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In this work, the important thermal and kinetic characteristics of crystals are calculated. It was shown that in a 
state of thermodynamic equilibrium, the thermal properties of crystals are additive, and their value for an entire 
crystal is calculated by summing the values of thermal properties of the crystal lattice and the properties of the gas of 
free charge carriers in a crystal. These properties are fully characterized by the appropriate Gibbs potentials. In this 
work it was also shown that when the electric field E

r
 and temperature gradient Trr∇  are created in a crystal, and 

this crystal is placed in the magnetic field with the magnetic inductance vector B
r

, then there the electric charge and 
heat transport processes begin to exist in the crystal. These processes are described by the generalized electric and 
heat conduction equations. The tensors and the scalar coefficients in these equations – these are the kinetic properties 
of the crystals. They describe the nature of their actual properties and they have widespread and pragmatic 
applications in modern solid-state electronics. 
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I. An elementary model of a crystal. 
The statistical sum of a crystal 

Semiconductor crystals are composed of the 
structural particles – these are located within their 
volume. These particles create the crystal lattice that it 
has a symmetry. The particles are located in points which 
are called the lattice sites, and the space between them is 
called the interstitial site. Atoms, ions or molecules can 
become the structural particles of a crystal. There is 
quantum interaction between the particles and it holds 
them in the lattice sites. 

In a crystal can exist the free charge carriers and 
these carriers are moving chaotically in the crystal 
interstitial site, when the crystal is in the thermodynamic 
equilibrium state. In semiconductor crystals, electrons 
with the charge   or positive holes with the charge −  
can be the free charge carriers. A collection of the charge 
carriers in the crystal is called the electron or hole gas, or 
called as the gas of the charge carriers. Within 
elementary classical theory, the gas of charge carriers in 
the thermodynamic equilibrium is treated as an ideal gas. 
Therefore, the laws for an ideal gas are also applied to 
the charge carrier’s gas. 

In the thermodynamic equilibrium state, there is not 
any action of forced fields on the crystal, and its 
temperature remains constant and the same value in all 
its points. It is agreed that in all crystal states its 

structural particles hamonically vibrate around their 
nodes, the directions of these vibrations are varying 
chaotically, and the charge carriers gas is moving 
chaotically in the interstitial sites of the crystal lattice. 
Furthermore, one is inclined to think that the system of 
structural particles and the system of charge carriers only 
weakly interact with each other. In this case, the grand 
statistical sum of the crystal Ξ  is equal to the product of 
two statistical sums: the statistical sum of structure 
particles Ξ  and the statistical sum of charge carriers gas Ξ . Thus, Ξ = Ξ Ξ . 

Therefore, the crystal as a thermodynamic system, is 
composed of two thermodynamic subsystems of 
particles. One subsystem – this is the gas of charge 
carriers, this gas is considered to be an ideal. The other – 
this a set of structure particles, which harmonically and 
chaotically vibrate around nodes of crystal lattice. 

Having this model of the crystal, we shall calculate 
its statistical sum Ξ  which enables us to determinate all 
thermodynamic properties of the crystal. 

In statistical theory of crystal properties [1-5] it was 
shown that thermal characteristics of large 
thermodynamic systems are described in terms of the 
logarithm of the grand statistical sum. But the logarithm lnΞ = lnΞ + lnΞ . Physically, it means that the 
thermal properties of the crystal are additive and they add 
the thermal characteristics of the crystal lattice to the 
thermal characteristics of the charge carriers gas. 

Systems in a state of thermodynamic equilibrium are 
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described by thermodynamic functions (or by 
thermodynamic potentials), which explicitly depend on 
some independent system’s parameters. Thus, the 
thermodynamic functions, as mathematical functions, 
will characterise some material properties of the system 
in a state of thermodynamic equilibrium. 

There are the following important thermodynamic 
functions: 

1. The system internal energy   
2. The thermal function (or enthalpy)   

3. The free Helmholtz energy   
4. The thermodynamic potential (or free Gibbs 

energy)   
5. The Gibbs grand thermodynamic potential Ω 
6. The entropy   
7. The specific heat capacity    
These functions are explicite functions of some 

system parameters, they fulfil some mathematical 
relationships and possess the following total differentials: 
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In the above formulas,   is the system volume,   is 
the pressure in the volume  ,   is the chemical potential 
of particles in the volume  . 

These thermodynamic functions which describe 
material properties of a system in equilibrium state are 
calculated in statistical theory of thermal and kinetic 
properties of real systems. The real systems are 
composed of a very large amount of microparticles. For a 
limit of large numbers  , this collection of   
microparticles satisfies the central limit theorem of large 
numbers. This theorem shows that the statistical laws of 
nature, which are based on mathematical probability 
theory, act in such systems. 

The thermodynamic potentials (thermodynamic 
functions) are functions of the independent system’s 
macroparameters, which fully describe its state. The 
functions belonging here are the system internal energy  , thermal function (or enthalpy)  , free Helmholtz 
energy  , thermodynamic potential (or free Gibbs 
energy)  , Gibbs grand thermodynamic potential Ω, 
entropy  , specific heat capacity   . With the use of the 
thermodynamic functions (potentials), all 
macrocharacteristics of the system can be calculated, and 
these potentials provide an explanation for a movement 
of physical and chemical processes in this system. 
Moreover, with the use of the thermodynamic functions 
(potentials) the conditions for equilibrium of 
thermodynamic systems can be established. There are 
conditions here, the maximum of a system entropy, 
minimum of a system free energy and minimum of the 
Gibbs potential. To describe systems with a variable 
amount of particles, the chemical potential   has been 
introduced. This is a quantity which defines a change in 
energy of a system, when the number of its particles is 

increased by one. 
The internal energy   – this is the energy of a 

thermodynamic system which is a function of its state. It 
includes all forms of all particles energies. In the state of 
equilibrium, the internal energy   is a total thermal 
energy of this system. 

The enthalpy   – this is a function of its state which 
characterizes a change of the system thermal energy    
for isobaric processes (processes occuring at constant 
pressure). Thus, under this condition   =   . 

The free energy of the system   defines the value of 
a work    for isothermic reversible processes that the 
system can do against to external forces. This work is 
equal to a change of the system free energy, that it is 
taken with the opposite sign, i. e.,   = −  . 

The thermodynamic Gibbs potential   – this is a 
function of the state of the thermodynamic system which 
characterizes reversible and irreversible isobaric-
isothermal processes in the system. The thermodynamic 
Gibbs potential is constant during the reversible 
processes and it goes down during the irreversible 
processes. 

The Gibbs grand thermodynamic potential Ω 
characterizes the pressure in the thermodynamic system 
of particles. 

The entropy   – this is a function of the state, it gives 
the possibility to write up the second law of 
thermodynamics in a mathematical rigorous way. 

The specific heat capacity    (per unit volume) is an 
important characteristics of the system, it is the amount 
of heat as it should be transferred to the system to raise 
its temperature by one degree kelvin. Therefore, the heat 
capacity at constant volume of the crystal is given as: 
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  =     . 
In statistical physics it was shown [1-5] that all 

thermodynamic systems characterized by given above 
thermodynamic functions are descibed by the Gibbs 
grand canonical distributions Ω = −  ln(Ξ). Thus, these 
thermodynamic functions are expressed in terms of the 
Gibbs grand canonical potential, and they are given here 
by the following algorithmic formulas: 
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Equation (9) is called the thermodynamic equation of 
a state of the many-particles system, this system has the 
volume   and the particles create the pressure   in its 
volume. 

Hence, it follow that the problem of calculation of 
the thermodynamic functions of the system – this is the 
problem of calculation of its grand statistical sum Ξ. 

As it was shown in the works [1-2] and in works [3-
5], the thermal properties of the crystal lattice and the 
current carriers gas in the crystal are fully described by 
the following Gibbs grand potentials, respectively:  
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Formula (11) is called the Debye’s interpolation 
formula. In this formula, the following notations are 
used:  = ℏ      is the Debye temperature which 

depends on the nature of the crystal,   ( ) =    ∫      (   ( )  )   is the Debye function,   is 
the number of the crystal structure particles. 

In formula (12),   ( ) is the well-known Fermi-
Dirac distribution function,  ( ) = ∫     ( )  ,  ( ) is 
the density of states lying in allowed band,   is the 
quantum particle energy which depends on its 
quasimomentum vector  ⃗. The function  ( ⃗) is named 
the dispersion relation. According to the quantum theory 
laws, the exact dispersion relation is a periodic and even 
function of the vector  ⃗. Formulas (11) and (12) are 
detailed described in the cited works. 

Having the thermodynamic potential Ω , the known 
algorithmic formulas of kinetic theory of crystals 
properties permit the calculation of all thermodynamic 
properties of the crystal lattice, under the condition that 
the chemical potential of phonons is equal to zero ( = 0). Thus, we have: 
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The general thermal properties of the crystal are 
additively added the thermal properties of the crystal 
lattice and thermal properties of the free charge carriers 
gas. The free charge carriers’ gas – this is the Fermi gas. 
Its thermal properties are fully described by the Gibbs 
potential Ω (12) and they have the forms: 
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 In the above formulas, the average operator is 
denoted by the angle brackets <. . . >: 

 <  >=  ( ( )) ( ( )) = ∫     ( )  ( )  ∫     ( )  ( )  . 
II. Elements of statistical theory of non-

equilibrium thermodynamics. Kinetic 
properties of crystals 

In the preceding section, the thermodynamic 
properties of systems in a state of thermodynamic 
equilibrium were discussed. The necessary equilibrium 
conditions for this state are that the temperature and 
chemical potential should be constant throughout all 
points in the system. If one of these conditions does not 
hold, then there are nonequilibrium processes in this 
system. These processes bring the system into 
thermodynamic equilibrium state. A crystal in 
equilibrium state (as a thermodynamic system) can be 
removed from equilibrium by the action of the electric 
field  ⃗ , chemical potential gradient ∇ ⃗ , or temperature 
gradient ∇ ⃗  in the crystal. These fields may exist 
simultaneously in the crystal. In the presence of these 
there are the fluxes of mass, energy and charge. They are 
described by the first and second laws of nonequilibrium 
thermodynamics: 
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In the above laws,  ⃗,  ⃗ are the vectors of the electric 

current density and heat flow, and   ,   are respectively 
the internal energy and entropy of the system. 

In statistical physics it was shown that, when there is 
an increase of the entropy in the thermodynamic system, 
the processes of heat and electric charge transport 
(processes of heat and electric conduction) occur. 
Conversely, when the processes of heat and electric 
charge transport occur in the system, its entropy inreases. 
Thus, we have:      = 1   ⃗  ⃗ −  ⃗∇ ⃗   ≥ 0. 

In nonequilibrium thermodynamics, it was shown 
that when the electric field   ⃗  and temperature gradient ∇ ⃗  are created in conducting medium, and next place 
this crystal in the magnetic field with the magnetic 
inductance vector   ⃗ , then there the electric charge and 
heat transport processes begin to exist in the crystal. 
These processes are described by the following 
generalized electric and heat conduction equations: 
 ( )( ) ( )( ) TrBikEBikj r

rrrr
∇−= βσ , (30) 

 ( )( ) ( )( ) TrBikhEBikq r
rrrr

∇−= γ , (31) 
Equations (30) and (31) describe the response of 

conducting medium to the action of the electric field, 
temperature gradient and magnetic field. The 
phenomenological constants in equations (30), (31) (   (  ⃗ )), (   (  ⃗ )), (   (  ⃗ )), (ℎ  (  ⃗ )) – these are the 
tensors of kinetic coefficients. These tensors describe 
numerous matter properties of the conducting medium (i. 
e., this crystal). They have the well-known properties of 
the Onsager symmetry. 

The kinetical properties of the conducting crystals 
are determined by the concentration of the free charge 
carriers in the crystals and by the character of their 
motion throughout the crystal interstitial site. 

In equilibrium state, the free charge carriers are 
moving chaotically, their average energy is conserved, 
and the entropy of the system of these carriers obtains its 
maximum value. This is an equilibrium gas of the charge 
carriers. 

The presence some drift perturbations in the crystal, 
that is, the electric field   ⃗ , the temperature gradient ∇ ⃖  
(these perturbations may exist simultaneously in the 
crystal), will remove the charge carriers’ gas out from 
equilibrium and turn it into the non-equilibrium particles’ 
ensemble. In this case, the drift force  ⃗  will be act on 
every particle of charge   , according to [1 - 5]: 
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 where   is the electron charge,  = ±1 is the charge 
sign,   is the average energy of the charge carrier,   is 
the chemical potential of the charge carriers,   is the 
Boltzmann’s constant,   is the crystal temperature. 

As a result of the action of the drift force  ⃗ , all 
current carriers start to move in a rectilinear way, and 
they will have the drift velocity  ⃗ . This velocity 
depends on the force  ⃗  as well as the crystal’s 
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properties. 
The presence of the drift velocity  ⃗  creates a 

particle flow. As it takes place, there is the electric 
charge and heat (energy) transport. Therefore, the 
collection of charge carriers in crystals, when there are 
drift fields, turns into the grand canonical nonequilibrium 
ensemble with the varying amount of particles. 

As it was shown in the work [1], taking into 
consideration a spin degeneracy, this grand canonical 
ensemble is characterized by the following Gibbs grand 
canonical potential: 
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In the above formula,  ⃗ is the wavevector of the 
charge carrier,   ⃗ is the energy dispersion relation of the 
charge carriers, and Δ  ⃗ is the change in the one particle 
chemical potential (free energy per particle) by the action 
of these perturbations (these will remove the crystal out 
from the equilibrium state). When these perturbations are 
absent,  Δ  ⃗ = 0. 

The values Δ  ⃗ were calculated in the work [4], 
where it was shown that Δ  ⃗ is an odd function of the 
vector  ⃗, and it depends on the vector of electric field   ⃗ , 
temperature gradient ∇ ⃗  and vector of magnetic 
inductance   ⃗ , when the crystal is under these 
perturbations. 

As it was shown in the cited works, the use of the 
thermodynamic potential (33) leads to the following 
generalized equations of the electric and heat 
conductions:  
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In the above equations, the symmetric tensors     (  ⃗ ) ,     (  ⃗ ) ,     (  ⃗ ) ,     (  ⃗ )  – these are 
respectively, the material tensors of the resistivity, 
Seebeck effect, Peltier effect and thermal conductivity of 
the crystal. These tensors should be experimentally 
determined or theoretically calculated. They are even 
function of the magnetic inductance vector   ⃗ . 

The coefficients  (  ⃗ ) and  (  ⃗ ) – these are the 
coefficients of transverse galvanomagnetic Hall and 
Ettingshausen effects, and the coefficients  (  ⃗ ) and  (  ⃗ ) are the coefficient of transverse thermomagnetic 
Nernst-Ettigshausen and Righi-Leduc effects. They are 
even function of the magnetic inductance vector   ⃗ , that 
is:  (  ⃗ ) =  (−  ⃗ ),  (  ⃗ ) =  (−  ⃗ ),  (  ⃗ ) =  (−  ⃗ ),  (  ⃗ ) =  (−  ⃗ ). 

All these just given tensors and coefficients are 
called the kinetic properties of the crystals. 

In equations (34), (35), the vector product are 
denoted by the square brackets. 

The analysis of equations (34), (35) shows that in the 
presence of a magnetic field, an isotropic crystal 
becomes anisotropic, and the relativity simple processes 
of the electric and heat conduction will become more 
complicated. In this case, the additional transverse 
galvanomagnetic and thermomagnetic effects there 
occur. 

The galvanomagnetic effects are produced by the 
action of a magnetic field on the omic part of the 
electrical current, and the thermomagnetic effect – by the 
action of this field on the thermal part of the current, 
accordingly to the generalized equations of the electric 
conduction (34). 

The kinetic tensors and coefficients in equations 
(34), (35) describe the nature of the important kinetic 
properties of conducting medium, they are of pragmatic 
significance for modern solid-state electronics, where 
crystal of different nature are used in the manufacturing. 

In the cited works [1-5], it was shown that all kinetic 
properties of crystals are calculated with the use the 
following main algorithmic functional: 
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In the above formula,  ( ) = ∫     ( )  ,  ( ) is the 

density of the energy states of charge carriers lying in 

allowed energy bands,   ( ) =  exp(   •  ) + 1   ,  ( ) 
is the scattering function which describes the effect of 
scattering processes of the current carriers by the 
crystals’ defects on the crystal kinetic properties (this 
scattering function is a non-averaged charge carrier 
mobility),    is the component of the magnetic 
inductance vector   ⃗  in the crystal , which is normal to 
vectors   ⃗ , ∇ ⃗ . 

It is clear from the analysis of the main algorithmic 
functional (36) that the kinetic properties of the crystal 
depend on  the  energy  dispersion relation of  the charge 
carriers, the scattering function and the chemical 
potential  • =  •  . 

This analysis of the computational algorithms of 
thermal properties of a crystal shows that all these 
properties analytically depend on the energy dispersion 
relation of the charge carriers and the chemical potential  •. 

The problems of calculations of such quantities, that 
the crystals’ thermal and kinetic properties analytically 
depend on them, are described in the work [4]. In this 
work, the methods of calculations of the thermal and 
kinetic properties for 2  and 1  crystals are given. 
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Важливі теплові і кінетичні властивості кристалів та їх розрахунки 
за допомогою потенціалів Гіббса 

Національний університет «Львівська політехніка», м. Львів, Україна, 79013, e-mail:jabudjak@ukr.net 

В даній роботі розраховані важливі теплові і кінетичні характеристики кристалів. Показано, що в 
стані термодинамічної рівноваги теплові властивості кристалів аддитивно складаються із теплових 
властивостей кристалічної ґратки і газу вільних носіїв зарядів в кристалі. Ці теплоти повністю 
описуються відповідними потенціалами Гіббса.У роботі також показано, що коли в провідному кристалі 
створити електричне поле   з напруженістю E

r
, та градієнт температури Trr∇  і помістити  цей кристал в 

магнітне поле з вектором індукції B
r

, то в ньому виникають процеси перенесення електрики і теплоти, які 
описуються  відомими узагальненими рівняннями електропровідності і теплопровідності. Тензори і 
скалярні коефіцієнти, які входять в склад цих рівнянь, це–кінетичні властивості кристалів. Вони 
описують природу їх актуальних властивостей і мають широке прагматичне застосування в сучасній 
твердотілій електроніці. 

Ключові слова: потенціал Гіббса, хімічний потенціал, ентропія системи, рівняння нейтральності. 
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