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In the paper InAs spherical quantum dots in a GaAs matrix were investigated. The energies of electrons and
holes in single- and multi-band models (with strong, weak, and intermediate spin-orbit interaction) were calculated
taking into account both the deformation of the quantum-dot matrix and the polarization charges on the quantum
dot surface. The dependence of the energy levels of electrons and holes on the radius of the quantum dot is
considered. It is shown that the deformation effects are stronger than polarization for the electron. For holes those
effects are opposites. The energies of electrons and holes have been compared in all approximation models.
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Introduction

Recently much attention has been paid to the physics
of low-dimensional semiconductor structures. This has
been stimulated by the rapid progress in nanometer-scale
fabrication technology. Among them, quantum dots,
which are also defined as nanocrystals and
microcrystallites, or nanoclusters, are of particular
interest. The effect of quantum confinement on electrons
and holes in semiconductor quantum dots (QD) has been
studied in [1-3].

The superlattices of quantum dots InAs in a matrix
GaAs has been studied in [4]. The superlattices of
spherical and cubic quantum dots (QD) have been studied.
Using the method of plane waves for different shapes of
QD, analytical expressions for calculating the energy
spectrum have been obtained. The dependences of energy
zones at high symmetry dots have been constructed.
Dependences of the the widths of zones have been found.

The basis for the creation of optoelectronic devices is
a single-particle character - an electron and a hole.
Analytical expressions describing the energy spectrum of
electrons and holes for a quantum dot (QD) arising in a
self-consistent deformation field created by an array of
coherently stressed QDs were obtained in the paper [5]. It

146

is shown that the internal elastic deformation that occurs
at the boundary of the QD matrix affects the energy
spectrum of electrons more significantly than the spectrum
of holes. The interaction of quantum dots (QDs) between
themselves and external electromagnetic fields depends
on the size and geometry of quantum dots [6-9]. These
dependencies are used in various electronic and
optoelectronic devices, including lasers [10-12], single-

photon sources [13-15], solar cells [16-18], and
photodetectors [19, 20].
Theoretical models  for  three-dimensional

superlattices of cubic and tetragonal InAs/GaAs and Ge/Si
quantum dots are proposed in works [21, 22]. Electronic
and phonon spectra of such superlattices, densities of
electronic states, the effective mass tensor, and
conductivity were studied. It was established that the
properties of three-dimensional superlattices of quantum
dots are more sensitive to the distance between dots than
to the shape of the dots.

Real structures can contain various defects. Therefore,
conditions may change. For heterosystems in which there
is a large difference between the dielectric constants, the
effect of polarization charges will be significant. The
change in the dielectric properties of the matrix taking into
account the polarization or deformation charges leads to a
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significant change in the energy of both the electron and the same time.
the hole. It should be reflected in the optical and other QD

properties. ) )
In view of this, in our work we have been calculated 1. Electron energies of semiconductor
the energies of the electron in singleband model, and the gquantum dots
hole in both singleband and multiband-band model
approximation. And we also have been calculated electron Let's write the Hamiltonian of the electron in the form

and hole energies with the deformation and polarization at
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When U, (r) = 0, U, (r) = 0, polarization and deformation can be neglected. The Schrédinger equation with and without
account the QD deformation can be solved exactly. It has an expression for the ground state
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deformation is accounted. Taking into account the
boundary condition and normalize condition, the wave
functions and electron energies have been defined. The
influence of polarization charges has been calculated in
the first-order of perturbation theory. In the same manner
the hole energies have been obtained in the case when one
can neglect the complex band structure (only heavy hole where cblf‘”, <Dl£2)are four-dimensional and two-
band is accounted). dimensional vectors-columns [24] based on spherical

In real situation for the InAs/GaAs heterosystem the harmonics Yl,m(e, (P) We obtain two systems of equations
multiband model for hole states should be used. In the for the radial components of the holes eigenfunctions,

_multibanq mod_el apprgximatign in the case of Ruy, Rnpy R, are located in the QD and outside QD
intermediate spin-orbit interaction (so-called 6-band (._1 35 )

model), the solutions of the Schrodinger equation with the ) ) ) _
Hamiltonian [23-25] have the form like in [23]: Systems of differential equations have exact solutions

for even and odd states. In the inner region for a spherical
QD, the solutions of the equations system (radial
functions), are written using the sum of the three spherical
Bessel functions of the first kind:
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A is the value of spin-orbit interaction. In the matrix (r>a), the solutions of the equations can be represented using
modified Bessel functions of the second kind for even and odd states:
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The squares of wave vectors k;, k;, ks are obtained from take into account the QD-matrix deformation. Polarization
the formula (9) by substitution E — E — Uppys = ¥i', charges can be accounted in the perturbation theory.

y =y, A— A" y,y, - are the Luttinger parameters which
set the effective masses of heavy and light holes:

Il. Results
my =mg/(y1 + 2y), mp =mo/(y1 — 2y), - :
: o/ (12 " of/ (2 Specific calculations have been performed for
v, r<a, v, r<a, heterosystem InAs/GaAs. The parameters are given in
{ { i table 1. We have proposed the model which accounts for

v r>aq, v, r>a. € ha
the polarization charges at the QD surface and

- is free-electron mass. deformation of the QD and matrix.

If in formulas (7) - (11) the value of A is very large,
then we obtain the results, which describe multiband hole . Table 1.
model in the case of strong spin-orbit interaction (so- The effective masses
called 4-band model) which doesn’t take into account the m® m® Uo
spin-orbital band. If we assume that m;= my and A is very Electron 0.023 0.067 0.83
large, then we get single band model. heavy hole 0.41 0.51 0.262

To account the deformation in (7)-(11), the light hole 0.026 0.082 0.33

substitution Uy = U, + U, 4. Should be done. When
we use the boundary condition [23] and normalize
condition the hole energy spectrum can be calculated with
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In fig. 1 shows the dependence of the electron energy
on the QD radius without polarization and deformation
(curve 1), with polarization (curve 2), with deformation
(curve 3), with both polarization and deformation (curve
4). We see that for an electron, the energy with only
polarization is the highest, and only with deformation is
the lowest in compare without them. If we consider the
energy with both polarization and deformation, it can be
seen that the effects of deformation are stronger for the
electron than the effects of polarization. This can be
explained as follows: large constants of the hydrostatic
deformation potential for electrons and a small difference
between the values of the dielectric constant of the QD and
the matrix.

In fig. 2 shows the dependence of the heavy hole
energy on the radius without polarization and deformation
(curve 1), with polarization (curve 2), with deformation
(curve 3), and also with polarization and deformation
(curve 4). We can see that for the hole the energy plot with
only polarization is the highest. And only with
deformation is the lowest. But for a hole, the deformation
effects are weaker than the polarization effects. The reason
for this is the smaller values of the constants of the
hydrostatic deformation potential of the holes. And in total
energy are lager (curve 4 is higher than curve 1).
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Fig.1. Dependence of the electron ground state energy on the radius of the QD:
1 — without taking into account polarization and deformation effects; 2 — with account only polarization charges;
3 — with account only deformation; 4 — with account both polarization and deformation.
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Fig.2. Dependence of the heavy hole ground state energy on the radius of the quantum dot:
1 — without taking into account polarization and deformation effects; 2 — with account only polarization charges;
3 — with account only deformation; 4 — with account both polarization and deformation.
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Fig.3. Dependences of ground state hole energies on the QD radius in the 4-band model approximation:
1 — without taking into account polarization and deformation effects; 2 — with account only polarization charges;
3 — with account only deformation; 4 — with account both polarization and deformation.
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Fig.4. Dependences of ground state hole energies on the QD radius in the 6-band approximation:
1 — without taking into account polarization and deformation effects; 2 — with account only polarization charges;
3 — with account only deformation; 4 — with account both polarization and deformation.

Fig. 3 and fig. 4 show the dependences of the energies
on the radius in the 4-band and 6-band approximation. The
effects of deformation and polarization are similar to those
of an electron, but they are different in magnitude. That is
why we compare energies in all presented model for hole
(fig. 5). It shows the dependence of the hole energy of
various QD radius, taking into account both polarization
and deformation. Curve 1 is responsible for the electron,
curves 2 and 5 are energies of the light and heavy hole,
curve 3 and 4 describe the hole energy in the 4-band and
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6-band models, respectively. We can see that the energy
for the hole is lower than that for the electron. It caused by
effective masses, which for the electron is larger. Also, we
have been noted, that in the case of the model with
intermediate spin-orbit interaction (6-band model) the
energies are larger than in the 4-band model (with large
spin-orbit interaction, when spin-off band are neglected).
Those result obtained when polarization and deformation
are accounted. If polarization and deformation are
neglected, the hole energy in the 6-band model are smaller
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Fig.5. Dependence of ground state energy on QD radius for: 1 — for electron; 2 — singleband model for light hole;
3 - 6-band approximation model for hole; 4 — 4-band approximation model for hole;
5 — singleband model for heavy hole.

than 4-band [23]. Those results for hole are caused by the
larger influence of the polarization in the 6-band model
than deformation.

Conclusions

In this paper for InAs/GaAs heterosystem we perform
calculation of electron and hole energies in single and
multiband models with account both QD-matrix
deformation and polarization charges on the surface. For
electron the deformation effects are stronger. Form holes
the polarization are stronger. If we compare hole models,
the deformation and polarization are partially
compensated, but in the total effect the polarization is

stronger (curves 4 are higher than 2 in fig.2-3) in all
models. Also, in the 6-band model total hole energies
(with account polarization and deformation) are larger
than in the case of 4-band model for all QD radiuses,
especially for small QD radiuses the difference is
signified. For large QD radiuses the difference is
vanished.
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EnexkTpoHHO-AipKOBHI CIEKTP 3 ypaxyBaHHsAM Aedopmanii Ta moaspusamii y
KBaHTOBIii Touli rerepocTpykrypu INAs/GaAs

Jlpozobuysruil depoicasnuil nedazoeiunuil ynisepcumem imeni Isana @panka, m. Jpoeobuy, Yrpaiua,
galinka.bandura@gmail.com

VY pobori nocmipkeHo chepraHi kBaHTOBI ToukH InAs B Matpumi GaAs. EHeprii enekTpoHiB i Jipok B 0JHO- i
6araTo30HHUX MOMENAX (i3 CHIIBHOIO, CITAaOKOI0 1 MPOMIXHOIO CIiH-OpOITANIBFHOI0 B3AEMOIIEI0) PO3PaxOBaHO 3
ypaxyBaHHSM sIK JedopMaliil MaTpHIli KBAHTOBHX TOYOK, TaK 1 MOJSIPU3ALIITHUX 3apsi/IiB Ha TIOBEPXHI KBAHTOBUX
TOYOK. . PO3IJISHYTO 3aJeXKHICTh CHEPreTHYHHX DIBHIB €JIEKTPOHIB 1 AIPOK BiJ pajiyca KBaHTOBOi TOYKH.
[MTokazaHo, 110 151 eNeKTPOHa eeKTH aedopMariii CHIBHII, HiX Tosspu3aitis. [ Tipok 11i eexTH MPOTHIICKHI.
EHeprii enekTpoHiB i AipOK MOPIBHIOBAIHCS B YCIX MOJEISAX HAOIMKEHHS.
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30HHA MOJIEJIb, TTOJIAPU3ALIFHI 3apsiH, HANPYKEHHI FeTePOCHC.
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