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In the present paper the amorphous Ga11.7Ge14.1Te74.2   alloys have been studied by X-ray diffraction and Raman 

spectroscopy. The experimental X-ray diffraction patterns were used for calculations of radial distribution functions 

which have given the positions of the nearest-neighbour bond length r1- 2.67 Å and second-neighbour bond length 

r2 - 4.27 Å. Similar r1 values were observed for Ga-Ge-Te glasses of other compositions. Observed bands in the 
Raman spectra of Ga11.7Ge14.1Te74.2 samples show that such glass contains different nanophases and can be 

explained in the terms of vibrational modes of Ga-Te and Ge-Te glasses and films. Investigations of compositional 

dependencies of characteristic constituent Raman bands intensities whose concentration is changing with the 

composition are necessary in order to obtained better assignment of Raman bands. 
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Introduction 

Chalcogenide thin films and composites on their base 

are used as the recording medium for fabrication of optical 

elements, in holography and phase change-type optical 

memory discs, integrated and fiber optics, sensors, etc. [1-

19]  This is due to their possession of unique 

characteristics such as wide range of optical transparency, 

high refractive index and photo structural transformations, 

accompanied by the change of optical and chemical 

properties [2-5]. Among the number of different photo-

induced effects are photo-darkening and bleaching, local 

expansion or contraction, changes of the refractive index, 

polarization-dependent structural changes, photoinduced 

dichroism [1-2, 4-5]. In recent times, studies of 

nanocomposite materials based on chalcogenide glasses 

have been actively conducted [6, 11, 13-14]. Such 

nanocomposite materials provide possibility of the direct 

recording of surface reliefs (without step of selective 

etching), recording process depends on the polarization of 

the recording beams. 

Family of GaGeTe alloys is interesting due to 

versatile far-IR optics [7-10], phase change-type optical 

memory [15-16] and sensor [17] applications. The 

structural features of chalcogenide glasses and films are 

important for various characteristics and processes, 

including photoinduced ones. The addition of Ga to GeTe 

alloys can influence crystallization timings and room-

temperature stability [20]. Accordingly, better 

understanding of the structural properties can help in the 

optimization of the sensitivity and relief formation 

processes of composite nanomultilayer structures based 

on chalcogenide glasses, which are promising for the 

direct recording of optical elements.  

The better understanding of the correlations between 

their structural and macroscopic properties and the 

information on the short-range order structure of 

chalcogenide glasses is needed. This was the main 

motivation to study Ga11.7Ge14.1Te74.2 alloys. 

I. Experimental 

Studied bulk Ga11.7Ge14.1Te74.2 alloys were prepared 

by the conventional melt quenching technique. Proper 

quantities of high-purity (99.999%) elements, vacuum 

sealed into a quartz ampoule, were kept in a furnace at ~ 

1000 °C for about 30 h, shaken for homogeneous mixing 

and then quenched in cold water.  

X-ray diffraction patterns samples were recorded with 
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use of the X-ray diffractometer with Bragg–Brentano 

geometry, using Cu Ka radiation 1.54178 Å and mounted 

graphite monochromator for a diffracted beam. The 

diffraction data were collected in the range of scattering 

vector magnitudes Q between 0.4 and 8 Å  

𝑄 =
4𝜋 sin 𝜃

𝜆
. 

All samples were examined in transmission geometry. 

All the X-ray experiments were performed at ambient 

temperature. The diffraction intensities were corrected for 

the background, incoherent (polarization and absorption) 

and multiple scattering in the usual ways in order to 

eliminate the part of radiation which does not carry 

structural information. The spectra were measured at a 

constant rate. The Compton scattering was corrected using 

the values given by Balyuzi and Faber-Ziman [21-22], 

total structure factor S(Q) was calculated from the 

scattering intensity as 

 

 𝑆(𝑄) =
𝐼𝑒.𝑢

𝑐𝑜ℎ−{<𝑓2(𝑄)>−<𝑓(𝑄)>2}

<𝑓(𝑄)>2   

 

with   < 𝑓2(𝑄) >= ∑ 𝑐𝑖 𝑖
𝑓𝑖

2(𝑄), < 𝑓(𝑄) >= ∑ 𝑐𝑖𝑓𝑖(𝑄)𝑖   

where 𝑐𝑖 is the molar fraction and 𝑓𝑖  is the total atomic 

scattering factor of the i-th component of the glass. 

After Fourier transformation the reduced radial 

distribution functions G(r) (RDF) were determined, the 

measured S(Q) using the fast Fourier transform technique 

[23-26] as follows: 

 

 𝐺(𝑟) =
2

𝜋
∫ (𝑆(𝑄) − 1))𝑄𝑠𝑖𝑛(𝑄𝑟)𝑑𝑄

∞

0
   (1) 

 

In reality, the data should be multiplied by a 

modification factor in order to reduce the ripples 

inevitably introduced due to the finite accessible upper K 

value (Kmax) in the measurements. Eq.(1) therefore 

becomes 

 

 𝐺(𝑟) =
2

𝜋
∫ (𝑆(𝑄) − 1))𝑄𝑀(𝑄)𝑠𝑖𝑛(𝑄𝑟)𝑑𝑄

𝑄𝑚𝑎𝑥

0
  (2) 

 

where M(K) is called the damping factor [25-26]and is 

given by 

 

 𝑀(𝑄) =
sin(

𝜋𝑄

𝑄𝑚𝑎𝑥
)

𝜋𝑄

𝑄𝑚𝑎𝑥

 𝑄 ≤ 𝑄𝑚𝑎𝑥 ,  

 = 0, 𝑄 > 𝑄𝑚𝑎𝑥  
 

G(r) may also be expressed directly in real space 

coordinates to emphasize its relationship with the local 

atomic density, 𝜌(𝑟)at a distance r and the bulk atomic 

density, 𝜌0; as follows 

 

 𝐺(𝑟) = 4𝜋𝑟(𝜌(𝑟) − 𝜌0)  (3) 

 

where 𝜌(𝑟) is the density function, which represents an 

atomic pair correlation function, and is equal to zero at 

values of r less than the average nearest neighbor 

interatomic separation and equal to the average value of 

density 𝑟𝑜 at very large value of  𝑟, where the material 

becomes homogenous. In between these two limits, 𝜌0 for 

an amorphous solid will exhibit an oscillatory behavior, 

with peaks in the probability function representing the 

average interatomic separations. At short distances  

(𝑟 ≤ 2Å), see Eq.(3), G(r) should follow the density line 

(−4𝜋𝑟𝜌0) which is used as a quality check of the data [25-

26]. 

The radial distribution function, RDF(r), is defined as 

the number of atoms lying at distances between  

𝑟, 𝑟 + 𝑑𝑟 from center of an arbitrary origin atom and 

written as 

 

 𝑅𝐷𝐹(𝑟) = 𝑟𝐺(𝑟) + 4𝜋𝑟2𝜌0 = 4𝜋𝑟2𝜌(𝑟) (4)  

 

The function that is used in the determination of 

atomic distances and co-ordination numbers is the total 

distribution function,  𝑇(𝑟) =
𝑅𝐷𝐹(𝑟)

𝑟
= 4𝜋𝑟𝜌(𝑟). The 

average coordination number, N, in a spherical shell 

between radius r1 and r2 around any given atom, can be 

calculated as the number of atoms in the area between r0 

and r’, where r0 is a lower limit of r, below which 𝜌(𝑟) is 

zero, and r0 is the first minimum of  4𝜋𝑟2𝜌(𝑟). The 

position of the first peak gives a value for the nearest-

neighbour bond length, r1, and similarly, the position of 

the second peak gives the next neighbour distance, r2. The 

RDF yields only a limited amount of information, 

restricted essentially to the local structure around a given 

atom, i.e. bond lengths and bond angles. A knowledge of 

both bond length r1  and r2 yield the value of the bond angle 

𝜃,given by [27]: 

 

 𝜃 = 2 ∗ sin−1(
𝑟2

2∗𝑟1
)   (5) 

 

Raman spectra of Ga11.7Ge14.1Te74.2 samples were 

measured in the spectral range from 50 to 400 cm-1 at room 

temperature using a FRA-106 Raman attachment to 

Bruker IFS 88 applying the diode pump Nd:YAG laser of 

ca. 100 mW power and using the liquid nitrogen-cooled 

Ge detector with the resolution set to 1 cm-1 with 256 scans 

collected in each experiment. 

II. Results and Discussion.  

Radial Distribution Functions 

The X-ray diffractograms of Ga11.7Ge14.1Te74.2 alloys 

were used for calculation of radial distribution functions 

(RDF).RDF for studied alloys were obtained using 

program the RAD GTK+ [28] and are presented in Fig.1. 

The positions of the nearest-neighbour bond length r1 was 

2.67 Å and r2 - 4.27 Å. Similar r1 values were observed for 

Ga-Ge-Te glasses of other compositions. The values of the 

r2/ r1 ratio are close to 1.63 which is a typical value for a 

regular tetrahedron structure. EXAFS studies of a-GeTe 

[29] have shown that the Ge–Te distance is about 2.65 Å. 

For GaGeTe systems according to [30] Te-Ga bonds 

lengths were estimated as 2.67 Å. Similar values for Ga-

Te bonds in GaTe (2.64–2.69 Å) were obtained in [31] and 

2.67 Å for Ga25Te75 in [15].  

The bond angle values 𝜃 = 106° calculated using eq. 

(5) for Ga11.7Ge14.1Te74.2 alloys is in good agreement with 

other published data on GaGeTe alloys [32]. 
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Fig. 1. Radial distribution functions of 

Ga11,7Ge14,1Te74.2glasses. 

 

Raman spectra. 

The Raman spectra of Ga11.7Ge14.1Te74.2 samples and 

decomposition on the constituent bands presented in Fig. 2 

exhibit main bands: 88 cm-1, 104 cm-1, 115 cm-1, 125 cm-

1, 136 cm-1 and a band structure around 160 cm-1. 

Observed bands in the Raman spectra of Ga11.7Ge14.1Te74.2  

samples can be explained in the terms of vibrational 

modes of Ga-Te and Ge-Te glasses [33-47]. The band at 

88 cm-1 in spectrum, is ascribed to GeTe vibration modes 

(bending modes of GeTe4 (GaTe4) tetrahedral) [34-39] 

ortrigonal Te [40]. The band at 104 cm-1 is characteristic 

to the trigonal Te [40]. Raman spectra for the annealed 

GeTe2 films have two broad Raman bands from 110-

135 cm-1 and 135-145 cm-1 with a maximum at 121 cm-1 

and 141 cm-1 and an additional Raman band is noticed at 

156 cm-1
 [33].The Raman band obtained at 121 cm-1 is 

assigned to A1 mode of GeTe4 tetrahedral unit [41]. 

Raman data for bulk Ga−Te glasses [15] assign 109 cm-1 

band to symmetric Ga−Te breathing mode, 124−135 cm−1 

range - corner-sharing (CS) or edge-sharing (ES)GaTe4 

tetrahedrabreathing modes, 156 cm−1 mode to Te−Te 

stretching modes. Raman spectra of the as-deposited and 

annealed Ge-Ga-Te films covering the region 100–

200 cm-1 consist of the following features: two main bands 

located at1 20 to 125 cm-1 (peak A) and 150 to 155 cm-1 

(peak B) and for annealed films peak C (141 cm-1) [42]. 

Peak A can be assigned to stretching mode of [GeTe4], 

eventually [GaTe4] tetrahedral [42-43] or Te-Te 

vibrations bonds [36, 42, 44], peak C at  

141 cm-1 can be assigned to crystalline Te phase [42, 44-

46]. 

In Raman spectra of GeTe films deposited at different 

temperatures [34] peaks at 88, 120, 139, and 160 cm-1 are 

found. The broad peaks found at 88 and 160 cm-1 are 

contributed by GeTe vibration modes [35-37]. Two 

distinct peaks were also observed at 120 and 139 cm-1. It 

is known that crystalline Tellurium has strongest peaks at 

120.4±0.5 and 140.7±0.5 cm-1 [47]. The close proximity 

of the observed peaks suggests the presence of homopolar 

Te–Te bonds in the as-deposited GeTe films. In the Raman 

spectra of a-GeTe four main bands appear in the frequency 

range 50–250 cm−1 (with approximate wavenumber 

positions of these bands are as follows: band A, ∼83 cm−1; 

band B, ∼125 cm−1; band C, ∼162 cm−1; band D, 

∼218 cm−1) [35]. It was noted, that bands A, B and C are 

certainly combinations of at least two individual peaks 

each. 

The frequency assignments of known structural units 

in glasses were used to perform the peak-fitting analyses 

and to compare the relative contribution of each structural 

unit in the spectrum of amorphous Ga11.7Ge14.1Te74.2 

alloys. It is necessary to note that a larger number of 

vibrational modes contribute to the overall spectrum. We 

allowed upon fitting the Raman spectra a maximum 2-

3 cm-1 displacement of the peak from the position of the 

peaks known from the reference literature. Tentative 

Gaussian decomposition of Raman spectra of 

Ga11.7Ge14.1Te74.2 alloy is shown in Fig.2. Assignments of 

particular bands detected in Raman spectra of 

Ga11.7Ge14.1Te74.2  samples are summarized in Table 1. 
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Fig.2. Raman spectra of studied Ga11.7Ge14.1Te74.2 chalcogenide glasses. 
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Conclusions 

In the present paper the amorphous Ga18Ge20.9Te61.2   

alloys have been studied by X-ray diffraction and Raman 

spectroscopy. The experimental X-ray diffraction 

patternswere used for calculations of radial distribution 

functions which have given the positions of the nearest-

neighbour bond length r1 – 2.67 Å and r2 – 4.27 Å. 

Obtained r1 values are in good agreement with known 

from reference literature Ge-Te and Ga-Te bonds lengths, 

similar r1 values were observed for Ga-Ge-Te glasses of 

other compositions. Observed bands in the Raman spectra 

of Ga11.7Ge14.1Te74.2  samples show that such glass contain 

different nanophases and can be explained in the terms of 

vibrational modes of Ga-Te and Ge-Te glasses and films. 

Investigations of compositional dependencies of 

characteristic constituent Raman bands intensitieswhose 

concentration is changing with the composition are 

necessary in order to obtained better assignment of Raman 

bands. 
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М.В.Попович, О.В.Стронський, К.В. Шпортько 

Структурні властивості стекол Ga11.7Ge14.1Te74.2 

Інститут фізики напівпровідників ім.В.Є. Лашкарьова НАН Украіни, Киів, Украіна, Niva94@ukr.net 

У цій роботі аморфні сплави Ga11.7Ge14.1Te74.2  досліджено методами рентгенівської дифракції та 

рамановської спектроскопії. Експериментальні рентгенівські дифрактограми були використані для 
розрахунків функцій радіального розподілу, які вказують положення довжин зв’язку найближчого сусіда 

r1=2,67 Å і довжини зв’язку другого сусіда r2 = 4,27 Å. Подібні значення r1 спостерігалися для стекол Ga-

Ge-Te інших складів. Смуги, які спостерігаються в спектрах комбінаційного розсіювання зразків 

Ga11.7Ge14.1Te74.2  показують, що це скло містить різні нанофази, що можна пояснити за допомогою режимів 
коливань, властивих склам Ga-Te і Ge-Te, а також плівкам. Дослідження композиційних залежностей 

характерних складових інтенсивностей раманівських смуг, які змінюються зі зміною складу, слід вивчати 

для отримання кращого розподілу раманівських смуг. 

Ключові слова: халькогенідні стекла; рентгеноструктурний аналіз; функція радіального розподілу; 
Раманівська спектроскопія; нанофази. 
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