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The article is devoted to modelling the growth of thin films on the surfaces of crystals having a similar 

crystal structure with a small parameter of mismatch of the lattice of substances from which the film and the 

crystal substrate are formed. A review of modelling methods based on both analytical expressions and 

computational methods is made. A number of methods for modelling the most typical processes: surface 

formation in the form of pyramidal formations (so-called needle crystals), two-dimensional with initial islands of 

growth and three-dimensional uneven growth processes. To model the process of growth of needle crystals, it is 

proposed to use a method based on Gaussian statistics of surface height increments. The model of three-

dimensional growth of the crystal surface, which uses the iterative algorithm of Foss, and which makes it possible 

to investigate the processes of stepped, uneven growth of crystals, is also considered. In contrast to stepwise 

growth, a model of submonolayer growth of a film based on the Monte Carlo method is considered. For 

submonolayer growth of the film, pseudo-random sequences are used, which simulate the initial arrangement of 

the nuclei of the nucleus of the next layer on the crystal surface. The computational characteristics of this method 

are determined, namely the dependence of the number of iterations on the initial surface filling coefficient 
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Introduction 

The development of mathematical models describing 

the growth of thin films and needle-like crystals on 

smooth, pre-treated surfaces began in the middle of the 

last century. The efforts of many researchers have 

focused both on finding analytical solutions and on 

improving the efficiency of complex computational 

methods. The basis of analytical methods are such 

sections of mathematics as the theory of deterministic 

point processes and the theory of stochastic matrices [1]. 

The combination of all the above methods forms the 

lattice theory, which is one of the modern scientific areas 

of mathematical and statistical physics [2]. A number of 

problems for which precise analytical solutions have 

been found can confirm the performance of this 

approach: the six-vertex model [3] and deterministic 

point processes [4]. Classification of problems and 

methods of their solution, which are the subject of 

modern statistical mechanics, is shown in Fig.1. 

The most common algorithms that have become the 

basis of computational methods are the Monte Carlo 

method and molecular dynamics [5, 6]. 

One of the most common divisions of methods for 

modelling film growth processes is the division into 

discrete and continuous methods. The method of 

molecular dynamics is a continuous method. This means 

that the substances involved in the growth of the film are 

considered as some mass distributed in volume. This 

method is convenient when one of the substances is in a 

liquid (solution or melt) state [7]. 

In addition to the well-known Monte Carlo method, 

discrete methods for modelling surface growth include 

methods for constructing fractal surfaces, one of which is 

the Foss method [8], which we use. 
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Theoretical and experimental studies of surface 

growth patterns show that the growth process is self-

similar in both temporal and spatial scales. That is, the 

increase in surface area and its height are coordinated by 

a certain scale ratio. It turns out that there are several 

numerical relationships between the growth rates of the 

surface along and in the perpendicular directions, they 

characterize some specific growth regimes, they are 

called universal classes. 

The most well-known statistical models of growth 

include such as deterministic point process and six-vertex 

model. Modern and most generalized theoretical ideas 

about the growth of crystalline and/or polymer structures 

use the concept of renormalization group [9]. The 

renormalization group provides the most common means 

of studying a significant group of phenomena in physics 

and chemistry, such as crystal growth processes, and in 

particular the growth of thin films on the crystal surface. 

I. Main part 

One-dimensional models based on the analytical 

expression of the dependence of the height of the 

"needle" on time can be used to model the growth of 

needle-like crystals. These models can continue and 

complement the known models of growth of needle-like 

crystals. One of them is a model based on the Gibbs-

Thomson effect, which allows to correctly determine the 

growth rate of the crystal and its critical diameter [10].  

Modelling of submonolayer growth, which can be 

considered two-dimensional, was carried out based on 

the Monte Carlo method. The initial condition of the 

method is a given distribution of growth centres on the 

 a) b) 

Fig.2. One-dimensional growth modes for different values of model parameters: (a) 𝑐1 = 0.1, 𝑐2 = 8, mξ = 0.1, 

𝜎𝜉 = 0.01; (b) 𝑐1 = 0.1, 𝑐2 = 16, 𝑚𝜉 = 0.1, 𝜎𝜉 = 0.08. 

 

 

Fig.1. Problems of modelling the growth of thin films and methods of their solution. 
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surface of the crystal, followed by determining the 

number of occupied nodes of the lattice, closest to the 

given. We have constructed the growth surfaces of the 

submonolayer for different degrees of filling the growth 

surface with the initial growth islands. The main result of 

the research is the dependence of the surface filling rate 

on the number of initial growth islands. 

Modelling of the three-dimensional surface growth 

process is performed by the Foss method, which is based 

on the iterative addition of statistically independent 

increments for each point of the two-dimensional surface 

that simulates the initial surface of the crystal. 

II. One-dimensional growth model based 

on deterministic point process (needle 

surface growth modelling) 

The least complex model of three-dimensional 

growth of the film surface is a model in which the atoms 

that reach the crystal surface "stick" to it and do not 

move further. Statistical features of the growth process 

depend on the technological parameters of the process: 

the rate of atoms and the distribution of this characteristic 

depending on the coordinates of the crystal surface, but 

the general dependence of film height on time [11] is 

determined by expression (1) 

 

  ℎ(𝑡) = 𝑐1
−1 ∙ 𝑡 + 𝜉 ∙ 𝑐2 ∙ 𝑐1

−
3

2 ∙ 𝑡
1

2, (1) 

 

where 𝑐1 and 𝑐2 are numeric constants, 𝜉 is a random 

variable with a Gaussian distribution. 

Therefore, the growth process described by 

expression (1) has 4 parameters: coefficients 𝑐1 and 𝑐2 

and the mathematical expectation 𝑚𝜉 and the variance 𝜎𝜉  

of the random variable 𝜉. 

The three-dimensional surface modelled by relation 

(1) is shown in Fig.2. As can be seen from the shape of 

the formed surface, this model makes it possible to 

describe the growth of needle-like crystals or other 

formations on the surface, the cross section of which is 

negligibly small compared to the height. This regime 

occurs when the energies of the atoms trapped by the 

upper layers are insufficient to transition to adjacent 

layers of the crystal structure, and therefore the filling of 

the lower atomic layers (i.e., the transition to two-

dimensional mode of crystal film growth) does not occur. 

Comparing the images in Fig. 2, we see that by 

appropriate selection of the values of the model 

parameters it is possible to model both the growth of the 

surface with pyramid-like formations with a small almost 

identical height (Fig. 2a) and the growth of more 

complex formations (Fig. 2b). 

The formation of structures with needle-like crystals 

having a characteristic cross-sectional size of the order of 

nm2 are widely used in modern science-intensive 

technologies. Crystals with needle-shaped or pyramidal 

formations on the surface of the same material as the 

substrate material have a low reflection coefficient in a 

wide range of solar radiation, which makes them 

attractive in terms of use in the production of solar cells 

[12], photonic crystals [13] and biosensors [14, 15]. Such 

films can be used in a wide range of temperatures for the 

production of sensor elements based on nanosized poly-

silicon films [16], local 3-dimensional integrated silicon-

insulator structures [17], as such films can be resistant to 

destruction if applied protective coating. 

III. Modelling of the mechanism of three-

dimensional (non-uniform) surface 

growth 

The most complex and least studied growth process 

is stepwise, uneven crystal growth, as only three-

dimensional growth models can be applied to it. The 

three-dimensional mechanism is becoming increasingly 

important in the development of nanotechnology, as it is 

possible to control the position of each individual atom 

with an accuracy of several nanometers. 

Consider the method of fractal surface formation 

based on the iterative Foss algorithm [8]. Foss's 

algorithm forms a fractal relief gradually, shredding the 

elementary cells of the grid at each step of the algorithm. 

As is known from theory, fractals are divided into levels. 

In the Foss algorithm, the surface of each subsequent 

level contains all points on the surface of the previous 

level and some new set of points. In this case, every four 

points on the surface of the previous level form an 

additional five points of the next level: four points in the 

middle of the sides that form the cell of the previous 

level and one point at the intersection of diagonals, as 

shown in Figure 3. 

Each point of the lattice on the initial plane 

corresponds to one point of the fractal surface, which is 

formed in the next step of the iteration. At the beginning 

of the algorithm, each of the four points of the initial 

lattice defines one point of the fractal surface, and the 

value of the height is assigned some random number 

from the sequence having a Gaussian distribution. The 

height of the points of the fractal surface of the next level  

 

Fig.3. Scheme of formation of fractal points (one cell), n 

means the fractal level number to which the formed 

points belong. 

 

is defined as the average value of the heights of the 

points of the previous level, which are on the same edge 

with this point. For the point in the center of the cell, the 

height is defined as the average height of all four points 

of the previous level. Then some random number from a 

series of random numbers with Gaussian distribution is 

added to the found values, the variance of this series is 
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related to the variance of the series used at the previous 

level, relation (2): 

 

 𝜎𝑛
2 = (1 2⁄ )2∙𝐻 ∙ 𝜎𝑛−1

2 , (2) 

 

where H is the Herst index, or the self-similarity 

parameter of the formed fractal series, n is the iteration 

number,𝜎𝑛
2 та 𝜎𝑛−1

2  – squares of variances in successive 

iteration steps. 

Figure 4 shows an example of a fractal surface 

constructed according to the Foss algorithm in the fourth 

step of the iteration with the Herst index 𝐻 = 0.1 and the 

initial variance𝜎1
2 = 0.1. 

 
Fig.4. The fractal surface is constructed on the fourth 

step of iteration of the Foss algorithm with Herst index 

H=0.1 and initial dispersion σ_1^2=0.1. 

 

The self-similarity of the Foss method makes sense 

in that there is some correspondence between the 

variances of random fluctuations in the height of the 

nodal points at each step of the algorithm (expression 2). 

This can be concluded from the graphs of growth of the 

standard deviation of the height of the surface 

constructed for different Herst indicators, which are 

shown in Fig.5. 

 

Fig.5. Graphs of growth of surface height variance for 

different Herst indices. 

 

The graphs show that the surface growth process 

differs significantly for two different sets of Hurst 

values: 𝐻 ≤ 0.5 and 𝐻 >  0.5, and for the second set of 

Herst values the surface growth is less intense. Within 

one group of Herst indicators, growth processes are 

almost slightly different from each other, and the slight 

difference in standard deviation can be explained by 

different statistical samples for surface growth processes. 

IV. Modelling of two-dimensional growth 

Modelling the growth processes of submonolayer 

films is an important task, and its solution can 

significantly improve the technological processes of film 

growth in semiconductor production. The most common 

method of modelling the growth of submonolayer films 

is the Monte Carlo method, which is based on the 

probability of filling the atom of the sprayed substance of 

the free node [18]: 

  

 𝑃𝑖~ exp (−
𝐸𝐴(𝑖)

𝑘𝐵𝑇
), (3) 

 

where 𝑃𝑖i is the probability of filling the free node of the 

submonolayer 𝑖; 𝐸𝐴(𝑖) is the activation energy of the 

process; 𝑘𝐵 is the Boltzmann constant; 𝑇 is the substrate 

temperature. 

We have developed and implemented an algorithm 

that simulates the mechanism of two-dimensional 

submonolayer growth of a crystal film of simple cubic 

structure using an island mechanism, where the criterion 

for filling the node is the number of nearest filled nodes. 

The initial condition for the algorithm is the presence of 

growth islands with filled nodes of the submonolayer of 

the film. Such growth islands can be formed at the stage 

of the previous cycle of surface treatment by introducing 

substances that are catalysts of the growth process, or 

surface treatment by ion implantation. 

At the beginning of the algorithm on a matrix of size 

50 ×  50, which simulates the surface on which the film 

grows, we randomly set the growth islands. The relative 

share of islands in the total number of matrix elements is 

an additional modeling parameter. In fig. Figure 6 shows 

the state of the surface with relative proportions of 

growth islands: 12%, 18% and 25%, which are randomly 

placed on the crystal surface. 

 

The number of filled nodes that are closest to the 

specified determines the condition of filling the film 

layer in some node. If the number of filled nodes exceeds 

or is equal to half of all closest to this, the upper layer is 

formed. For angular elements of the matrix, this means 

that the top layer must be formed in more than one node, 

for boundary nodes along the face of the crystal - more 

than two, and in nodes that are not on the edge of the 

crystal surface - more than four. 

In fig. 7 shows the filling of the crystal surface at 

different stages of film growth: 33%, 66% and almost 

100% of the filling of the surface for the initial value of 

the filling factor of the surface which is 12%. 

For a surface with an initial filling of 12%, these 

phases correspond to the 18th, 41st and 77th iterations of 

the algorithm. 

In our model, the rate of film formation obviously 

depends on the initial coefficient of filling the surface 

with growth islands. The graph of this dependence is 

shown in Fig.8. 

Analysis of the developed algorithm shows that 

reducing the proportion of initial filling leads to the fact 

that the surface no longer has nodes that meet the 

conditions for the formation of a new layer, although 

much of the surface remains uncovered by the new layer.  
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Fig.8. Graph of the dependence of the number of cycles 

required to build a single layer from the initial filling 

factor of the growth surface. 

 

In fact, the growth of the next layer will begin, i.e. 

there may be a transition to a three-dimensional process 

of film growth, which may be an undesirable effect. That 

is, at low fill coefficients of the initial growth surface, 

there are configurations of the initial islands, at which 

high-quality two-dimensional film growth is observed. 

Identifying all possible initial configurations conducive 

to two-dimensional growth is a task that requires 

significant computing power. We present estimates of 

complexity for the parameters of the problem we used to 

model two-dimensional growth. The matrix defining the 

initial surface has a dimension of 50 × 50. The formation 

of a new layer does not occur if the fill factor is less than 

10%, ie it is 250 knots of the initial surface. Thus, the 

number of different ways to place the islands of growth 

N is determined by formula (4): 
 

 𝑁 = 𝐶2500
250 =

2500!

250!∙2250!
≈

25002500∙√5000∙𝜋

250250∙22502250√500∙𝜋∙√4500∙𝜋
=

25002500

250250∙22502250∙√450∙𝜋
  (4) 

 

or 

𝑙𝑛(𝑁) = 2500 ∙ 𝑙𝑛(2500) − 250 ∙ 𝑙𝑛(250) − 2250 ∙ 𝑙𝑛(2250) − 𝑙𝑛(√450 ∙ 𝜋) ≈ 130,  so, 𝑁 = 𝑒130. 

 

To initially fill the crystal surface with islands at the 

level of 11%, among 40 variants of random initial 

placement of islands, 36 island locations were identified, 

leading to complete filling of the surface with the second 

layer for 69, 77, 83, 88, 93, 98, 105, 110, 120, 130 and 

145 iterations. 

 a)  b) c) 

Fig.6. Initial film formation of growth islands on the crystal surface (11%, 18% 25% in fig. a, b and c, 

respectively). 

 

 a)  b)  c) 

Fig.7. Initial formation of growth islands on the crystal surface (12%, 18% 25% in Fig. A, b and c, 

respectively). 
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Obviously, the choice of the initial location of the 

islands is of scientific and practical importance. By 

conducting a numerical experiment, we determined 

several initial configurations for low coefficients of 

filling the crystal area with the growth centres of the 

second layer of the film. 

Discussion of results and conclusions 

We have considered the main mechanisms of 

formation of crystalline films on a flat surface: two-

dimensional, three-dimensional and growth of needle 

crystals. The Foss algorithm is considered for the three-

dimensional growth regime. One-dimensional statistics 

of crystal height increments, which obviously depends on 

two factors - the rate of adsorbed atoms and the rate of 

evaporation, can be used to model the growth of needle 

crystals, which is important for use in modern materials 

for nanoelectronics. 

We have also proposed an algorithm for constructing 

a crystal surface that simulates the process of two-

dimensional growth or film growth in the form of a 

submonolayer. For the algorithm to work, you need to 

specify the initial foci of new surface formation, which 

may be related to the technological features of the 

application of films in the form of catalysts for the 

crystallization process, such as local introduction of 

impurities or surface treatment. The most important 

characteristic of the algorithm is analysed - the initial 

coefficient of surface filling with growth islands, and the 

quantitative influence of this coefficient on the surface 

growth rate is determined, which is determined by the 

number of iterations required for transition from initial to 

fully formed submonolayer film. The number of nearby 

nodes in which the adsorbed atoms are deposited 

determined growth statistics during each iteration. The 

algorithm developed by us can potentially be used to 

model the processes of transition from two-dimensional 

to three-dimensional mechanisms of film growth on the 

crystal surface. 
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Моделювання процесів росту на поверхні кристалів 

Чернівецький національний університет імені Юрія Федьковича, м. Чернівці r.politansky@chnu.edu.ua, 

 Прикарпатський національний університет імені Василя Стефаника, м. Івано-Франківськ,  

Львівський національний медичний університет імені Данила Галицького, м. Львів  

У статті розглядаються моделі процесів росту плівок та інших структур на поверхнях кристалів, які 

мають подібну кристалічну структуру із незначним параметром невідповідності граток речовин, із яких 

утворені плівка та кристалічна підкладка. Проведений огляд методів моделювання, що основані на 

аналітичних співвідношення та обчислювальних алгоритмах. Розглянуто ряд методів моделювання 

найбільш типових процесів: формування поверхні у вигляді пірамідальних утворень (так звані голчасті 

кристали), двовимірний із початковими острівцями росту та тривимірний нерівномірний процеси росту. 

Для моделювання процесу росту голчастих кристалів запропоновано використовувати метод, що 

оснований на гаусовій статистиці приростів висоти поверхні. Розглянуто також модель тривимірного 

росту кристалічної поверхні, яка використовує ітераційний алгоритм Фосса, і яка дає можливість 

дослідити процеси ступінчатого, нерівномірного росту кристалів. На противагу ступінчатому росту 

розглянуто модель субмоноатомного росту плівки, що основана на методі Монте-Карло. Для 

субмоноатомного росту плівки застосовано псевдовипадкові послідовності, які моделюють початкове 

розміщення острівців зародження наступного шару на кристалічній поверхні. Визначені обчислювальні 

характеристики цього методу, а саме залежність числа ітерацій, необхідних для заповнення поверхні 

цілком, від коефіцієнту початкового заповнення поверхні. 

Ключові слова: метод Монте-Карло, ріст кристалів, аналітичні методи. 
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