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The review deals with anaysis of the kinetics of Ostwald ripening of nanodispersed phases in metal adloys
when the growth (dissolution) of the nanoparticles of the reinforcing phase is controlled simultaneously by the
meatrix diffusion, diffusion through the disocation tubes and the rate of the atoms transition through the
interphase boundary (Wagner's mechanism of growth). As a rule, different mechanisms of the nanoparticles
growth (dissolution) are ssimultaneously employed in the process of the particles ripening while the number of the
mechanisms involved in the growth (one, two or three) depends on various factors such as. chemical composition
of the nanodispersed phases, conditions of exploitation (changes in mechanical loads, temperature regimes,
environmental conditions), technological conditions of synthesis, etc. It has been shown that when the growth
(dissolution) of nanoparticles in the Ostwad ripening process is controlled simultaneously with the matrix

diffusion D, and the diffusion coefficient through the dislocations D, , the corresponding function of particles
size digtribution will depend on one parameter x varying within the limits O£ x £1, where x — determines the
relation between the diffusive j, and didocation j; fluxes. In the case when three mechanisms of growth
(dissolution) are involved, the general flux | corresponding to the mass transfer between the particles and the
matrix will consist of three parts j = j, + j4 + J; » where the kinetic component j; is determined by the kinetic
coefficient b . Then the corresponding function of the nanoparticles size distribution will depend on the two
parameters x and y which determine the relationship between the diffusive ( j¢= j, + j, ) and the kinetic flux
(OEx Y£1). The posshility of practical implementation of the proposed mechanisms of growth of

nanoparticles in the Ostwald ripening process can be confirmed or declined by a comparison between the
experimental and theoretical data. As seen from the comparison between some experimental histograms with the

lines built theoretically, the proposed mechanisms of growth of the dispersed phase nanoparticles seem redligtic.
Keywords: nanoparticle, Ostwald ripening, Lifshitz-Slezov-Wagner theory, nanocrystal, cluster, size

distribution function.
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I ntr oduction

A development of new construction materials based
on the metal alloys reinforced with some nanodispersed
phases is becoming more feasible because of recent
advances in the nanotechnologies (NT). NT is a new
interdisciplinary and very promising field, which can
lead to many important applications ranged from new
effective drugs and highly-productive computers to the
‘molecular productions  working on the verticd
principles when a required target nanostructure is being
congtructed from the separate atoms and molecules. It is
especially important that NT can develop, employ and
improve the technological strategies resembling those,
which exist in nature. Thus, the diversity of nature
generates the technological diversity in the methods of
nanostructures (NS) synthesis [1]. Following physical
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methods can be utilized to obtain the composite materials
based on the nanodispersed phases consisting of
nanoparticles (NP) or nanocrystals (NC) or to synthesize
new nanomaterials to be used as the elementary base for
the nanodevices of future: mechanical grinding followed
by compacting of the powders by high pressure and
heating; fast hardening of the melts, some lithographic
methods, and, especialy, the molecular-beam epitaxy
method that can be used to obtain the quantum dots by
the Stranski-Krastanov methods.

No matter which chemica or physical method was
used to obtain NS, the size variation should be kept as
narrow as possible so that the value of dispersion would
be minimal. However, Ostwald ripening (OR) occurring
in such systems can result in some widening of the
particles size range and increasing the dispersion. Thus,
size variety of the NS particles becomes wider and
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imbalanced because of OR, which may lead to partia or
complete deterioration of important physico-chemical
properties of NS. This is an unwanted result of OR in
NS.

According to classical approach, there are three
stages in formation of a new phase: origination of new
phase centres (germs), their independent growth followed
by interlacing and mutual interference between various
germs. The latter stage is aso known asthe late period of
a new phase development or OR [2]. During this phase,
the greater surface curvature particles are dissolving and
gradually disappear because of diffusive transportation of
matter towards the particles with a lesser surface
curvature (Gibbs-Thomson effect). This process causes
continuous increase in the average size of NC. First
general theory of OR was proposed for this diffusive
mass transfer by Lifschitz and Slezov [3, 4]. According
to their theory, the increase in the NC average size is
limited by the coefficient of bulk or matrix diffusion D, .

Then the temporal change in the average size of NC (r)

can be represented as t** while the general particles size
distribution can be described as the Lifschitz-Sezov
function (LS).

Another approach to description of NC growth was
proposed by Wagner [5]. This mechanism is limited by
the rate of chemical reaction controlling formation of
new chemical bonds on the particles surface. According
to this approach, NC growing is controlled by the

kinetics coefficient b ; (r) depends on time as t*?

while the size distribution corresponds to the Wagner
function (W). A combination of the two theories was
developed in [3-5] and this approach is known as the
Lifschitz-Slezov-Wagner theory (LSW). This theory was
also employed to resolve other conjugated problems
related to OR controlled by the diffusion on the grain
edges [6, 7], surface diffusion [8, 9], diffusion inside
didocation tubes [10-14] and some others [15-24]. As
seen from comparison between the LSW data and
experimental results, in some cases this approach can be
satisfactory applied to description of temporal changesin
average size of NC while further improvement of the
theory is needed in some other cases.

Taking into account the above issues, two
approaches (diffusive and Wagner’s mechanisms) were
used simultaneoudy in [25-27] to analyze growing of
NC. This modified LSW mechanism resulted in a better
particles size distribution (GDLSW) [25], which can
embrace awider array of experimental data comparing to
those analyzed in LS and W mechanisms separately.

However, a decderation of dislocations on NC
followed by their fixation will occur in case some free
dislocations are present in the matrix, which generates
some coherent-bonded deposition of the reinforcing
phase. As a result, the mobile didocations can interact
with the dastic stress fieds distributed near NC and
cause the deceleration and fixation. Besides, a difference
in specific volumes of the dispersed deposition and the
matrix also contributes into this process. Then the
diffusion along didocations starts to act as the governing
factor instead of the matrix diffusion. The didocation
diffusion can be represented as a process occurring inside
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the dislocation tubes with section g (b* £q£ 60b?),

where b is Burgers vector.

Then the coherence between NC and the matrix is
further worsening in course of their growing and causes
separation of initially fixed dislocations. Afterwards,
they will move until new capturing and fixation by the
elagtic stress field would occur near another NC that is
gtill coherent with the matrix.

This review deals with results of some theoretical
investigations of OR kinetics related to nanoparticles in
the metal aloys when the reinforcing phase particles
growing process is controlled by disocation-Wagner's
mechanism with next involvement of the matrix
diffusion.

All calculations were made by the modified LSW
theory [25, 27, 28] and using the method described in
[29].

I.  Ostwald ripening under the
dislocation-Wagner’s mechanism of
growing. Wagner -Vengrenovich
distribution

When some free didocations are present in the
matrix, some fine-dispersed depositions will be coherent
bounded with them. Then, the mobile dislocations will
interact with the elastic stress fields appearing near the
fine dispersed depositions of the reinforcing phase
particles because their specific volume differs from that
of the matrix matter. As a result, decderation and
fixation of the depositions on the particles will occur.
According to this mechanism of the particles growth, a
flux of the atoms along the dislocations can be
represented as[10]:

. (C)-C,
Jqa = Dy Zqu ,

D)

where D, - the coefficient of diffusion along the
didocations, Z — the number of didocations across NC
(Z =const ), q—the pipe section area, (C) —the average
bulk  concentration of the diffusng aoms,
C. =C, exp(2su,,/rkT) » C, (1+2su,,/rkT) the
concentration of the solute's atoms on the interphase
with a cluster with radiusr (Thomson formula), C, —the
equilibrium concentration at given temperature T, U, —

the volume of the solute atom.

If growing of a NC is controlled by the did ocation-
Wagner’s mechanism of mass transfer, the tota flux of
the atoms towards (outwards) NC will consist of two
parts[30]:

+is )

where j, can be found from (1) while j, represents the

Wagner’s part of the flux equal to the number of atoms
participating in the process of formation of chemica
bonds on the cluster surface over the unit of time [5]

i =4pr?b((C)- C,),

j:jd
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where b —the kinetics coefficient.

Let us use the continuity equation to determine the
size digribution function f (r,t)

it (r,t)
T+ 4

where £° dr /dt — the rate of growth for a cluster with
radius r . Therate of growth can be found from

d &4 3 b_
a3’ 5
where j istaken from (2).
Having j, and j,, therate of growth can be found
from (5) as

a 1

2

E_4pr

)l -
ﬁ[f(lr,t)>q&]-o,

()

jum '

ng ZZqM+4p r’b ((C)- C, )3 (6)
é s

o] . .
Bu, e 1 -, I, —thecritical radius,

KT grk g
according to the LSW theory it is equal to the average

ragius ((r)).

The growth rate function (6) should be expressed
through the fluxes j, and j [30] in order to find an
analytical form of the function determining cluster sze
distribution with account to the characteristic features of
the Wagner’s (W) [5] and the Vengrenovich's (V) [12]
distributions

where (C)- C, =

lg _ X

0T x (7
where x — a part of the flux j, in the total flux j:
X=]j4/1: @-x) —apart of theflux j, inthetotal flux
j:1- x=j;/]j . Taking into account that expressions (1)
and (3) arevalid for the NC with any radius r , including
those with the maximal size r; [25, 26, 29], the rate of

growth (6) can be written as

ﬂ:iaeii.ugga;-lg, 8)
dt  r & xu® Tan g
where A" =2su’C,b /KT , u=r/r,, or
E:E‘1 +ﬂu3f§l-13, 9)
d g x & g

whereB” =2su?C, ZgD, / pKT .
The formula (8) describes the NC growth rate
depending on the kinetic flux j; (the rate of establishing

new chemical bonds) with (1- x) asa contribution made
by the diffusive part of the total flux (x<2) while the

rate of growth according to (9) is controlled by the
diffusive flux j, with x as a contribution made by the

kinetic flux (x>0).

The ratio r, /r, corresponding to the value of the
locking point u, (u0 =T, /rk) [3] can be found by using
the growth rate formulas (8) and (9). Having defined a
value of u,, the equations (8) and (9) can be integrated
and the temporal dependencies of r, and r, can be
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determined. Thus, the analytical form of the size
distribution function can be obtained by separation of
variables in the continuity equation (4). According to
[29], theratio rg/rk (u,) can befound from

dad
—c—4 =0. 10
vid 0
Then it can be obtained from (10) that
r
Ty _ 2+3x. (11)
o 1+3X

Taking (8) r=r, (u=1) (see (8)) and substituting
ry /1. with its value from (11), after integrating one can
get
2o 2A 2 2K (1+3x) _

¢ @- x)@A+3x) T (1- x)(2+3x)?

The equations (12) represent temporal dependencies
of the maxima r, and critical r, radiuses of NC under
conditions controlled by the kinetic coefficient b with

X asa contribution made by the dislocation diffusion.
If x=0, NC growing is completely controlled by
therate of new chemical bonds establishing [5]

(12)

. 1. r
i =2At, rZ=ZAt, 2=2, (13)
k
Similarly, it can be obtained from (9) that
* * 4
5= 5B , o= 5B (1+3x2 (14)
¢ Xx(1+3x) X(2+3x)

Equation (14) represents the temporal dependencies
of r, and r, under such conditions when the dislocation

diffusion coefficient D, acts as the limiting factor and
(1- x) is a contribution of that part of the total flux,

which is controlled by the rate of establishing of new
chemical bonds on the surface of NC.

If x=1, NC growth is controlled completely by
diffusion of the solute atoms along the dislocation tubes
[10, 12]

4

&0 -
r’=¢2=- B't,
“ &5%

a1

s_5_.
rg——Bt,

r
_Q:E_ (15)
r. 4

Then the NC size distribution function should be
written as a product of two other functions[29]

f(r.t)=j (r;)g%u),
where r, =y (t).
Basing on the mass conservation law for the NC
dispersed phase, we can get

N

(16)

M :gpr gy, (17)
0
and after substitution of (16) into the above equation

i(r)=2,
r

g

(18)

whereQ = 3M / (4pr Qlu3gt(u)du) :

Taking (18) into consideration, the size distribution
function (16) will be written as
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(0 =29, (19)
where

g(u) =Qg¢u), (20)
g(u) —the sought function of relative sizes distribution

describing the NC growth process controlled by both
didocation and Wagne’s mass transfer mechanisms.
Hereafter it is referred to as the Wagner-Vengrenovich
function since the separate distributions corresponding to
each of these two mechanisms were published before by
Wagner [5] and Vengrenovich [12].

The continuity equation (4) with substitution of
f(r,t) and & with ther values from (16) and (18) (or

dgQu) _  4u® +u(3x* - 2x- 1) +ux(9x +6) - 12x° - 4x U

(19)) correspondingly should be used to define function
g%u) . Let us separate the variables in (4) at transtion
from differentiation by r and t to differentiation by u

4u,u? +u - ud—u

Wty _. U gy, (21)

g¢u)
where it has been taken into account that u =&r/A",
u, =8 r/A, du/dr =Yr , du/dr, =- u/r, .
If it was obtained U , Uy and du/du from (8), the
equation (21) can be rewritten as.

uu, - uu

(22)

g¢u)

u(l- u)® @’ +ux(3x- 1) +3ux® + x(3x+ 1y

and then the Wagner-Vengrenovich digtribution (20) will be obtained after integration of the above equation.
The third order polynomial in the denominator of (22) has to be decomposed by u to the simple terms before

equation (22) can be integrated.

u® +u?x(3x- 1) +u3x® + x(3x+1) =(u+b)(u®+cu+d) (23)

where theroot of cubic equation (23) will be calculated by Cardano formula:

b=(ny3)- w

-n, (24)

m=3x"- X, WZ\/- (9/2)+Vz,n :\/- (9/2)- vz, t=3x*+x, q:(2m3/27)- (ms/3) +t, s=3x*,
z=(p/3) +(a/2)’, p:(3s- mz)/3,

and the coefficients are:;
_@HVE | av+Vo

aano
d= s to— Mt o—s +
€2 5 &3 5 &35

g(w+v)2, :§m+w+n . (25)

With account of (23), after integration of (22) up to the constant Q, we can get the Wagner-Vengrenovich

distribution [30]:

g%u) =u° (1- u)® (u+b)® (U* +cu+d)? expaeigexp
&l-up

where,
a = 18x*(b+1)(c+d +1) +11(bc+d)+8(b+c) +14bd +5
(b? +2b+1)(c® +d* +2cd +2c+2d +1)
_ (D°+90+12)x* +(6b- 20° +4)x+4b° - b’
- b(b? - be+d) (b +2b +1)
S _4x(Bx+l) _a-s-b-4
bd ' 2 ’
_ 3
C(b+D(c+d+1)’
e=s(2-b-c)+a(b-1)-w+b(2- c)+29(2- b).
It should be noted that according to (8) and (9), x
cannot be equal to 0 and 1 remaining within the range
O0<x<1.

, b

L@y W

§Jd-c/agg

é
> e-gc
é g9

g\/d- c2/4t

(26)

If X istending to zero (x® 0), s ® 4, a ® 5,
W® -3, b® -1, g® -1, e® 0 and the distribution
(26) isup to the constant Q equivalent to the distribution
Vv [9]

g) =u(l- ) et 39 (27)
1-ug
Otherwise, if x is tending to unit x® 1, for
instance, if x=099999: s »4; a »288889;
b »-1.69341; g »-1.70329; w » -0.29999;

e »-0.78535; b»1.65063; c»0.34937; d » 2.42332
the distribution (26) is up to the constant Q, equivalent

to the digribution V [12]:
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U exp® 030
w P 1-up . expg 0.123xan ™ (0.64647u+0.11293) .
u = L
J (L- u)*®®*(u+1,65063)-*** (u® +0.34937u + 2.42332)" %% (28)
| z=on L ppooa EX (3
1. An evolution of the Wagner - 1-x (1- x)(2+x)
Vengrenovich distribution caused by e 65 6’6
diding of the dislocations (5-3x)(1- %) 5
It is considered that the number of germs fixed on
the surface of NC (2) remains constant throughout the ®68" (5_ 3X)5 g’
germs development processin caseit is controlled by the fo =G ———o——tt . (35)
atoms diffusion along the diffusion tubes. However, the bg(6-3x)°(1- x) 5
coherent conjugation between NC and the matrix is
getting disturbed as the size (radius) of the crystals is Thus, the maximal r, and itical r, radiuses of the

growing. Thus, the fields of elastic stresses near NC will
be weakening causng some fading in the
germ/didocation interaction. This leads to unleashing
and dliding of the didocations. This process runs until the
dliding didocation is captured and fixed again by the
elastic stresses field near another NC. Therefore, Z is not
a congtant and is decreasing with increase in the NC size
inversely tor [31]

1
Z,92
2pr
where Z, — the initial number of dislocations fixed on
the surface of NC with radiusr.

Theflux of matter due to dislocation diffusion j, (1)
with account of (29) can be written as

Z,q" aEdCo

2pr 8ngR .

Applying condition (5), the equation for the flux of
atoms towards a NC maintained by the disocation
diffusion (30) and Wagner’s mechanism of mass transfer
(3) and with account of the ratio between the fluxes (7),
the formula of the NC growing rate can be represented as

dd _ .laseX 1 ooer

Z= (29)

j, =D, 222

d

(30)

— +1 —-1_ 31
dt rgl xu* _9 D)
da __.1 1- x 4oaer 0
E—B r—sg‘t Ut 1 (32)
2l o
where

A" =su?C,b/TR,B" =su?C,Z,q”°D, /4p*RT .
The rate r, /r, for the growth mechanism can be
found from the above expression (31) (or (32))
l, _ 2+4x
E T 1+4x’
and then it can be easily transformed into another

expressions for tempora dependencies of the NC
maximal and critical radiuses

(33)
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nanocrystal can be found from (34) for the growing
conditions controlled by the kinetic coefficient b and x
as a contribution of the dislocation diffusion.

If x=0, the NC growing is completely controlled by
therate of new chemical bonds establishing [5].

rgl

Mo

o 1 ..
ry =2A't, rkf:EAt, =2. (36)

The above equation (35) corresponds to the temporal
dependencies of r, and r, , under conditions controlled
by the dislocation diffusion coefficient D, with (1- x)
as a contribution made by that part of the total flux,
which is limited by the rate of new chemical bonds
formation (chemical reaction) on the surface of NC
(Wagner’ s mechanism).

If x=1, the NC growing is completely controlled by
the solute atoms diffusion along the dislocation tubes
[10, 12]

6

=g, =20y 28 (g
5 ! @6y r, 5
Then the size distribution function
6 (u) =Q g%u), (38)

with Q, =3M / (4pr Qlu3g¢(u)du) should be found. In

order to do that, f(r,t) and & should be substituted in
the continuity eguation (4) with their corresponding
values from (16) and (31) (or (32)). Then the variables
can be separated through transition from differentiation
by r and t todifferentiation by u:

u 1 du
dgqu) —_ 9 U2 u du dU (39)
g®u) w - Y
° u

and taking into account u = &r /4™,
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dg®{u) _ 40 +u* (4x2 - 3x- 1) +u(16x* +8x) - (20x* +5x)
CORS u(1- u)’ (u“ +u® (4x2 - 2x) +U? (4x2 - x) +4ux’ +(4x2 +x))

The fourth order polynomial in denominator of (40) should be decomposed to simple terms in order integrate this
equation. So, the polynomial can be represented as

du. (40)

(u“ +u® (4x2 - 2x) +u? (4x2 - x) + 4ux? +(4x2 + x)) = (u2 +au+ d)(u2 +bu+ p) , (41)
or
(u2 +au+d)(u2 +bu + p) =u*+(a+b)u’+(ab+d+p)u®+(ap+bd)u+dp (42)
Let ustransform (42) into
u* +(a+b)u’+(ab+d+ p)u’ +(ap+bd)u+dp = A&’ + B&* + EG + D, (43)

At=(at+b) @
Bo=(ab+d + p)j

where, , (44)
Eo=(ap+bd) {
D¢=dp b
Thisway, a system of equationsis obtained and the following variables can be determined
_L+n | _L-n _E¢m _E¢Cm R
a==—, b=—, d=— =, p=——, L=4x- 2x, E¢=4x, m=((L?- n?)M - 2LEQ/(2(a- b)),

n3 yJL?- 4H +8J/D¢ M3 2JD¢ DC=4x2+x, H =34x°- x.
The expression 2E¢= LM - m/M? - 4D¢ can be used for verification.
Taking into account the above expression, (40) can be represented as.
dg®{u) _ 4u®+u?(4x* - 3x- 1) +u(16x* +8x)- (20x* +5x) . 45
g®u) u(1- u)z(u2 +au+d)(u2 +bu+ p) o )
Let ustransform (45) into a sum of the simple e ementary fractionsin order to complete itsintegration
dg®{u)  4uP+u®(4x?- 3x- 1) +u(16x +8x)- (20x2+5x)d B
g®u) u(1- u)*(u? +au+d)(u? +bu+ p) .
_Axu Bxdu, Cxdu (Du+E)>du . (Fu+G)>du
u 1-u (- u)2 u’+au+d  u?+bu+p’
where an undefined coefficients method can be employed to find the coefficients A, B, C, D, E, F, G. A system of
equations will be obtained after equating the same u exponent coefficientsin the left and right part numerators:
ijA- B+D+F=-4
I A@+b- 2)+B(- b- @) +C+D(b- 2)+E+F(a- 2+G=0
T A(-2a+ab- 2b+1+p+d)+B(-ab+b- p+a- d)+C(b+a)+
':'+D(p+1- 2b) +E(b- 2)+F(d +1- 2a) +G(a- 2) =-4x% +3x+1
; A-2p- 2ab- 2d +ap+a+do+b) +B(p- ap+d- db+ab)+
1+C(p+ab+d)+D(b- 2p) +E(p+1- 20)+ F(a- 2d) +G(d +1- 28) =0- (47)
7 A(d - 2db+ p+ab+dp- 2ap) +B(ap+db- dp) +C(ap+db) +
]:]+Dp+ E(b- 2p)+Fd+G(a- 2d)=0
j:j Alap- 2dp+db) + Bdp + Cdp+ Ep+Gp = - (16x* +8x)

1 Adp = (20x* +5x).

(46)

An anaytical function for the size distribution will be obtained by integration of (46) up to the constant Q for any
OEXEL:

Us(u2+au+d)D/2(u2+bu+ p)F/Z =C &

9= (1- u)® &l-ugp
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& 0 & 0
CE- Da utd = cG- Fb u+9 bt
exp¢ 2_tant 2_+ expC 2_ant 2+ (48)
Q\/d a’ \/d a® 7 9\/ b’ \/ b® <
AT ao &P 2 P4y

If x is tending to zero (x® 0), a® 0, d® 0, b® 0, p® 0, B»-5, D»-2, F»-2, C»-3, E»0,
G » 0 and the digtribution (48) matches the distribution W [5] up to the congtant Q

g%u) = u(l- u) *expZ > O (49)
8 1-ug

If x istendingtounit x® 1, for ingance x=0.99999, a» 257753, d » 2.39425, b » - 0.57753, p » 2.08834,

B» 273445, D»-3.12433, F »-3.14119, C»-0.20008, E »-4.05171, G » 0.74734 and the distribution (49)
matches the one reported in [31] up to the constant Q

u(u? +2.578u+2.304) " (u? - 0.578u+2.088)

-1571

gqu) = (1_ )2,734
e 029 1u 12890 1u-0.289(j

_eX 0.277tan e 50
oPg p% p% 1416 g (50)

methods.
. . . . In case of the quantum dots (QD) containing
Il. Ostwald ripening of the reinforcing nanocomposites and heterosystems, the diffusion
phase particles controlled by the mechanism of growing control does not act either.

Neither LS nor W theoretical patterns can describe these

matrix diffusion, the diffusion along experimental data. Instead, the generalized Lifschitz-

dislocations and the rate of the Slezov-Wagher (GDLSW) distribution can be used in

inter phase atom transfer. Rate of case of 3-D systems while 2-D systems can be

growth adequately  described  through the generalized
Chakraverty-Wagner (ChW) approach [25, 27, 28, 41,
43, 45).

The diffusion mechanism of the growing during OR
was proposed by Lifschitz and Slezov in their well-
known paper [3]. That is why a term “LSW theory” is
used traditionaly to refer to the theory that represents
growing of particles during OR either according to the
diffusion or to the Wagner’ s mechanism.

It is traditionaly considered that the rate of
interphase transfer of atoms is comparatively high [32-
36] making the diffusion approach to the nanoclusters ) . ; .
(CL) growing more popular and leaving the Wagner's dlslocatlonsqr dlslocatl_ontyb_a
mechanisms beyond regular consideration. This approach When Fh|s m(_achanl.sm isinvolved, the flux of atoms
was used in the majority of theoreticd works dealing ~ @ongthedidocations J; can be represented by (1).

As noted above, the modified LSW theory was
constructed for the case when the particles growth is
controlled by the diffusion (bulk or surface), the rate of
atoms transfer across the interphase or the rate of
chemical reaction simultaneously. However, extra
adaptations should be made in order to apply this theory
to the metal systems where the growth can be controlled
by the disocation diffusion, which runs along separate

with OR while their results were in good agreement with When the growth occurs under the mixed
experiments. didocation-matrix diffusion, this flux can be written as
It should also be noted that a meaning of the term je=j, + iy, (51)

“CL" in many cases is much wider: depending on the  \yhere the matrix diffusion-controlled flux of atoms can

particles  size, they can be refered to a CL,  pe characterized through the bulk diffusion coefficient
nanoclusters or nanocrystals (NC). The Wagner's D, and written as[3, 4]

mechanism is sometimes considered as a chemicd

reaction running on the surface of NC and resulting in i, =D, 4pr? <C> C _ (52)
formation of new interatomic bonds. ! !

Recently, some deviations from the classical LSW In this case, the total flux of the atoms participating
theory were reported in some works dealing with in formation of new bonds can be written in this form:
advances in nanotechnologies. For instance, it has been j=iCrg =0 gt (53)

shown by Sarma and coworkers [37-39] that the In the framework of the Lifschitz-Slezov diffusion
experimental particles size distribution did not match the mechanism of growth [3, 4], it is a priori considered that
theoretical LS pattern while the dependence (r)~t"*  all atoms transported towards CL by the bulk diffusion
was not observed either. It means that the diffusion will be bonded with the particle surface. In other words,
mechanism does not control growing of nanopartides the rate of new interatomic bonds formation is
when the synthesis is performed by the chemical considered high and the structure of the CL material is

quickly developing. In many case this is correct and
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experimental data prove this assumption. However, this
mechanism can act only if the rate of new interatomic
bonds formation is much higher than the rate of diffusion
(physical or chemical). If thisisnot so, only insignificant
number of the atoms deivered to the surface will be
involved in formation of new interatomic bonds or take
part in the chemical transformation. The majority of
atoms will be blocked and accumulated near CL surface.
Then their concentration should be considered. In

general, it is unknown (C,). However, as a first

approximation and to avoid dynamic ingahility, it can be
taken as equa to the mean concentration of atoms

dissolved in the matrix C, =(C).
A particle fixed in the array of atoms blocked near
CL can eventually be moved to the surface by thermal
movement. The flux of such particles per unit of time |,
will be proportional to the blocked atoms concentration
(C), CL surface area (4pr2) (taking that it is a sphere)
and the proportionality coefficient b known as the
kinetic coefficient
j,=b4pr?(C). (54)
Since the rate of new interatomic bonds formation is
comparatively low, not al particles among those
delivered by the flux j, will be involved in the process
and the reversed flux of particles directed away from the
surface j, can berepresented as
j,=b4pr’c, (55)
where C. — the surface or near-surface concentration of

atoms. A difference between these two fluxes shows a
number of atoms involved in formation of new
interatomic bonds per unit of time

i =1 I, =bdpr?((c)-c).

Flux j; isreferred to as kinetic unlike the diffusion
flux j¢ (3).

Therefore, two different fluxes: diffusion j¢ and
kinetic j are bringing the atoms to take part in
formation of new interatomic bonds (53). However, a

contribution of each flux is unknown. Let us denote the
contribution of j, as x and the contribution of j, as y

while j will bethetotal flux
ju jd

X= T ; y= T ; (56)
then the kinetic flux contribution can be written as
1- x-y= % (57)
Taking into account that j¢=xj+y] and

j; =(1- x- y)j, the ratio between the diffusion and
kinetic fluxes will be
j¢_ x+y
G lx-y’
If x=0 and y=0, as seen from (53), the total flux

(58)

can be written as j = j. . This means that the rate of new
interatomic bonds formation controls the growth of CL
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or, in other words, this case represents the extreme
Wagner’s mechanism and the particles size digtribution
should correspond to the theoretical W pattern.

If x=1and y=0,then j=j,:thegrowth of CL is
controlled by the matrix or bulk diffusion — this is the
extreme diffusion mechanism of growth discussed in [3].
In this case, the size didribution corresponds to the
pattern LS.

Finaly, if x=0 and y=1, then j=j,. The
particles growth is controlled by the didocation diffusion
while the size distribution will correspond to the pattern
discussed in [12].

All three parts of (53) will be contributing in the total
flux j if the x and y values are ranged between
O£ x,yE1. Let us find an analytical form of the size
distribution function for this case.

The continuity equation (4) can be used to determine
this function f(r,t). Using the condition (5), we can

represent theflux j through the explicit form of (53)
.(C)-C > C (©)-¢
j=D,4pr? +D,2Zq

+b4pr?((C)- r)
After substituting (54) into (5) and performing some
simple transformations, the growth rate equation can be

obtained in the foll owi ng three forms
3

+
, (59)

& r.; o 0
ﬂ-é o212, (60)
1xy 1-x-yr1-2,erk g
where A:%, s — a gspecific value of the
surface energy, k —the Boltzmann's constant;
dr _B& 1-x-yr r’0aer 0
=== YL, Y 212, (e
dt r X 1, Xrigrn o og
2
where B:m;
KT
dr_C& xr? L1 - r* Ozer
== I i 2
a r yre y gﬂer a
WhereC:C*Lufizq_
p KT

The equation (60) is related to the CL growth rate
controlled mainly by the rate of interatomic bonds
establishing where x is a contribution of the matrix
diffusion and y — a contribution of the diffusion running
along the didocations.

The equation (61) corresponds to the case when the
CL growth rate is controlled mainly by the flux of atoms
maintained by the matrix diffusion. Here y means a
contribution of the flux of atoms running along the
didocations while the kinetic flux contribution
correspondsto 1- x- y.

Similarly, (62) corresponds to the CL growth
governed by the didocation diffusion with y as a
contribution of the matrix diffuson and 1- x- y the

kinetic flux contribution.
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IV. Temporal dependencies for the
maximal r, and critical r, (or mean

(r)) sizes of CL

Thetemporal dependenciesfor r, can be determined
by integration of (60)-(62) and taking r =r,. However,
these operations are possible only if the value of ratio
ry /1. isknown. According to [32], thisratio can be found

from the specific growth rate equation &/r if its

maximum point derivation is zero _diad;g =0
r&r

Performing these transformations and using for example
(60), one can obtain
r
3= w . (63)
r, X+3y+1
Having found the ratio r /r,, we can get after
integration of (60)-(62):
for the prevalent Wagner’ s mechanism
- 2A

re= t; 64
¢ (1- x- y)(x+3y+1) (64

for the prevalent diffusion mechanism
r’= 38 (65)

= ¢ ;

¢ x(x+3y+1)

and for the prevalent diffusion along the dislocation
mechanism

po )
y(x+3y+1)

Then the temporal dependencies of r, can be found

from (63) using (64)-(68)

2 = 2A(x+ 23y +1) . ©7)
(x+3y+2)°(1- x- y)

2

o2 By -
X(x+3y+2)

rkszwt_ (69)
y(x+3y+2)

Equations (64) - (69) can further be used to

determine the values corresponding to the following
extreme approaches.

dgq(u) AU +U (- 2y7 +7yx+ 26 +3y2 +2x- 1)-

u? (6yx+2x2 +2x) +3,1(3y2 +2y+ yx) - 4y(3y+ yx+1)

Wagner’s mechanism (x=0,y=0)

A
ry=2AL, rkZ:Et,[B]; (70)
diffusion mechanism (x=1, y=0)
3 4
r ==Bt,r’=—Bt [9 71
> 5 [9; (71)
dislocation mechanism (x=0, y=1)
5
r::ZCt, f-—Ct [31]. (72)

V. Sizedistribution of the nanoparticles
(clusters)

The CL size distribution function f(r,t) can be
obtained from (4) using one of the growth rate equations,
i.e. (60).

f(r,t):%g(u), (73)

where g(u) istherelative NP size digribution function
u)= u

(o) =Qatv),) (73)

However, gqu) should be found in order to

determine g(u). This can be realized by substitution of

f(r,t) inthe continuity equation with its value from (73)

and substitution of & with its value from (60). Then (4)
should be differentiated by u instead of differentiation
by r and t. Then the variables can be separated in (4)
and it will bewritten as

du
dgdu) | Mg, U (74)
gqu) - u'u, - uu ’

where the dimens onless growth rate
_Lﬂ_é"_ﬁu X 1+ y 10 ge<+3y+2u_12,
Adt & 1-x-yu 1-x-yu' g &x+3y+1

1
(1- x- y)(x+3y+1)

ry dr,
and ug:——
A dt

Substituting u , 3_u and u, into (74), this equation
u

will be transformed into:

du. (75)

ofu)

Ll(l- u)z (u3 +Uu? (4yx- y+X+3y° +X2)+u(3y2 +yx)+y(3y+X+l))

The size digribution of CL can be obtained after decomposition of the third order polynomia in the denominator of
(75) followed by integration of g4(u) up to the constant Q

u-+

u)*® (u+b)b (u2+cu+d) (76)

gu) =u (1-

expgl_ Zexp© € tan?

c

2
Q 2 2
¢l \/d_c
e 4 4

Q kb kO
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the values of the coefficients b, c,d,s,a, b,g,e and
the method of their calculation are given in Appendix 1.
After finding gqu), the valuesof Q, g(u) and f(r,t)
can a so be obtained.

The eguation (76) remains valid for the general case
when al three fluxes j,, j, and j;, are contributing
into the growth (dissolution) process, i.ee O£ x,y£1.

Provided that (76) is correct, the distributions W, LS and
the one reported in [12] should be obtained from this
formula as the extreme cases.

Actualy, if the Wagner’s mechanism is acting
(x® 0 andy® 0), the distribution (76) matches the W

distribution up to the constant Q

gqu) =u(1- u)*

When the extreme diffusion mechanism is acting
(x® 1, y® 0), the digtribution (75) matches the LS

distribution up to a constant
gdu) = (1- u) % (u+2) e -1

Findly, if x® 1, y® 0 and the growth is
controlled by the diffusion running along the dislocation

ae3o

eng (77)

196

(78)

tubes, (76) matches the didtribution reported by
Vengrenovich in [12], section V
® c ©
® 030 u+s -
¢ [ c?
d = =
g 49

gqu) =

(79)
(1- u)* (u+b)" (u2 +cu+d)

V1. Discussion

The Wagner-Vengrenovich theoretica patterns (20)
are shown in Fig. 1a for various values of x taken with
step Dx=0.1.

Separate patternsfor x=0 and x=0.1 are given as
an embedding since they cannot be adequately
represented in the main scale of Fig. la. It can be noted
that the W distribution (27) is smoothly transforming into
the V shape (28).

Same curves being normalized by their maximums
are shown in Fig 1b. These normalized functions are
more suitable for comparison with the corresponding
normalized experimentd histograms.

In order to do that, the experimenta histograms must
be normalized in the same way as the theoretical
patterns. The scale of the horizontal axis should be
changed to the conventional units u=r/r,=d/d,,

where r (d) isaradius (diameter) of NCand r, (d,) is
its maximal value taken from the series of histograms.
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Using thisrescaling, the relative (normalized) diameter u
will be kept within 0 and 1.

The vertical axis represents a number of particles per
unit of diameter taken within some range Dd . This axis
can be normalized by the maximum of histogram in
the similar way. This way, the histograms will be
normalized by unit along both axes. Due to this
operation, the experimental histograms and theoretical
curves can be led to a common scale and then
compared to assess a qualitative similarity between
them. The initiadl and central curvature moments
should be compared for the theoretica and
experimental data arrays to evaluate a degree of their
quantitative similarity.

A comparison between the normalized experimental
histograms and normalized theoretical curves calculated
by (20) is shown in Fig. 2 for different values of x. The
experimental data were obtained for the size distribution
of Al3Sc NC in the binary alloys Al-Sc (0.12 atom % of
Sc) after keeping them at 350 °C during: @) - 2; b)- 5;
c)- 72; d)- 104; €) — 168 hours[45].

The dotted lines correspond to the W (x=0) and V
(x=1) digributions.

Besides, for comparison purposes, the LS
distribution [78] calculated up to the integration constant
is aso shown as a separate dotted line.

The solid line represents the Wagner-Vengrenovich
distribution (20) for the corresponding values of x. As
seen from the Fig. 2, neither W nor V distributions are in
agreement with the experimental hisograms. The LS
distribution seems more suitable for that and, at some
values of x, the Wagner-Vengrenovich distribution can
be used as well. However, it can be noted that the latter
distribution (20) is in a better agreement with the
experimental data than the Lifschitz-Slezov approach.

A digtribution (38) is represented by the curves in
Fig. 3a. This case shows a system with a variable Z that
is decreasing with increase in the NC size reversaly tor.
The curves are calculated for different values of x taken
with astep Dx=0.1. The curves corresponding to x =0,
x=0.1 and x=0.2 are shown in a separate embedding
since they cannot be adequately presented in the main
figure scale.

Same curves are presented
normalization by their maximums.

A comparison between the experimental histograms
(Fig. 2) and the theoretical distributions (38) are shown
in Fig. 4 for various values of x. The dotted lines mean
the W distribution (x=0), distribution (38) (x=1) and
LS distribution.

It can be seen that the theoretical data are in good
agreement with the digtribution (38) at x=0.3 and
Xx=0.4. However, it can be concluded that an agreement
between the Wagner-Vengrenovich distribution (20) and
experimental datais better than that for the distribution

in Fig. 3b after
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Fig. 1. The Wagner-Vengrenovich distribution curves (20) calculated with the gep Dx=0.1 — (a).
Same curves but normalized by their respecting maximums — (b).
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Fig. 2. A comparison of the experimental histograms of the NC Al,Sc size distribution [45] with the Wagner-
Vengrenovich distribution (20) (solid line), for themal treatment of Al-Sc aloy (0.12 atom % Sc) at 350°C
during: a) - 2; b) - 5; ¢) - 72; d) - 104; €) - 168 hours.
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(38)incase Z* const . mechanism depends on the bulk diffusion coefficient
A Kkinetics of OR of nanodisperse phases of the metal D, , another one — on the coefficient of diffusion running

dloys becomes much more complicated if al three 4 ong the dislocation tubes D, and the last one — on the
mechanisms are involved in the mass transfer from the

matrix towards a NP or back (Fig. 2), (the one rate of atoms transportation across the interphase (kinetic

016
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Fig. 4. A comparison between the experimental histograms shown in Fig. 2 with the (38) distribution (solid line).
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Fig. 6. A comparison between the curve (73*) with the experimental histograms of the NC Ni,Al size
distributionsin the alloys CuNi, Al during their thermal treatment at 450 °C during a) — 24; b) — 96;
¢) — 380 hours [47].

coefficient b )). In this case, al kinetic characteristics of
the nanodisperse systems including the NC sze
distribution function become dependent on two
parameters — x and y (see (61) — (69), (73*), (76)). A
series of the theoretical curves calculated by the formula
g(u) =Qgqu) with gqu) taken from (76) is shown in
Fig. 5aand b for afixed value of x and various values of

y. Thevalue x = 0.3 meansthat the matrix diffusion flux
contributes 30 % to the total flux j. The range of y
changesislimited by the conditions

i0EX y£E1

|
,O£x+y£1, (80)
meaning that if x = 0.3, y would change within [0, 0.7].
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Fig. 7. A comparison of the theoretical curve (73*) with the size distribution of the Al,Li NP (d ¢-phase) in the

Al-Li aloyswith different content of Li after thermal treatment at 225°C during: a) — 36 (2.1 atom % Li ); b) —
96; c) — 240; d) — 36 (2.45 atom % Li ) hours[47].

For instance, a linefor y=0.4 (Fig. 5a) corresponds to
the following contributions into the total flux j: j, —
30 %; j, —409%; j; —30%. Thus, thetheoretical curves
in Fig. 5a correspond to the particle size distributions
involving al three fluxes j,, j, and j,. Same curves

after normalization by their maximums are given in Fig.
5b.
Finally, the whole series of the theoretical curves

calculated according to the distribution g(u) =Qg¢u)
for al possible values of x and Yy is shown in

Appendix 2. A comparison between experimenta
histograms and the theoretical curves corresponding to
different values of x and y is given in Fig. 6. Both

experimental and theoretical results are normalized by
their respective maximums along both axes. The
histograms in Fig. 6 represent the Ni,Al particle size
distribution for the alloy CuNiAl, after processing at
450 °C during a) — 24; b) — 96; ¢) — 380 hours[46]. It can
be noted that the particles size has decreased from 10 to
30 nm during this thermal treatment. The dotted lines
represent various size distributions (W, LS and V) while
the solid one shows the theoretical digribution
corresponding to the values of x and y indicated in the
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figure.

As seen from Fig. 6, none of the W, LS or V
distributions is in agreement with the experimental
histograms. The closest agreement can be found for the
theoretical digribution proposed in this paper (73*). In
this case, the growth of Ni,Al NP will be controlled by
the Wagner's mechanism based on the rate of the
interphase atoms transfer.

In case of the histograms related to the Al-Li
systems, the proposed theoretical distribution is in a
satisfactory agreement with the experimental data (see
Fig. 7 a, b, ¢). The theoretical curve (solid line) is
compared with the experimenta size distributions
obtained for the AlsLi NP (d¢-phase of the Al-Li alloys
containing 2.1 atom % of Li). An aging of the aloys took

place at 225 °C during a) — 36 ((d) ~41 nm); b) — 96
({d) ~60 nm); c) — 240 ({d)~83 nm) hours [47]. It is
interesting to note that the LS distribution shows the best
agreement with the experiment for shortest treatment
time (36 h) (Fig. 7 @). It means that initially, the process
of CL growing is controlled mainly by the matrix or bulk
diffusion. As treatment time is increasing, the Wagner’s

mechanism becomes more and more influential (Fig.7 b,
C).
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A histogram of d¢-phase for the Al-Li alloys with
increased content of Li (up to 2.45 atom %) is given in
Fig. 7 d. Therma treatment of these dloys was
performed at 225 °C during 36 hours. According to [47],
no significant change in the mean size of the d ¢-phase
particles (45 nm vs 41 nm) was registered for increase in
the Li atom % from 2.21 to 2.25. However, the
mechanism of the AlsLi NP growth changes: the LS
curve can be applied to the 7 a case but cannot —to the 7
d case. The theoretical distribution (73*) with respective
x and y values should be applied to the latter system.

Therefore, we can state that the theoretical size
distribution proposed in this paper can be adequately
applied to a wide variety of experimental histograms for
the alloys CuNi Al, and Al-Li (more examples cannot
be discussed here due to the article size limitations). It
means that the mechanism describing growth of CL
involving al three fluxes j,, j, and j,, can in fact be
applied to real systems while the calculated sze
distribution (73*) should be used for comparison with
some experimental histograms in order to determine
possible mechanisms of the nanoparticles growth
process.

Conclusions

As seen from some features of OR of the
nanodispersed phases occurring in the metal aloys, an
amount of the growth mechanisms and their nature
provide a significant influence on the ripening kinetics. It
has been found that if two mechanisms of growth
controlled by the coefficients D, and D, corresponding

to the diffusion fluxes j,, j, areinvolved, the NP size

digtribution function depends on the adjustment
coefficient x used to fit theoretical distributions to each

given set of experimental data.

When three growth mechanisms are involved (the
two above mechanisms and the interphase kinetic flux
ji), the analysis becomes much more complicated. In

this case, the size distribution functions falls into
dependence on two parameters X and y. On one hand,
such comparison between experiment and theoretical
calculations becomes more difficult, on the other — a
theoretical curve corresponding to the experimental
histograms can be found with more accuracy. As seen
from the comparison between the experimental and
theoretical size distributions, the NP growth mechanisms
andyzed in this paper seem quite feasible during the
process of Ostwald ripening.
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Ostwald Ripening of Nanodispersed Phasesin Meta Alloys (review)

P.JI. Beurpenosuy, b.B. IBancekuii, M.O. Cracuk, C.B. fIpema, A.B. Mockainok,
B.1. Kpusenpkuii, [.B. decis

OcTBaJIBAIBCHKE 103PIBAHHA HAHOAMCIIEPCHUX (a3 B MeTaJIeBUX CIIABAX
(orssin)

Yepniseyvkuil Hayionanvhull yhisepcumem im. FO. @eovrosuua, 58012, Yeprisyi, Vkpaina, e-mail: office@chnu.edu.ua

B orisini mpoesieHo aHami3 KiIHETUKM OCTBAJIBAIBCHKOTO JIO3PIBaHHS HAHOMUCHEPCHHX (pa3 B MeTaleBHX
CIUIaBax, 3a YMOBH, IO picT (PO3YMHEHHS) HAHOYACTHHOK 3MIIHIOIOYOI (ha3u KOHTPOIIOETHCS OJHOYACHO
MaTpH4HOIO 1H(Yy3iero, AUQy3i€l0 B3IOBX AUCIOKAliHHMX TPyOOK 1 MIBHAKICTIO IEpeXoxy aTOMIB dYepes
Mik(a3Hy IpaHULIO PO3ALNY (BarHepiBCHKUH MeXaHi3M pocCTy). BcTaHOBIIEHO, IO 3arajbHOI0 3aKOHOMIiPHICTIO
Pi3HMX MeXaHi3MiB pOCTy (PO3YMHEHHS) HAHOYACTHUHOK B IIPOLIEC JO3piBaHHS € IX He MOOAMHOKA Iis, a
onHouacHa. KibKicTh 3a/1issHUX MexaHi3MiB pocty (O/HH, [1Ba, TPH) 3aJ€XKHUTh BiJ Oaratbox (hakTopiB, 30KpeMa:
XiMIYHOIO CKJIaly HAaHOAUCIIEPCHOI (ha3u, YMOB EKCIUTyaTallii (3MiHH MEXaHIYHUX HABAHTAXXCHb, TEMIICPATYPHHX
PEXKHMIB, 30BHIIIHBOIO CEPEIOBHINA), TEXHOJONIYHHX YMOB CHHTE3y TOIIO. IlOoKa3aHOo, LI0O KOJH picT
(pO3uMHEHHS) HAHOYACTHHOK B MPOLECi OCTBAIBIIBCBKOIO 03PIBaHHS KOHTPOJIKOETHCS  OJHOYACHO
koedinienToM MaTpuyHoi 1udysii Oy, i koedinienTom auy3ii B3IOBK JUCIOKALiH Dd , TO BIIOBiTHA (DYHKIIis
PO3MOATY YaCTHHOK 3a pO3MipaMH 3aJI€XKHUTh BiJI OZHOrO mapamerpy X, sSIKMH 3MiHIOeThesl B Mexax OF£ X£1,
Ie X — BHU3HAyae CIIiBBiAHOMICHHS MDK DudysiifHuM |, i aucrnokamiifinuM j, morokamu. Y BHITJKy, KOJIH

OJIHOYACHO JIIOTh TPU MEXaHI3MH pocTy (PO3YMHEHHs), 3arajlbHUi NOTIK | , SIKWiA BiJOBifae MacooOMiHy Mix

YaCTHHKAMH 1 MATpPHIEI0, CKIAJA€ThCs i3 TPHOX YACTHH: | = jy + ] da* ji’ Ie KiHeTHYHa CKIagoBa |,

BH3HAYAETHCS KIHETHYHMM Koediientom b . Toxi BimmoBinHa GyHKIisS po3oaily HAHOYACTHHOK 3a PO3MipaMu
3aJIOKUTh BiJl ABOX MapaMeTpiB X 1 Y, siki BH3Ha4aroTh criBBigHOwIeHHs MiX mudysiiaam (j¢= j, +j,) i
kinermunuM |, notokamu (O£ X, y £1). Moxumsicts peamizanii Ha NPakTHII IPONOHOBAHHX MEXaHI3MiB

pPOCTY HAHOYACTUHOK B IPOLECI OCTBAIBAIBCBKOIO A03piBaHHA MOXKe OyTH IiATBEp/XeHa abo CHPOCTOBAaHA
HIJIAIXOM HOpiBHﬂHHﬂ CKCIICPUMCHTAJIBHUX i TCOPECTUYHUX NaHUX. HpI/IBeZ[eHi B OFJ'[?IZ[i pe3yibTaTn CITIBCTaBJIEHD
CKCIICPUMCHTAJIbHUX FiCTOFpaM 3 TEOPETHYHO pO3paxOBaHUMU KpPUBHMU BKa3ylOTb Ha peaJ'liCTI/I'-IHiCTB
IIPOTIOHOBAHUX MEXaHi3MiB YKPYITHEHHS HAHOYAaCTHHOK JJUCIIEPCHUX (ha3 B IIPOLEC] 03piBaHHS.

KarwdoBi ciioBa: HaHOUacTWHKA, OCTBalbIiBCbKe no3piBanHs, Teopis Jlipmmuma-Cnbo30Ba-
Barnepa, HaHOKpHCTAJI, KJIacTep, QYHKINS PO3IOALTY 32 PO3MipaMH.
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Appendix 1

Let us decompose the third order polynomial in the denominator of (75) by u
u® +u? (4yx- y+x+3y° + x2) +u(3y2 + yx) +y(3y+x+1) = (u+b)(u? +cu+d), (A1)
where theroot of cubic equation (A1) ca culated by Cardano formulas:

m
b=—-w-n, A2
3 (A2)
z:aepo all :3S'm2 and coefficients
€35 822!
2 aew+no aaN+no aemo
c=—=m+w+n, d= =m+ +— (w n)?. (A3)
3 $2 5 %3 5 %35

After decomposition to the simple terms, the equation (75) can be rewritten as
dg‘I(U):s_+ a , w b gute
gfu) u 1-u (1- u)2 u+b u?+cu+d

Then the coefficients s, a, w, b, g, e should be defined before integration of (A4). Let us reduce all termsin

the right part of (A4) to a common denominator and then equate all coefficients at the terms with corresponding
ordersof u in the numerators of (75) and (A4). Asaresult, a system of equations will be obtained for determination
of the coefficients values:

ig+b+s-a=-4

s (c+b- 2)+a(1- b- c)+w+b(c- 2)+g(b- 2)+e =0

's (bc- 2c+d- 20+1)+g(c+b- be- d)+w(c+b)+b (d- 2c+1)+g(1- 20)+

i+e(1- 2b) =k,

I's (b- 2d +c- 2bc+bd)+a (bc- bd +d)+w(bc+d) +b (c- 2d)+gb+e(1- 2b) =k,

I's (be- 2bd) +abd +wbd + bd +eb=- k;

fsbd =k,
where k, =2y- 7yx- 2x* - 3y? +1- 2x, k, =6yx+2x° +2x, k, =9y’ +6y +3yx, k, =4y +4yx+12y°.

Having resolved (A5), the following expressions can be obtained:

(A4)

. (A9)

_k,
S =
bd '
_ky(d+2bd- 1+b0) +k,(bd - c- b- ) +ky(d +2D+2c+3+be)
(2b+1+b*)(1+d +¢)*
, Ki(-2d- 3c- 3- 4- bd - 2bc) - 4(3bc+4bd +3d +2¢+2b+1)
(2b+1+b*)(1+d +c)?

bk, +k, +4b° +b%k, - b’k
b(- 2b%c+2bd +d +b?d +b* - bc+b? +2b° - b’c) ’
3
(b+1)@1+d+c)’
_ dky(d - be- 2bd - d%) +dk,(b+dc+2d - bd) +dky(2c- be- 2b- d+¢®+1) |
2d(2dc+c? +2c+2d +1+d?)(b? - bc+d)
+k4(c3- 2d +c- b+bd - 2bc +2¢? - 2dc- bc?) +4d(2bdc? - dc? - 2d2c- 2bdc+bc® +bd%c+d? - d®- 2bd?)
2d(2dc+c? +2c+2d +1+d?)(b” - bc+d)
d?k (dc- bd +2d +b) +d?k,(d +bc- 2c- ¢ +2b- 1) +dk,(2d - c®- bd +2dc- 2¢* +bc® +b- ¢+ 2hbc) +
(2dc+c? +2c+2d +1+d?)d(b® - bc+d)
k,(c(3dc- c- ¢ +b+bc? +2bc+4d - 2¢? - 2bd) +d(- 2b- d +1)) +4d*(bd - 2bdc+dc- bd? - bc? +2d?)
(2dc+c? +2c+2d +1+d?)d(b® - bc+d)

b =-

e=-
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Fig. 1. A2. Thewhole series of the theoretical curves calculated according to the distribution (73*)

for all possible values of x and 'y
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