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Using an exact solution for transient state population of a three-stage absorbing Markov chain the problem of
modeling the bimodal behavior of three window materids represented as some sdf-repairing optical systems
prone to brittle falure is considered quantitatively. It is shown that smulated maximum failure probability
density distributions can well describe the experimental data of biaxid tests on OFG, CVD-ZnSe and a-plane
sapphire ceramics. The conclusion is made that the competitive advantage of these materials grows in proportion

to their distribution widths.
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I ntr oduction

Natural and artificial systems, from living organisms
to real world natural systems to solid state optoelectronic
materials to engineered composites, are susceptible to
damage. Conventionally, the various types of damage
processes are divided into two groups. The first group
comprises the case of steady failures, which are
extrinscally induced in the system and can so be
detected and then repaired. In this case, the dependence
of the stationary failure probability density function on
the external stress applied to the system can be well
described by the Weibull distribution [1]. Rather, the
second group of damages does not relate to steady-state
failures. Instead, it comprises the intrinsic nonstationary
failures, which can spontaneously appear and disappear
in the system with no external cause. In this case
describing the temporal behavior of system failures
requires nongtationary approaches, for instance, based on
the balance transport equations [2] and discrete absorbing
Markov chains [3, 4] or the stochastic Markov decision
processes [5]. The advantage of nonstationary
approachesis that they make possible providing a correct
description of a many failure gate of the system by
specifying it in terms of occupation numbers associated
with small cells in the representation of a single failure
state space with further considering the dynamics of
populations of only these single failure states in those
cells. However, due to the great generdity of such
approaches, there is a lack of simplified analytical
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expressions for stress dependence of failure probability
density functions in the transient-state case, similarly to
those of the familiar Weibull two- and three-parameter
probability density functions in the steady-state case, as
well as a five-parameter combination of two independent
Weibull  distributions.  Meanwhile, recently, we
succeeded in explicitly solving the three-stage absorbing
Markov chain problem [6]. (Solution of the more general
four-stage seven-parametric problem is unknown).
Hence, in this pape we use the five-parameter
expression for transient state population, obtained in [6],
to describe experimental dependences on tensile stress at
brittle fracture of the failure probability density functions
for three optical window materials, namely OFG, CVD-
ZnSe and sapphire that are trangparent in the IR
spectrum. Furthermore, we get the possibility to consider
such materials as a kind of systems equipped with the
self-repairing properties, which have now been a redlity
and gained successful applications in many domains
from aerospace to civil engineering (e.g. [7, 8 and
references therein). The defects in those systems are
considered as congtantly appearing. However, the
appeared defects are regarded to be small enough so that
all they do not grow into catastrophic large scale defects
resulting in system damage, but disappear amost
autonomoudly returning the system into its normal
functioning state.

In the next section of the paper we present the model
of a saf-repairing system having the single failure-prone
transient state and three failure-tolerant initial, transent
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and absorbing states. In the one-defect approximation,
this model corresponds to the three-stage absorbing
Markov chain, for which a solution for the time
dependent state populations has been obtained in [6].
Hence, using a simple exponentia strain-stress model of
brittle fracture we are allowed to represent the failure
probability density function in the form of explicit
dependence on the tensile stress. In sectionll, this
dependence is compared with the experimental data of
biaxia tests on OFG, CVD-ZnSe and sapphire ceramics.
Finally, in section 111 the results obtained are discussed
and concluded.

|. Theoretical model

In the problem of quantitative evaluation of material
syssems prone to failures, most approaches to
probabilistic failure prediction are usually based upon the
assumption that the dominant defect (or a tractably small
set of identical non-interacting defects of significant
type) can be identified before the analysis. It is also
assumed that, despite the different types of defects may
occur in al possible occupation numbers, there is the
mean field approximation, which replaces the actua
surrounding of a defect by a locally averaged number of
neighboring defects, such that a single significant defect
will influence one and only one set of measurements.
Consequently, a many defect state of the material system
can be gpecified in teems of occupation numbers
(populations of states) associated with small dementary
cells in a single-defect state space. However, the use of
conventional dtatistical mechanics approaches to the
simplified analysis of the dynamics of such systems can
directly be straightforward only in the equilibrium
steady-state case or quasi-equilibrium near to steady-
dtate case. Therefore, a more genera case of far from
equilibrium transient systems requires nonstationary
anayses. One example of such anayses is based on the
concept of linear multistage absorbing Markov chain [4,
5]. In this concept, different states of a chain in the
single-defect approximation can be associated with the
states of the material system, which are occupied by the
defect. Thus, defining for an absorbing Markov chain the
number of its states and the probabilities of transitions
between dstates (transition rate constants), and given
initial conditions, we can solve the Markov chain
problem for the nonstationary nonequilibrium state
populations, which provides the possibility to use these
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So, the time-dependent population p,(t) (4) of
failure-prone state | 2 > of a Markov chain (1) represents

an exponential temporal rise and decay pattern composed
of three relaxation modes. Every mode, given the initial
conditions (3), adds the particular contribution, differing
in its eigenvalue, amplitude and sign. Since generdly the
time dependence of (4) shows an increase, peak and

- I2(u+v+a+b+k)+l [uU+v)(b+k)+a(u+k)]- uak=0
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in evaluating the behavior of system failures. However,
to do this it is condtructive to have the explicit
expressions for nonstationary populations at hand. Dueto
[6] that is only possible for a linear absorbing Markov
chain with not more than the three kinetic stages, which
case can be depicted as follows

3
9759 1 ) sake o
1*/ 4 Ab 4
Here | 3> istheinitial failure-tolerant state, |2> is
the transient failure-prone state, |1> is the intermediate
failure-tolerant state, |0> is the absorbing failure-
tolerant state, and u,v,a,b,k are the rate constants for

between-state transtions directed with respective arrows.
Note that all rate constant parameters are linearly
independent and therefore form a complete five
parameter set of the problem (1). This means that we can
fredy adjust their possible values by taking them from
the intervals [0,¥) of numbers in some arbitrary

dimensionlessrate units.
The time evolution of Markov chain (1) is described
by the following system of kinetic equations

1, (t) = kp, (t);

16,0 =- (b0+ 0 py (1) +ap, (V)

i B2 (t) =bp,(t) - (v+a)p,(t) +up,(t);

T P (1) = vp, (t) - up,(t);
written with respect to the populations p, (t) of different
states |i =01,2,3>, with letting state |2> to be
responsible for system failure. For the smplest initial
condition

P3(0) =1 p5(0) = py(0) = pp(0) =0; €)

typical for nondestructive biaxia testing of window
materias [9], the solution of (2) for P, (t) due to [6]
reads

D)

=u
P2 ?6(|i-|j)

i

exp(- 1 jt) 4
Here the exponents | |, ,, under summation and

product signs are the system eigenvalues that correspond
to the non-negative Debye relaxation rates obeying the
characteristic equation (see [6]):

()

decline without oscillations, we are alowed to find the
maximum of the population

P = P, (t;™) (©)
at the peak time moment t =t/ being a nontrivial
solution of transcendent equation

B, (t) =0 (")

and then associate that maximum of population with the
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distribution of failurein the worst case.

In order to model the possible effect of the stress on
the maximum failure probability distribution (6) we
should take into account that, in the one-defect
approximation, the actual state |3 >, in which the defect
is initidly initiated without causing the system failure,
may contain the great number N of different substates
|3, > Since the transition rate constants in the

various types of macromolecules inversaly depend on the
numbers of substates accessible for forward reactions
[10], we expect that the external stress which can change
such numbers will change the rate U in (1) in the same
fashion. If thetensilestress S , normally used in asingle
measurement testing [9], is the factor which compresses
the substate space of state |3 >, such that to decrease

the number N of its failuretolerant substates from
N, ~exp(-S) 0 N, ~exp(-§)<N,, o

thermodynamic entropy from S0 to S, >S,, then a

dimensionless output rate U/u,, where U, is the
limiting rate for a closed-packed arrangement of

.....

dimensionlessstress s /s, ® ¥, will be defined by the

exponentia relation
u/u, =exp(s /s,)-1 ®)
The reason for this relation is that there is a typical
situation for many optical window systems to contain
defects in the form of cracks. In this case, the sharp edge
of a crack will be the region of very high stress.

Therefore, the dependence of reduced stress s /s, on
reduced strain 1+ X/ x, isnot linear, such as away from
a crack with the bulk parameters S and X related by a

Young's modulus E according to Hooke's law as
s =EX in the one-dimensional case, but logarithmic

equivalently, increase its  effective  (negative)
0v20 T ¥ T T T
0,154 .
~<'0,104 .
0,054 E
0 T T T T
-2 -1 1 2
log(u)
(a) v=0.31, a=2, b=5.97, k=0 ® OFG glass
(b) v=0.29, a=1.9, b=6.07, k=0.53 B CVD ZnSe
©) v=0.31, a=2.5, b=3.10, k=10"" A a-plane sapphire

Fig. 1. Thedensity distributions f, (logu) (curves) simulated from (11) with the different rate constant

parameters V, a,b, K (given ininset in inverse time units). Experimental data (symbols) are adapted from Ref. 9

for three optical window materials. Figures: (a) oxyfluoride glass (circles), (b) CVD ZnSe (squares), and (c) a
plane sapphire (triangles) correspond to the cases 1, 2, and 3in Tab. 1, respectively.

Tablel
Values of parametersfor dendty distributionsin Fig. 1
Rate parameters Distribution parameters
Case Ne Case-type
Classification v a b k |reduced mean peak full width
1 OFG 0.31 20 5.97 0 0.153 3.534
2. CVD ZnSe 0.29 19 6.07 0.53 0.149 3.219
3. a-plane sapphire 031 | 25 | 310| 10° 0.139 3.685
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s /s, =log(l+x/x,) yielding's » (s,/x,)x only at
X << X, . Thisis a smplest model for the materials, in
which the hereditary properties and hysteresis effects are
not taken into account [11]. Moreover, in asingle failure-
response testing typical of window materials [9], therole
of the reduced strain is played by the forward rate
constant of trandtion in a Markov chain (1), that is,
between its initial failure-tolerant state |3> and the
nearest failure-prone state | 2 >, to which the defect is
transiently displaced during the action of applied stress.
In general, such a trangition rate constant depends
exponentially on the free energy difference between
these states, which includes an external stress as log of
the number of substates of theinitial failure-tolerant state
|3> [6, 12, 13]. Therefore, the explanation of relation (8)
is quite substantiated. Furthermore, since usually
s >>s,, We can usein the sequel the smpler version of

relation (8) in reduced logarithmic form

s =logu (9)
as a single means for modeling the possible stress
dependence of the corresponding desired functions

P, = P,(Inu) (10)
and
T - -
— P, (Inu) = f,(Inu)
finu (11)
defining the failure cumulative distribution and

probability density distribution, respectively.

II. Comparison with experiment

In the study of brittle fracture processes in ceramics
and related composites, comparing the data of
experiments on biaxial tensile testing for material s tested
in the non-destructive measurements or single event
damages with the theoreticaly simulated cumulative
distributions and probability density functions constitutes
a strong concern about the applicability of the predicted
failure behavior [9, 14-17]. In this section we compare
the failure probability density distribution (11) with the
experimental data adapted from [9] for three IR-
transmitting window materials, that is, OFG, CVD-ZnSe
and sapphire, operating in the different margins of safety
(seeas0[17-20]). Theresults of comparison are depicted
in Fig. 1. As seen, there is a sufficiently good agreement
between the theory and the experiment, particularly when
concerning the bimodal behaviors of experimental bi-
peaked patterns of the density distributions. The
respective sigmoidal patterns of the cumulative
distributions have been considered elsewhere [21].

Hence, when characterizing the maximal
damageability of nongtationary failure-prone state in a
three-stage absorbing Markov chain (1) that models the
transient temporal behavior of damage in a self-repairing
damaged system, it is the case of avoiding the use of the
bimodal five-parameter Weibull probability distribution
has to be ad hoc introduced to better describe the data
[20]. Asisknown, the Weibull distribution belongs to the
family of special equilibrium distributions whose
derivation, due to the Fisher-Tippett-Gnedenko theorem,
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is based on asymptotic arguments in the problem of
distributing extremum values of the large-sample
sequences of independent random variables with the
same probability distribution as the sample size
increases. On the contrary, the five-parameter Markov
chain probability distribution (11) is essentially
nonequilibrium one and has the bimodal property in
itself. Furthermore, just the framework of a three-stage
absorbing Markov chain provides a clear physical sense
for failed state and equips the temporal behavior of a
salf-repairing damaged system with a transient failure
model in a single defect approximation. This does not
mean that if such an approximation is not valid, it will
not be possible to describe experimental datain asimple
fashion, but only that using the model of nonequilibrium
absorbing Markov chain may be more advantageous than
the use of the equilibrium Weibull distribution. This is
even more obvious, since the mathematical model of
stochastic Markov chain processes is straightforward in
the formalism of balance-like (master) equations for
chain date populations [22] that in turn is a direct
consequence of mapping the evolution of a
nonequilibrium quantum system weakly coupled with the
equilibrium environment onto the population state space
in the one-particle approximation (for more details see
e.g. [23, 24]).

I11.Discussion and conclusions

In this work, based on andytical solution (4) for the
temporal behavior of population p,(t) of failure-prone

state | 2> of a three-stage absorbing Markov chain (1),
with three other its states |3>, |1> and |0> being

falure-tolerant, we describe the failure probability
density function f,s) (11) in its dependence of the

applied stress s =1ogu (9), logarithmically proportional
to the failure rate U input to the state |2 >. Our main

concern is to compare this dependence with the
experimental density distributions of tensile testing data
for some optical window materials. Choosing these as
OFG, CVD-ZnSe and sapphire, we find a
correspondence between theoretical predictions and
experimental findings (see Fig.1). Additionaly, we
account for the fact that the found density distributions,
though &l being bimodal, are peaked to different
amplitudes for the different modes and have different full
widths on the reduced mean half maximum. This allows
us to make a conclusion that, given the tolerances with
respect to the cumulative response of the population of
faillure-prone state on limiting stresses, the material
system with the larger margin of safety in log of the
stress space, i.e, with the wider density distribution
which corresponds to the smaller sope of the stress-
response curve, exhibits lower sensibility to failure and
therefore higher competitive advantage toward other
materials considered as competitors [25]. The values of
respective amplitudes and widths for the density
digtributions, simulated for three different optical
window materials by Egs. (4)-(11) and presented in
Fig.1, as well as the corresponding values of kinetic
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parameters used for smulation, are summarized in Tab.1. compared to the OFG glass. This conclusion corresponds

These substantiate the above conclusion, as well as  well to the experimental observations provided in [9].
coincide with a similar concluson of Ref. 21, though,
made on the different reasons of using the concept of Conflicts of interest

competitiveness coefficient. The latter isknown to bethe  Authors declare that there are no conflicts of interest

analog to the indicator of the normal stability of the  between them.
system and its capability to perform reliably and safdy
on the standardized testing or potentially deleterious Acknowledgments

impacts without failure, being complementary to its  The present work was partialy supported by The
cooperativity [21]. National Academy of Sciences of Ukraine (project

Thus, basing on the numerica results obtained by No. 0116U002067).
simulations we can conclude that among three IR-
transmitting window materials analyzed in this work, the Kapitanchuk O.L. - PhD, Senior Research Fellow;
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O.JI. Kamiranuyk, B.I. Tecinenko

MoaeiloBaHHSA 0IMOJAJIBHOI MOBEeIHKH CAMOBITHOBJIIOBAJILHUX ONITUYHO
NMPO30PHUX CHCTEM, CXHJIBHHUX 10 KPUXKOr0 PyHHYBaHHS

Incmumym meopemuunoi gizuxu im. M.M. boeomob6osa, Hayionanena Axademiss Hayx Yxpainu, Kuie 03680,
Vpaina,e-mail: alkapt@bitp.kiev.ua; vtes@bitp.kiev.ua

IIpobGnema MozenoBaHHA OIMOJAJIBHOI TOBEIIHKM IPO30PUX  MaTepialiB, IO MOXYTh OyTH
NPEJICTABICHUMU Yy BHUIIIANI JEAKMX CAMOBIJHOBIIOBAJIBHHUX ONTHYHHUX CHCTEM, CXWIBHHX [0 KPHUXKOroO
pYHHYBaHHS, PO3IIANAETHCS KiJbKICHO 3 BUKOPHUCTaHHAM TOYHOTO PO3B'SI3KY IS 3aCENEHOCTI MepexiHOro
cTaHy TpHcTajiitHoro abcopOyrodoro naniora Mapkosa. [lokazaHo, 0 3CHMYNIBOBaHI T'yCTHHH PO3IOJILTIB
MaKCHUMaJIbHUX HMOBipHOCTEH pyiiHYyBaHHSA MOXYTb 100p€ ONUCYBATH EKCIIEPUMEHTANIBHI IaHHI 3 OiaKciallbHOro
postarnenns kepamik OFG, CVD-ZnSe i candipy B a-momniuti. 3poGiieHO BUCHOBOK, 1110 KOHKYPEHTHA I1epeBara
LIUX MaTepialliB pocTe MPONOPLiiHO MUPHHI IX pO3NOiIiB.

KorouoBi cioBa: onTH4HO NPO30pi CHCTEMH, KPHUXKICTh, CXWIBHICTh 10 pDyHHYBaHHs, KOHKYPEHTHa
repesara.
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