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In this work, the important therma and kinetic characteristics of crystals are calculated. It was shown that in a
state of thermodynamic equilibrium, the therma properties of crystals are additive, and their vdue for an entire
crystal is calculated by summing the values of thermal properties of the crystal lattice and the properties of the gas of
free charge carriersin a crystal. These properties are fully characterized by the appropriate Gibbs potentials. In this
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work it was also shown that when the dectric field E and temperature gradient NrrT are created in a crystal, and

1
this crystal is placed in the magnetic field with the magnetic inductance vector B, then there the electric charge and
heat transport processes begin to exist in the crystal. These processes are described by the generdized eectric and
heat conduction equations. The tensors and the scalar coefficients in these equations — these are the kinetic properties
of the crystals. They describe the nature of their actual properties and they have widespread and pragmatic

applications in modern solid-state electronics.
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I.  An elementary model of a crystal.
The statistical sum of a crystal

Semiconductor crystals are composed of the
structural particles — these are located within ther
volume, These particles cresate the crystal lattice that it
has a symmetry. The particles are located in points which
are called the lattice sites, and the space between them is
called the interdtitial site. Atoms, ions or molecules can
become the structural particles of a crystal. There is
guantum interaction between the particles and it holds
them in the lattice Sites.

In a crystal can exig the free charge carriers and
these carriers are moving chactically in the crystal
intergtitial site, when the crystal is in the thermodynamic
equilibrium state. In semiconductor crystals, eectrons
with the charge e or positive holes with the charge —e
can be the free charge carriers. A collection of the charge
carriersin the crystal is called the eectron or hole gas, or
caled as the gas of the charge carriers Within
elementary classical theory, the gas of charge carriersin
the thermodynamic equilibrium is treated as an ideal gas.
Therefore, the laws for an idea gas are also applied to
the charge carrier’ s gas.

In the thermodynamic equilibrium state, there is not
any action of forced fields on the crystal, and its
temperature remains constant and the same value in all
its points. It is agreed that in all crystal states its
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structural particles hamonically vibrate around ther
nodes, the directions of these vibrations are varying
chaotically, and the charge carriers gas is moving
chaotically in the interditial sites of the crystal lattice.
Furthermore, one is inclined to think that the system of
structural particles and the system of charge carriers only
weakly interact with each other. In this case, the grand
statistical sum of the crystal Z,, is equal to the product of
two dtatistical sums: the datistical sum of structure
particles £, and the statistical sum of charge carriers gas
E,. Thus &, = EyE,.

Therefore, the crystal as a thermodynamic system, is
composed of two thermodynamic subsystems of
particles. One subsystem — this is the gas of charge
carriers, thisgasis considered to be an idedl. The other —
this a set of structure particles, which harmonically and
chaotically vibrate around nodes of crystal lattice.

Having this model of the crystal, we shall calculate
its statistical sum Z;, which enables us to determinate all
thermodynamic properties of the crystal.

In statistical theory of crystal properties [1-5] it was
shown that thermal characteristics of large
thermodynamic systems are described in terms of the
logarithm of the grand statistical sum. But the logarithm
Ing;, = InE, +InE,. Physicaly, it means that the
thermal properties of the crystal are additive and they add
the thermal characteristics of the crystal lattice to the
thermal characterigtics of the charge carriers gas.

Systemsin a state of thermodynamic equilibrium are
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described by thermodynamic functions (or by
thermodynamic potentials), which explicitly depend on
some independent system’s parameters. Thus, the
thermodynamic functions, as mathematica functions,
will characterise some material properties of the system
in a state of thermodynamic equilibrium.

3. Thefree Hdmholtz energy F

4. The thermodynamic potential (or free Gibbs
energy) G

5. The Gibbs grand thermodynamic potential Q

6. Theentropy S

There are the following important thermodynamic

functions:

1. Thesystem internal energy U
2. Thetherma function (or enthalpy) H

1. U=U(SV,N), U=F+TS,U=H- PV,
2. H=H(SPN), H=U+PV,

3. F=F(TV,N), F=U-TS,

4. G=G(T,P,N), G=F+PV=nN,

5. W=WT,V,m), W=F-G=-PV,

6. S=SU,V,N), s:(U'F%,

aalu 0

7. = - .
Y daT gy

In the above formulas, V is the system volume, p is
the pressure in the volume V, u is the chemica potential
of particlesin the volumeV.

These thermodynamic functions which describe
material properties of a system in equilibrium state are
calculated in statistical theory of thermal and kinetic
properties of real systems. The read systems are
composed of avery large amount of microparticles. For a
limit of large numbers N, this collection of N
microparticles satisfies the central limit theorem of large
numbers. This theorem shows that the statistical laws of
nature, which are based on mathematica probability
theory, act in such systems.

The thermodynamic potentials (thermodynamic
functions) are functions of the independent system’s
macroparameters, which fully describe its state. The
functions belonging here are the system interna energy
U, themal function (or enthalpy) H, free Helmholtz
energy F, thermodynamic potential (or free Gibbs
energy) G, Gibbs grand thermodynamic potential (Q,
entropy S, specific heat capacity C,,. With the use of the
thermodynamic functions (potentials), al
macrocharacteristics of the system can be calculated, and
these potentials provide an explanation for a movement
of physical and chemical processes in this system.
Moreover, with the use of the thermodynamic functions
(potentials) the conditions for equilibrium  of
thermodynamic systems can be established. There are
conditions here, the maximum of a system entropy,
minimum of a system free energy and minimum of the
Gibbs potential. To describe systems with a variable
amount of particles, the chemica potentia u has been
introduced. This is a quantity which defines a change in
energy of a system, when the number of its particles is
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system parameters,
relationships and possess the following total differentias

7. The specific heat capacity C,
These functions are explicite functions of some
they fulfil some mathematical

dU =TdS - PdV + ndN,
dH =TdS +VdP + ndN,

dF =- T - PdV + N,

dG = - T +VdP + nmuN,
dW=- ST - VdP - Ndm

_du P m

dS=—+—dV - —dN,
T T T

D)

increased by one.

The internal energy U — this is the energy of a
thermodynamic system which is a function of its state. It
includes all forms of all particles energies. In the state of
equilibrium, the internal energy U is a total thermal
energy of this system.

The enthalpy H —thisis afunction of its gate which
characterizes a change of the system thermal energy §Q
for isobaric processes (processes occuring a constant
pressure). Thus, under this condition dH = §H.

The free energy of the system F defines the value of
a work 6A for isothermic reversible processes that the
system can do againgt to externa forces. This work is
equal to a change of the system free energy, that it is
taken with the opposite sign, i. e,, 64 = —dF.

The thermodynamic Gibbs potentid G — this is a
function of the state of the thermodynamic system which
characterizes reversble and irreversible isobaric-
isothermal processes in the system. The thermodynamic
Gibbs potential is constant during the reversible
processes and it goes down during the irreversible
processes.

The Gibbs grand thermodynamic potential Q
characterizes the pressure in the thermodynamic system
of particles.

The entropy S —thisisafunction of the Sate, it gives
the posshility to write up the second law of
thermodynamics in a mathematical rigorous way.

The specific heat capacity C,, (per unit volume) is an
important characterigtics of the system, it is the amount
of heat as it should be transferred to the system to raise
its temperature by one degree kelvin. Therefore, the heat
capacity at constant volume of the crystal is given as:
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dau
CV = d_T

In gatigtical physics it was shown [1-5] that all
thermodynamic systems characterized by given above
thermodynamic functions are descibed by the Gibbs
grand canonical distributions Q = —kTIn(Z). Thus, these
thermodynamic functions are expressed in terms of the
Gibbs grand canonica potentia, and they are given here
by the following algorithmic formulas:

2
3
(4)

(5)
(6)
: (")

(8)

PV =-W=KT In(X), 9)

N:-g—g .

(10)

Equation (9) is caled the thermodynamic equation of
a state of the many-particles system, this system has the
volume V' and the particles create the pressure V in its
volume.

Hence, it follow that the problem of calculation of
the thermodynamic functions of the system — this is the
problem of calculation of its grand statistical sum =.

Asit was shown in the works [1-2] and in works [3-
5], the therma properties of the crystal lattice and the
current carriers gas in the crystal are fully described by
the following Gibbs grand potentials, respectively:
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37
=-KTInX :9Nk1aé9 oCIn1- ex =
Wo r( N) qu_go r( p(X))dx

. (11)
é wans o
— keI e 12 o8
e e eTw eT%
¥
W=-KTIn(Xp)=-Vo—— ) ge=
0 ae-mo O
Gexpe =+1+
& éklTg g » (1
¥
=-V gG(e) fo(e)de.

Formula (11) is called the Debye's interpolation
formula. In this formula, the following notations are

used: 6 =hw—:‘“" is the Debye temperature which
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depends on the nature of the crystl,
3 rZ x3

D(Z) =2 Jy oo & s the Debye function, N is

the number of the crystal structure particles.

In formula (12), f,(¢) is the wel-known Fermi-
Dirac distribution function, G(e) = [ g(e)de, g(e) is
the density of states lying in allowed band, ¢ is the
guantum particle energy which depends on its
quasimomentum vector p. The function £(p) is named
the dispersion relation. According to the quantum theory
laws, the exact dispersion relation is a periodic and even
function of the vector . Formulas (11) and (12) are
detailed described in the cited works.

Having the thermodynamic potential Qp, the known
algorithmic formulas of kinetic theory of crystas
properties permit the calculation of all thermodynamic
properties of the crystal lattice, under the condition that
the chemical potentia of phonons is equal to zero
(u = 0). Thus, we have;

ww 6 e
Up =Wp - f—2 3T =3NKTDER-2 (13)
g dT g gTﬂ
%M/DO
i T
] (14
€ a0 &  2eqil
=Up - Fry = NKTADE = 9InCl- exp — =4
oD% " T Tad
é e ne .y
Fo = Wp = 3NKT@3Ing- expis 2% b (15)
e e e Tgg eT
Gp =0, (16)
é e PR
Wp = Fpy = NKT@INGL- expes +22- DAy (17)
e e e Tag eT%
s - .@Wp0 Up-Fp _
D= T= =
aT g T s
é . % FAETAY
= kD 2. 91 ep I &
g elTg e e T%
: :
é ) a
< 3 p
Cyp = 3Nk&DE 2. 0 9
€ eTg & a0 ,0u
& ¢expe_+- 17
€ e eTg ai
€ a8 0 ge q ol
(PV)p =- W = 3NKTEDG = 3InCT- expl: — 7, (20)
gl v o o

The general thermal properties of the crystal are
additively added the thermal properties of the crystal
lattice and therma properties of the free charge carriers
gas. The free charge carriers’ gas — thisis the Fermi gas.
Its thermal properties are fully described by the Gibbs
potential Q (12) and they have the forms:
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WO W0
U=W-6—= m-&—= T=N .2
Samgr ™ ST o eleg(®). ()
@®WO  a@wo d
H=-C—= -C—= T =Ng{—eG , (22
gdmg]-m nggm e<de( (e)> (22)
Faw- 20 nong(m- (6@), @)
edmgr
GZ(?—ILNQ m= Ngm, (24)
edmgr
¥
W=-KTIn(Xp)=-V gG(e) fo(e)de, (25)
@V U-F d o
S=-G—= =—— =Nk —(eG(e)) ) - m= (26
St T egfde( <e>)> (29
alu o
=C——= , 27
Cy SaT gy (27)
PV =-W=KTIn(X,,) = Ne(G(e)), (28)
a&WO
N=-C—= . 29
oy (29)

In the above formulas, the average operator is
denoted by theangle brackets <...>:
_J@©) _ Jg #©fo(e)de

<g@>= =L .
@) [y g@fo(e)de

1. Elements of statistical theory of non-

equilibrium ther modynamics. Kinetic
properties of crystals

In the preceding section, the thermodynamic
properties of systems in a state of thermodynamic
equilibrium were discussed. The necessary equilibrium
conditions for this state are that the temperature and
chemical potential should be constant throughout all
points in the system. If one of these conditions does not
hold, then there are nonequilibrium processes in this
system. These processes bring the system into
thermodynamic equilibrium state. A crystal in
equilibrium state (as a thermodynamic system) can be
removed from equilibrium by the action of the dectric
fieldE, chemical potential gradient V.u, or temperature
gradient V:Tin the crystal. These fidds may exist
simultaneoudly in the crystal. In the presence of these
there are the fluxes of mass, energy and charge. They are
described by the first and second laws of nonequilibrium
thermodynamics:

dUg

dt
I — (the first law of nonequilibrium
thermodynamics);

I~ .
dSe _ 181 aNIT O
—_—— J - e
da T

r rr
=-divg+ JE

T g
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Il — (the second law of nonequilibrium
thermodynamics).

In the above laws, J, ¢ are the vectors of the electric
current density and heat flow, and U,, S, arerespectively
the internal energy and entropy of the system.

In statigtical physics it was shown that, when thereis
an increase of the entropy in the thermodynamic system,
the processes of heat and electric charge transport
(processes of heat and eectric conduction) occur.
Conversdly, when the processes of heat and electric
charge transport occur in the system, its entropy inreases.
Thus, we have:

as, 1 o7 qv;T >0
dt _T(] T )=

In nonequilibrium thermodynamics, it was shown

that when the electric field E and temperature gradient
V:T are created in conducting medium, and next place
this crystal in the magnetic field with the magnetic

inductance vector B, then there the dectric charge and
heat transport processes begin to exist in the crystal.
These processes are described by the following
generalized e ectric and heat conduction equations:

1 1\\1 1\\~

i =(sic(BE- (b (B)RFT., (30)

6 = oy B)E - (y (BT (31)

Equations (30) and (31) describe the response of
conducting medium to the action of the dectric field,
temperature gradient and magnetic fidd. The
phenomenological constants in eguations (30), (31)
(0 (B)). (B (B)), (vi (B)), (hy(B)) — these are the
tensors of kinetic coefficients. These tensors describe
numerous matter properties of the conducting medium (i.
e., this crystal). They have the well-known properties of
the Onsager symmetry.

The kinetical properties of the conducting crystals
are determined by the concentration of the free charge
carriers in the crystals and by the character of their
motion throughout the crystal interstitia site.

In equilibrium date, the free charge carriers are
moving chaoctically, their average energy is conserved,
and the entropy of the system of these carriers obtains its
maximum value. Thisis an equilibrium gas of the charge
carriers.

The presence some drift perturbations in the crystal,
that is, the electric field E, the temperature gradient VT
(these perturbations may exist simultaneously in the
crystal), will remove the charge carriers gas out from
equilibrium and turn it into the non-equilibrium particles
ensemble. In this case, the drift force F, will be act on
every particle of charge ze, accordingto [1 - 5]:

r r
Fd - ZeEd y

£,=E- S "X, (32
ezege KT g

where e is the dectron charge, z = +1 is the charge
sign, ¢ is the average energy of the charge carrier, u is
the chemica potentia of the charge carriers, k is the
Boltzmann's constant, T isthe crystal temperature.

As a result of the action of the drift force F,, all
current carriers start to move in a rectilinear way, and
they will have the drift velocity #,. This velocity

depends on the force ﬁd as wedl as the crysta’s
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properties.

The presence of the drift velocity ¥, creates a
particle flow. As it takes place, there is the eectric
charge and heat (energy) transport. Therefore, the
collection of charge carriers in crystals, when there are
drift fields, turns into the grand canonical nonequilibrium
ensemble with the varying amount of particles.

As it was shown in the work [1], taking into
consideration a spin degeneracy, this grand canonical
ensemble is characterized by the following Gibbs grand
canonical potential:

N

} o am+Dmp-ery
W= -2kT4 Inj 1+ exp& ., (3
p T kT ‘Zb

In the above formula, p is the wavevector of the
charge carrier, &; isthe energy dispersion relation of the
charge carriers, and Ay;; is the change in the one particle
chemical potential (free energy per particle) by the action
of these perturbations (these will remove the crystal out
from the equilibrium state). When these perturbations are
absent, A[lﬁ =0.

The values Au; were calculated in the work [4],
where it was shown that Ap; is an odd function of the
vector 3, and it depends on the vector of eectric field E,
temperature gradient V.T and vector of magnetic
inductance B, when the crystal is under these
perturbations.

As it was shown in the cited works, the use of the
thermodynamic potential (33) leads to the following
generalized equations of the édectric and heat
conductions:

E=(r B))i +rB) 48" ]+
g By e[ myr]

r 1 I 1 1 , I
q=bu®»rH%m{B ﬂ-

ry\. rfrr . ,
] (cij (B))\lrrT + S(B)[B’ NrrT]

In the above eguations, the symmetric tensors
(Pij(B)), (aij(B))y (ﬂij(B)), (ij(B)) — these are
respectively, the material tensors of the resigtivity,
Seebeck effect, Peltier effect and thermal conductivity of
the crystal. These tensors should be experimentally
determined or theoretically calculated. They are even
function of the magnetic inductance vector B.

The coefficients R(B) and P(B) — these are the
coefficients of transverse galvanomagnetic Hall and
Ettingshausen effects, and the coefficients N(ﬁ) and
S(ﬁ) are the coefficient of transverse thermomagnetic
Nerngt-Ettigshausen and Righi-Leduc effects. They are
even function of the magnetic inductance vector B, that
is_R(B) = R(~B), P(B)=P(~B), N(B)=N(-B),
S(B) = S(-B).

All these just given tensors and coefficients are
called the kinetic properties of the crystals.

In equations (34), (35), the vector product are
denoted by the square brackets.

(34)

(35)
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The analysis of equations (34), (35) shows that in the
presence of a magnetic fied, an isotropic crysta
becomes anisotropic, and the relativity smple processes
of the eectric and heat conduction will become more
complicated. In this case, the additional transverse
galvanomagndic and thermomagnetic effects there
occur.

The galvanomagnetic effects are produced by the
action of a magnetic field on the omic part of the
electrical current, and the thermomagnetic effect — by the
action of this field on the therma part of the current,
accordingly to the generalized eguations of the electric
conduction (34).

The kinetic tensors and coefficients in eguations
(34), (35) describe the nature of the important kinetic
properties of conducting medium, they are of pragmatic
significance for modern solid-state electronics, where
crystal of different nature are used in the manufacturing.

In the cited works [1-5], it was shown that all kinetic
properties of crystals are calculated with the use the
following main algorithmic functiond:

Yoo A )] @
e 0 ue)! e dip
06KT 3 d (By)

d(Bg) =1+ (u(e) 83)2.

3(.j,Bg.m . T)=

(36)

In the above formula, G(e) = J; g(e)de, g(e) isthe

density of the energy states of charge carriers lying in

. -1
allowed energy bands, f,(e) = (exp(=X) +1) , u(e)
is the scattering function which describes the effect of
scattering processes of the current carriers by the
crystals defects on the crystal kinetic properties (this
scattering function is a non-averaged charge carrier
mobility), B; is the component of the magnetic
inductance vector B in the crystal , which is normal to
vectors E, V.T.

It is clear from the analysis of the main agorithmic
functional (36) that the kinetic properties of the crystal
depend on the energy dispersion relation of the charge
carriers, the scattering function and the chemical

potential u° = &=

This analysis of the computational agorithms of
therma properties of a crystal shows that al these
properties analytically depend on the energy dispersion
relation of the charge carriers and the chemical potential

The problems of calculations of such quantities, that
the crystals therma and kinetic properties analytically
depend on them, are described in the work [4]. In this
work, the methods of calculations of the therma and
kinetic propertiesfor 2D and 1D crystals are given.
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Ba:xkiuBi Ten1oBi i KIHeTHYHI BJIACTHBOCTI KPUCTAJIB Ta IX PO3paxXyHKH
3a 10MOMOrox0 norenuiauais I'iooca

Hayionanvhuil ynieepcumem «/Ivgiscoka norimexuixka», m. JIvsig, Yxpaina, 79013, e-mail: jabudjak@ukr .net

B naniii po0oTi po3paxoBaHi BaXKIMBI TEIUIOBI i KiHETHYHI XapaKTepUCTHKU KpucTaiiB. IToka3aHo, 110 B
CTaHi TEPMOAMHAMIYHOI pPIBHOBark TEIUIOBI BJIACTHBOCTI KPHUCTaliB aJUIMTHBHO CKIAJAIOThCS 13 TEIUIOBHX
BJIaCTHBOCTEH KPUCTANYHOI IPATKM 1 rasy BUIBHMX HOCIiB 3apsniB B kpucram. Lli Temiorn noBHicTO
OIMCYIOThCS BIANOBIJHUMH NOTeHIianaMu [166ca.Y poOoTi Takoxk 1oka3aHo, 10 KOJIM B IPOBIHOMY KpHCTai

1

CTBOPHTH €JIEKTPUYHE ToJie 3 Hampyxenictio E, Ta rpamient temmeparypu Nrr T i nomicrury uel Kpucran B
1
MarHiTHE o€ 3 BEKTOPOM iHayKiii B, To B HbOMy BUHHKAIOTE NPOLIECH TIEPEHECEHHS €IEKTPUKH 1 TEIUIOTH, SIKi
OIMCYIOTbCSA ~ BIJIOMHMH Y3araJbHEHMMM PIBHSHHSAMH €IEKTPONpPOBiAHOCTI 1 TemtonposigHocti. Tensopu i
CKaJSIpHI  KOe(IIieHTH, sIKI BXOAATh B CKJAJ LUX PIBHSIHB, LE—KIHETHMYHI BJIACTUBOCTI KpHCTaiiB. BoHn
OITMCYIOTh TIPHUPOAY IX aKTyaJbHUX BJIACTUBOCTEH i MAlOTh IIMPOKE MparMaTUdHe 3aCTOCYBAHHS B Cy4acHid
TBEPJOTIJIIH €JIeKTPOHiLi.
Kirouosi ciioBa: norenuian [166ca, XiMiyHHI NOTEHIIiAN, €HTPOITiS CHCTEMH, PIBHSHHS HEHTPAIBHOCTI.
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