9 (2 8)
- the potential which is the solution of the Poisson

equation in the system of equations (3).
Further in the expression (4):

(")

2

21 @A e

3
&9 OJ/ e 0,6213r4
€4p°@ @ 21

exchange-correlation potentia, calculated in the Hedin
and Lundqvist approximation, where

1/3
r(2) = aB n(Z)—

characterlzes the electron gas in the nanostructure, In
e(2)
m(z)ag

dimensionless function that

relation to the effective Bohr radius ag,(z) =

a, - Bohr radius, N(2) - isthe concentration of carriers
that create a gatic spatial charge.
The potential energy V¢ (Z) of the interaction of an

electron with fieds of spontaneous and piezoeectric
polarization inside the RTSis found as:

| 0, z<0,
eF z,0£z<z,
.'.eFlzl eFz, 2 £2<1,

Ve(2) = %' eF,z,+ekz, 2, £2<7,

: eF,z,- eF,z, z £2< z,,
i-eFz,+ekz 2, £2<7,
10.2% 7,

The values of internal fields Fp, p=0.5, ae
determined from the condition of continuity of the vector
of electrical displacement D, =e!PF +P, on al the
RTS heteroboundaries, i.e :

D,=D (11)
without taking into account the availability of free

(10)

p+1’

xe
nGl+
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| e ©)
rs(2) 2 4pers(2)e(2ag (2)

charges within the RTS [12-14], which gives the

condition:
a F d (12)
p=0
Then, from the relations (10) and (11) we have:
dk
R - P
k ( ) (k)
_kt p
Fp— ) 5 dk , (13)
elP) 3 c
k=0e(®)

d, - the thickness of the corresponding layer of the RTS.

The magnitude of the macroscopic polarization p»
in expression (13), formed in random p-th RTS layer, is
expressed as the sum of spontaneous PS(PP) and

piezodectric P polarizations

Spontaneous polarlzatlon in hexagonal wurtzite-type
crystalsis given as.
p(P = pPi
Py =Pa’k,

where K - unit vector aong the Oz axis, which
determines the orientation of the crystallographic axis.
Piezoelectric polarization for a three-component

semiconductor layer of A BN -type, depending on

(15)

the concentration X of the component A is determined
by linear approximation:
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P80 ep) (9 = Pg B 0 (P ) +
BN(p) . (P) - 19
+(1- X)PPZ(S:’) (h (x))
where PAEM P (%) | PLB0 P () - due to

the inconsistency of the lattice constants of the RTS
layers, depend on the magnitude of the basal deformation
h®P = h(p)(X) awbs ( )

a(x)

lattice constants of materiad of the nanostructure and
substrate layers respectively, and:

, Where a(x) and g -

(P) — 94~ (P) A(P) (PAP) = 9 (P) A(P)
I:)Pz =2 &1 +hz & = =2 &1 +g C:g?)

where €, &P - piezoelectric constants.

e 2CP h‘p)-qg) 21(;))g (0

a(x) = 0.31986- 0.00891x,

[13] (17)

AP = Cl(lp) +C1(2p)

where @ - lattice constant of materlal, dp - thickness,

(P ) i )
C:llp ’ ClZp ’ C:13p ! CBZE
the P -th layer.

The value of piezodectric polarization within a
separate RTS layer isdefined as.

- dadic constants of the RTS

C13 h(p)

p) C13 hd h(p)
ng)

Cl(p) -

(18)

On the heteroboundaries of the investigated system we obtain the conditions of the continuity for the wave function
and the flows of its probabilities, which isthe solution of the first equation of the self-consistent system (3):

+1

LY AP (Enizp) = Y P (En 2p)
% 1 av{PEn 1 o PPE) 0.5 (19)
) (et o
jmu @ |z:zp m©o @ |z:zp

and conditions for the continuity of the potentia j , (Z) and the vector of electric displacement field:
!
L (0, d ‘p’( 2 (G @ _ =05 (20
e Po—— @IH 2 s (zp)
i dz B dz B
| z=zp z=zp

where the second condition takes into account the ay (9) VR,

presence of surface charges on the nanosystem —(Z) —_stl 'S,

heteroboundaries. dz _ h ’

It is believed that for the potential outside of the =73 23)
RTS, the conditions for its disappearance are fulfilled: 2, (9) v Yoty .
_ ! YO Yeq-20stvg,
I (Z)|z®0 ® O’J H (Z)|z® Z5 ® 0. (21) d 2 | - h2
z
Solutions of the sdf-consistent system (3) are Z=Zg

searched on auniform grid [16]:

o N I .
WZiZSZSh,SZO,l,...N,hZ—u, (22)
| N %

where | =d, +d,+d,+d,+d. =7 -
thickness.

According to the finite difference method, the first
and second derivatives are approximated as [16] (for
convenience, theindex “n” is omitted):

total RTS

In addition, for wave functions, conditions of
periodicity similar to those of Born—von Karman
boundary condition must be fulfilled. This gives the
condition:

Yo=Y Yi=Y (24)

Then the wave functions of the electron are
determined by solutions of the matrix equation:
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o
N ¢'s 7
A hsYs=1siYs :gY4 ¥
Gvs *
=
N
o
¢O =
g0 > 2 (DE- (z5) - E)
- Z -
fs=¢O0 +;csz\/ml s
Co 7 "
o
g <
L
$0 5 (25)

where A, (s=1..N,r =1..N)- matrix, for which
elements we have:

11 or=s-1
| ..
Fem e

ms+1ﬂ
m

, I =s+1,

:
A = ! , if thegrid nodes Z,
i

: m5+]_
10, other elements

coincide with RTS heteroboundaries and

I r=s-1
|
1(kK2-cHh*-2,r=s
A :%( S ) otherwise.
i-Lr=s+l

{0, other elements

The stationary energy spectrum E,gs) of electron is
determined from the dispersion equation:
det|/A, - 1'1]=0, (26)

i.e, for each eigenvalue | , of amatrix A\, , the energy
value of the discrete spectrum is defined as:

e - (Lt el

" 2mh? 2m,
n=1 2, ... - number of the energy level of the stationary
€l ectronic spectrum.

Similarly, we find that solutions of the Poisson
equation, taking into account the boundary conditions for
it (20), and with the approximation of derivatives in
accordance with (23), are determined by solutions of the
matrix equation:

(27)

- gerlh 0

¢ h-R

(;sz C | =

. ¢ s

é\l . _ . _ 3. . _ _(;_ rs-lh -
aBers_ sHJs_QJ4T’JO_J N+1_O’ Fs_(;P p - (28)

r=1 (;j _ c s Ts1 =

gMST Gl +

- (; -

% : (;-rNh _

e gpml' PNE(

where By (S=1...N,r =1...N) - matrix, for which elements we have:

ie®V r=s-1,
i
_i-(e®P+ef), r=5,
s ~ | d

ie®, r=s+1,
10, other elements

B

if the grid nodes Z; coincide with RTS heteroboundaries and
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ie®, r=s-1,
- e®+e®),r=s
T iet r=s+l
10, other elements
In theratio (28):
ro=r(2)=s(z)d(z.,- z)+e(Ny - n(z)) =
:(P(Z)L:st- P(2)_, )/h+e(N - n(z)) = (P, - R)/h+e(Ng - n(z));
No

- E®p 29
1+ 2expgE 29

B otherwise.

NS =

5

n(z,)=nE, z) = ano|Y(E‘5> z) = |Y(E‘S> z)[ In

1+ expg E(S) %,

E. - Fermi level of the RTS material layers, N, NS of the stationary energy spectrum of the electron E,, and
- concentration of donor and ionized donor impurities, its wave functions Y (E,,z) in RTS, and effective
respectively, N, - free carriers concentration in the RTS. potential V(2) and its components
Now the self-consistent solution of the system of DE.(2), Vy, (2), Vo (2), Ve (2) was performed.
Schradinger and P0|sson equ_atlons (3) is based on the Direct calculations were performed for the
method of successive iterations | according to the experimentally implemented RTS, which functioned as a

scheme: cascade of QCD. [8]. The geometric parameters of the
I 292, ﬂY(l +1) o RTS are as follows: the thickness of potential barriers:
I- 5 11112%% nﬂz @ V(|+D(Z)Y(l+1)(2) D, =2 nm; D, =1 nm; D, =1 nm), the width of the
i g potential wells: d;, =2.08 nm; d, =15 nm. Physical
= E(l +DY ( +1)( 2); , (30) parameters of RTS are as follows. Effective masses of
T 0 the el ectron:
| (; o(z )Tl] H (Z )O 40 m, = m(GaN) = 0.186m;
T Te§ T 5 m, = m(AIN) = 0.322m,;
where the effective potentiad in the first order of m, = m(Al,,Ga, ,,N) = 0.265m,;
iterationsis calculated as: dielectric permeability:
V®(2) = DE. (9 +V(2). (31) e, =e(GaN) =10,
The accuracy of calculations by the scheme (29) e, =e(AIN) =8.5; :

given the obvious conditions:
"YrEHl) (Z)|2 _ |Yrs|) (Z)|2‘ €; = e(A|0.SBGaO.42N) =9.13

<«<1 concentration of donor impurities: N, = 610" cm’?;
|Y O (z)|2 , 32) piezoelectric constants (C/m?):
|" (l)(z) j (- l)(Z)| %(2) =e,(GaN) =-0.49; %(i) =€, (AIN) =-0.60;
v 2 = 0, (Al Gay,N) = - 0554,
In_direct calculat_lons the accuracy of_thecalculations (O) %3(GaN) 0.73 (l) %3(A|N) 1.46;
a0 Ol (0 e cSOne Sl o, 4G, 127

the scheme (30).
elagtic constants (GPa ):

I1. Discussion of results

On the basis of the devel oped theory, the calculation
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CY =, (GaN) =374; C¥ = C,,(AIN) = 345,
Cl(lZ) =), (Al 5Gay ,N) = 357.18;

CY = C,(GaN) =106, C? = C,,(AIN) =125;
C:L(ZZ) = Cp, (Al 5Gay 4,N) =117.02;

CYO = C,,(GaN) = 70; C¥ = C,5(AIN) =120;
C1(32) = Cp5(Al5Ga, ,,N) =99,00;

CO = C,,(GaN) =397; C¥ = C,,(AIN) = 395,
C3(§) = Cys(Al55Ga,,,N) = 388,28.

spontaneous polarization (C/NT):

P¥® = p¥(GaN) =- 0.029;
P¥@ = p¥(AIN) =-0.081;
p¥e = p¥ (Al 5Gag,,N)

- 0.059.

On Fig. 2 shows the energetic scheme of one cascade
of QCD, the calculation of which was performed without
taking into account the electric field of spontaneous and
piezoelectric polarization according to the relations (5) -
(7). From figure (2) it is seen that in comparison with
cascades of QCD, operating in the middle and far
infrared ranges of eectromagnetic waves [1, 2], depths
of the potential wells and height of the potential barriers
are much larger, which represents significant prospects
for the variation of the working characteristics of the
QCD by varying of the parameters of the geometric
design of the RTS[4, 5].

Calculations of the effective potentia component

2500
3
£
% 2000 |-
L
: i
1500 |
1000 |
500 |-
0 L 1
0 5

15 20

10

Z,nm

Fig. 2. Energetic scheme of one cascade of QCD without taking into account the electric field of spontaneous and
piezoel ectric polarization.

=
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o
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Fig. 3. Dependence on the value of z component of the effective potential determined by piezoe ectric and
spontaneous pol arizations.
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Fig. 4. The energy structure of the QCD cascade with the indicated energy levels of the el ectron stationary states

2
and the corresponding distributions |Y (Ep., z)| of the probability of its location within the RTS.

determined by piezodectric and  spontaneous
polarizations were performed according to the relations
(4), (8)-(10). The results of calculations, depending on
thevalue of z, aregivenin Fig. 3. It is seen from Fig. 3
that the internal eectric fieds determined by
piezoelectric and spontaneous polarizations are
commensurable with the values of the heights and depths
of the potential wells on the RTS barriers, respectively,
which, as will be seen below, is the reason for their
significant contribution in thetotal effective potential.
The results of calculation of the total effective
potential on the value of z for the investigated RTS are
presented on Fig. 4. It is seen from the figure, that taking
into account the effects in the components of the
effective potential according to the relation (4), leadsto a
significant deformation of the output potentia. It should
be noted, that this effect is a consequence of the physical
properties of the investigated RTS potential wells and

Table 1
The values of the energies of the electron discrete
spectrum in the closed RTS of QCD and their

localization
Energy values Localization
(meV)

E;= 496.2 active band
E,=717.4 extractor
Es=824.7 extractor
E;=9125 extractor
Es=990.1 extractor
Ee= 1061.1 extractor
E,= 11284 extractor

Eg= 1166.9 active band
Eqo= 1197.6 extractor
E, = 1276.1 extractor
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barriers layers material and is of decisive importance for
the electromagnetic waves detection process the by the
QCL.

In addition, in Fig. 4 showed the calcul ated val ues of
the resonant electron energies in the investigated RTS
(Ieft on the picture) and the corresponding distributions
of the probability of finding electron within the

nanosystem |Y(En,z)|2 (reduced to scale of energy

scale). The direct values of the resonant energies and
information on the localization of the e ectron within the
RTS for the corresponding energy state are given in
Table. 1. It is seen from Fig. 4 that the calculated value
of the detected energy corresponding to the energy
trangition between the electron states localized in the
active  band of QCD is as follows:

W=W" =E_- E, =670.7 meV . The

calculated value of the value of the detected energy is
well correlated with the experiment, since it differs from

the experimentally obtained value WP =650.0meV
by no more than 3.1 %.

Conclusions

On the basis of the sdlf-consistent solutions of the
Schrodinger-Poisson equations, taking into account the
contribution  of piezodectric and  spontaneous
polarizations, a quantum-mechanical theory of stationary
electronic statesin a flat RTS as an active band of QCD
was developed. For experimentally studied RTS on the
basis of the developed theory, a sdf-consistent
calculation of the electronic potentia profile, the
stationary energy spectrum and the value of the detected
energy is performed. It is shown that the results of
calculations arein good agreement with the experiment.
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PE30HAHCHO-TYHEJbHUX CTPYKTYP
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Jlist pe3oHaHCHO-TyHENbHOI cTpykTypr 3 GaN — moreHuianbHuME siMamu Ta AIN — mOTeHIiaTbHUME
6ap’epaMu BHKOHAaHO pPO3PAXYHOK BHYTPIIIHIX IIOJIB, CIPUYMHEHHX BHHHUKAIOUNMH Yy HAHOCTPYKTYpI
IT' €30€JIEKTPHYHOIO Ta CIIOHTaHHOIO MOJISIPU3aLisiMU.

VY Mozeni epeKTHBHUX Mac [UIsl €IeKTPOHA Ta MOJIEN AiCNEKTPUYHOrO KOHTUHYYMY 3 BHUKOPHUCTaHHIM
METO/y CKiHUCHHHX Pi3HHILb 3HAHIEHO CaMOy3ro/pKeHi po3B’ a3ku cucreMu piBHAHb IlIpeninrepa ta ITyaccona 3
YpaxyBaHHAM BHECKY IT €30€JIEKTPHYHOI Ta CIIOHTAHHOI HOJpU3aLiil.

Ha ocHoBi 3HaiineHux po3s’sa3kiB cucremu piBHsAHb Llpeninrepa Ta Ilyaccona [uist pe30HaHCHO-TYHEIBHOT
CTPYKTYpH, IO CIYryBaja KackaJlOM €KCIIEPHUMEHTaJIbHO Pealli30oBaHOr0 KBaHTOBOIO KAacKaJHOrO JIETEKTOpa,
BUKOHAHO PO3PAaXyHOK ii MOTEHUiaJbHOrO MpoQisio Ta eIeKTPOHHOIO €HEPreTHYHOro CIeKTpy. BcraHoBieHo,
110 PO3paxOBaHa BEJMYMHA JCTEKTOBAHOI €HEprii BiAPi3HIETbCA BiJf €KCIIEPUMEHTAIbHO OTPUMaHOi He Oliblie
Hix Ha 3 %0.

KirouoBi cioBa: KBaHTOBHI KacKaJHHUH JETEKTOpP, PE30HAHCHO-TYHENIbHA CTPYKTYpa, I €30€JIeKTPHIHA
HOJISIpU3aLlisl, CIIOHTAHHA TONAPU3aLlis, IOTSHIiaTbHUI IPOdib.
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