
PHYSICS AND CHEMISTRY OF SOLID STATE  ФІЗИКА І ХІМІЯ ТВЕРДОГО ТІЛА 
V. 20, № 2 (2019) P. 101-119 Т. 20, № 2 (2019) С. 101-119 
DOI: 10.15330/pcss.20.2.101-119 

101 

UDK: 608.3 SSN 1729-4428 

R.D. Vengrenovich, B.V. Ivanskii, M.O. Stasyk, S.V. Yarema, A.V. Moskaliuk, 
I.I. Panko, V.I. Kryvetskyi, I.V. Fesiv 

Ostwald Ripening of Nanodispersed Phases in Metal Alloys (review) 

Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine, e-mail: office@chnu.edu.ua 

The review deals with analysis of the kinetics of Ostwald ripening of nanodispersed phases in metal alloys 
when the growth (dissolution) of the nanoparticles of the reinforcing phase is controlled simultaneously by the 
matrix diffusion, diffusion through the dislocation tubes and the rate of the atoms transition through the 
interphase boundary (Wagner's mechanism of growth). As a rule, different mechanisms of the nanoparticles 
growth (dissolution) are simultaneously employed in the process of the particles ripening while the number of the 
mechanisms involved in the growth (one, two or three) depends on various factors such as: chemical composition 
of the nanodispersed phases, conditions of exploitation (changes in mechanical loads, temperature regimes, 
environmental conditions), technological conditions of synthesis, etc. It has been shown that when the growth 
(dissolution) of nanoparticles in the Ostwald ripening process is controlled simultaneously with the matrix 
diffusion Dυ  and the diffusion coefficient through the dislocations dD , the corresponding function of particles 
size distribution will depend on one parameter x  varying within the limits 0 1x≤ ≤ , where x – determines the 
relation between the diffusive jυ  and dislocation dj  fluxes. In the case when three mechanisms of growth 
(dissolution) are involved, the general flux j  corresponding to the mass transfer between the particles and the 

matrix will consist of three parts d ij j j jυ= + + , where the kinetic component ij  is determined by the kinetic 
coefficient β . Then the corresponding function of the nanoparticles size distribution will depend on the two 
parameters x  and y  which determine the relationship between the diffusive ( dj j jυ′ = + ) and the kinetic flux 

( 0 , 1x y≤ ≤ ). The possibility of practical implementation of the proposed mechanisms of growth of 
nanoparticles in the Ostwald ripening process can be confirmed or declined by a comparison between the 
experimental and theoretical data. As seen from the comparison between some experimental histograms with the 
lines built theoretically, the proposed mechanisms of growth of the dispersed phase nanoparticles seem realistic. 

Keywords: nanoparticle, Ostwald ripening, Lifshitz-Slezov-Wagner theory, nanocrystal, cluster, size 
distribution function. 
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Introduction 

A development of new construction materials based 
on the metal alloys reinforced with some nanodispersed 
phases is becoming more feasible because of recent 
advances in the nanotechnologies (NT). NT is a new 
interdisciplinary and very promising field, which can 
lead to many important applications ranged from new 
effective drugs and highly-productive computers to the 
‘molecular productions’ working on the vertical 
principles when a required target nanostructure is being 
constructed from the separate atoms and molecules. It is 
especially important that NT can develop, employ and 
improve the technological strategies resembling those, 
which exist in nature. Thus, the diversity of nature 
generates the technological diversity in the methods of 
nanostructures (NS) synthesis [1]. Following physical 

methods can be utilized to obtain the composite materials 
based on the nanodispersed phases consisting of 
nanoparticles (NP) or nanocrystals (NC) or to synthesize 
new nanomaterials to be used as the elementary base for 
the nanodevices of future: mechanical grinding followed 
by compacting of the powders by high pressure and 
heating; fast hardening of the melts; some lithographic 
methods, and, especially, the molecular-beam epitaxy 
method that can be used to obtain the quantum dots by 
the Stranski-Krastanov methods. 

No matter which chemical or physical method was 
used to obtain NS, the size variation should be kept as 
narrow as possible so that the value of dispersion would 
be minimal. However, Ostwald ripening (OR) occurring 
in such systems can result in some widening of the 
particles size range and increasing the dispersion. Thus, 
size variety of the NS particles becomes wider and 
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imbalanced because of OR, which may lead to partial or 
complete deterioration of important physico-chemical 
properties of NS. This is an unwanted result of OR in 
NS. 

According to classical approach, there are three 
stages in formation of a new phase: origination of new 
phase centres (germs), their independent growth followed 
by interlacing and mutual interference between various 
germs. The latter stage is also known as the late period of 
a new phase development or OR [2]. During this phase, 
the greater surface curvature particles are dissolving and 
gradually disappear because of diffusive transportation of 
matter towards the particles with a lesser surface 
curvature (Gibbs-Thomson effect). This process causes 
continuous increase in the average size of NC. First 
general theory of OR was proposed for this diffusive 
mass transfer by Lifschitz and Slezov [3, 4]. According 
to their theory, the increase in the NC average size is 
limited by the coefficient of bulk or matrix diffusion Dυ . 
Then the temporal change in the average size of NC r  

can be represented as 1 3t  while the general particles size 
distribution can be described as the Lifschitz-Slezov 
function (LS).  

Another approach to description of NC growth was 
proposed by Wagner [5]. This mechanism is limited by 
the rate of chemical reaction controlling formation of 
new chemical bonds on the particles surface. According 
to this approach, NC growing is controlled by the 
kinetics coefficient β ; r  depends on time as 1 2t  
while the size distribution corresponds to the Wagner 
function (W). A combination of the two theories was 
developed in [3-5] and this approach is known as the 
Lifschitz-Slezov-Wagner theory (LSW). This theory was 
also employed to resolve other conjugated problems 
related to OR controlled by the diffusion on the grain 
edges [6, 7], surface diffusion [8, 9], diffusion inside 
dislocation tubes [10-14] and some others [15-24]. As 
seen from comparison between the LSW data and 
experimental results, in some cases this approach can be 
satisfactory applied to description of temporal changes in 
average size of NC while further improvement of the 
theory is needed in some other cases.  

Taking into account the above issues, two 
approaches (diffusive and Wagner’s mechanisms) were 
used simultaneously in [25-27] to analyze growing of 
NC. This modified LSW mechanism resulted in a better 
particles size distribution (GDLSW) [25], which can 
embrace a wider array of experimental data comparing to 
those analyzed in LS and W mechanisms separately.  

However, a deceleration of dislocations on NC 
followed by their fixation will occur in case some free 
dislocations are present in the matrix, which generates 
some coherent-bonded deposition of the reinforcing 
phase. As a result, the mobile dislocations can interact 
with the elastic stress fields distributed near NC and 
cause the deceleration and fixation. Besides, a difference 
in specific volumes of the dispersed deposition and the 
matrix also contributes into this process. Then the 
diffusion along dislocations starts to act as the governing 
factor instead of the matrix diffusion. The dislocation 
diffusion can be represented as a process occurring inside 

the dislocation tubes with section q ( 2 260b q b≤ ≤ ), 
where b  is Burgers vector.  

Then the coherence between NC and the matrix is 
further worsening in course of their growing and causes 
separation of initially fixed dislocations. Afterwards, 
they will move until new capturing and fixation by the 
elastic stress field would occur near another NC that is 
still coherent with the matrix.  

This review deals with results of some theoretical 
investigations of OR kinetics related to nanoparticles in 
the metal alloys when the reinforcing phase particles 
growing process is controlled by dislocation-Wagner’s 
mechanism with next involvement of the matrix 
diffusion.  

All calculations were made by the modified LSW 
theory [25, 27, 28] and using the method described in 
[29]. 

I. Ostwald ripening under the 
dislocation-Wagner’s mechanism of 
growing. Wagner-Vengrenovich 
distribution 

When some free dislocations are present in the 
matrix, some fine-dispersed depositions will be coherent 
bounded with them. Then, the mobile dislocations will 
interact with the elastic stress fields appearing near the 
fine dispersed depositions of the reinforcing phase 
particles because their specific volume differs from that 
of the matrix matter. As a result, deceleration and 
fixation of the depositions on the particles will occur. 
According to this mechanism of the particles growth, a 
flux of the atoms along the dislocations can be 
represented as [10]: 

 2 r
d d

C C
j D Zq

r
−

= , (1) 

where dD  – the coefficient of diffusion along the 
dislocations, Z  – the number of dislocations across NC 
( Z const= ), q – the pipe section area, C  – the average 
bulk concentration of the diffusing atoms, 

( ) ( )exp 2 1 2r m mC C rkT C rkTσυ συ∞ ∞= ≈ +  – the 
concentration of the solute’s atoms on the interphase 
with a cluster with radius r (Thomson formula), C∞  – the 
equilibrium concentration at given temperature T, mυ  – 
the volume of the solute atom.  

If growing of a NC is controlled by the dislocation-
Wagner’s mechanism of mass transfer, the total flux of 
the atoms towards (outwards) NC will consist of two 
parts [30]: 
 j j jid= + , (2) 

where dj  can be found from (1) while ij  represents the 
Wagner’s part of the flux equal to the number of atoms 
participating in the process of formation of chemical 
bonds on the cluster surface over the unit of time [5]  
 ( )24i rj r C Cπ β= − , (3) 
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where β  – the kinetics coefficient. 
Let us use the continuity equation to determine the 

size distribution function ( , )f r t   

 [ ]( , ) ( , ) 0f r t f r t r
t r

∂ ∂
+ ⋅ =

∂ ∂
& , (4) 

where /r dr dt≡&  – the rate of growth for a cluster with 
radius r . The rate of growth can be found from 

 34
3 m

d r j
dt

π υ  = 
 

,  (5) 

where j  is taken from (2). 
Having dj  and ij , the rate of growth can be found 

from (5) as 
( ) ( )2

2

1 2 4
4

r
d r

C Cdr D Zq r C C
dt rr

π β
π

 −
= + − 

  
, (6) 

where 
2 1 1m

r
k

C C
kT r r
συ  

− = − 
 

, kr  – the critical radius, 

according to the LSW theory it is equal to the average 
radius ( )r . 

The growth rate function (6) should be expressed 
through the fluxes dj  and ij  [30] in order to find an 
analytical form of the function determining cluster size 
distribution with account to the characteristic features of 
the Wagner’s (W) [5] and the Vengrenovich’s (V) [12] 
distributions  

 
1

d

i

j x
j x

=
−

, (7) 

where x  – a part of the flux dj  in the total flux j : 

dx j j= ; (1 )x−  – a part of the flux ij  in the total flux 
j :1 ix j j− = . Taking into account that expressions (1) 

and (3) are valid for the NC with any radius r , including 
those with the maximal size gr  [25, 26, 29], the rate of 
growth (6) can be written as 

 3

1 1 1
1 k

dr A x r
dt r x ru

∗   = + −  −  
, (8) 

where 22 mA C kTσυ β∗
∞= , / gu r r= , or  

 3
4

11 1
k

dr B x ru
dt x rr

∗  − = + −  
  

, (9) 

where 22 /m dB C ZqD kTσυ π∗
∞= . 

The formula (8) describes the NC growth rate 
depending on the kinetic flux ij  (the rate of establishing 
new chemical bonds) with (1 )x−  as a contribution made 
by the diffusive part of the total flux ( 1)x <  while the 
rate of growth according to (9) is controlled by the 
diffusive flux dj  with x  as a contribution made by the 
kinetic flux ( 0)x > . 

The ratio g kr r  corresponding to the value of the 

locking point 0u ( )0 /g ku r r=  [3] can be found by using 
the growth rate formulas (8) and (9). Having defined a 
value of 0u , the equations (8) and (9) can be integrated 
and the temporal dependencies of gr  and kr  can be 

determined. Thus, the analytical form of the size 
distribution function can be obtained by separation of 
variables in the continuity equation (4). According to 
[29], the ratio g kr r  0( )u  can be found from  

 0
gr r

d r
dr r =

  = 
 

&
. (10) 

Then it can be obtained from (10) that 

 2 3
1 3

g

k

r x
r x

+
=

+
.  (11) 

Taking (8) ( 1)gr r u= =  (see (8)) and substituting 

g kr r  with its value from (11), after integrating one can 
get 

2 2
(1 )(1 3 )g

Ar t
x x

∗

=
− +

, 2
2

2 (1 3 )
(1 )(2 3 )k

A xr t
x x

∗ +
=

− +
.  (12) 

The equations (12) represent temporal dependencies 
of the maximal gr  and critical kr  radiuses of NC under 
conditions controlled by the kinetic coefficient β  with 
x  as a contribution made by the dislocation diffusion.  

If 0x = , NC growing is completely controlled by 
the rate of new chemical bonds establishing [5] 

2 2gr A t∗= , 2 1
2kr A t∗= , 2g

k

r
r

= .          (13) 

Similarly, it can be obtained from (9) that 
5 5

(1 3 )g
Br t

x x

∗

=
+

,  
4

5
5

5 (1 3 )
(2 3 )k

B xr t
x x

∗ +
=

+
.      (14) 

Equation (14) represents the temporal dependencies 
of gr  and kr  under such conditions when the dislocation 
diffusion coefficient dD  acts as the limiting factor and 

( )1 x−  is a contribution of that part of the total flux, 
which is controlled by the rate of establishing of new 
chemical bonds on the surface of NC.  

If 1x = , NC growth is controlled completely by 
diffusion of the solute atoms along the dislocation tubes 
[10, 12] 

5 5
4gr B t∗= , 

4
5 4

5kr B t∗ =  
 

, 5
4

g

k

r
r

= .  (15) 

Then the NC size distribution function should be 
written as a product of two other functions [29] 
  ( , ) ( ) ( )gf r t r g uϕ ′= , (16) 

where ( ).gr tψ=  
Basing on the mass conservation law for the NC 

dispersed phase, we can get 

 3

0

4 ( , )
3

gr

M r f r t drπρ= ∫ ,  (17) 

and after substitution of (16) into the above equation 

 4( )g
g

Qr
r

ϕ = , (18) 

where
1 3

0
3 / (4 ( ) )Q M u g u duπρ ′= ∫ . 

Taking (18) into consideration, the size distribution 
function (16) will be written as 
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 4

1( , ) ( )
g

f r t g u
r

= , (19) 

where 
 ( ) ( )g u Qg u′= , (20) 

( )g u  – the sought function of relative sizes distribution 
describing the NC growth process controlled by both 
dislocation and Wagner’s mass transfer mechanisms. 
Hereafter it is referred to as the Wagner-Vengrenovich 
function since the separate distributions corresponding to 
each of these two mechanisms were published before by 
Wagner [5] and Vengrenovich [12].  

The continuity equation (4) with substitution of 
( , )f r t  and r&  with their values from (16) and (18) (or 

(19)) correspondingly should be used to define function 
( )g u′ . Let us separate the variables in (4) at transition 

from differentiation by r  and t  to differentiation by u  

 
2

3

4( )
( )

g

g

du udg u du du
g u u u

υυ υ

υ υ

+ −′
= −

′ −
, (21) 

where it has been taken into account that rr Aυ ∗= & , 

g gr r Aυ ∗= & , 1 gdu dr r= , g gdu dr u r= − . 

If it was obtained υ , gυ  and d duυ  from (8), the 
equation (21) can be rewritten as: 

 

 

 
5 3 2 2

2 3 2 2

( ) 4 (3 2 1) (9 6) 12 4
( ) (1 ) (3 1) 3 (3 1)

dg u u u x x ux x x x du
g u u u u u x x ux x x

′ + − − + + − −
= −

′  − + − + + + 
, (22) 

and then the Wagner-Vengrenovich distribution (20) will be obtained after integration of the above equation. 
The third order polynomial in the denominator of (22) has to be decomposed by u to the simple terms before 

equation (22) can be integrated.  

 
3 2 2(3 1) 3 (3 1)u u x x u x x x+ − + + + 2( )( )u b u cu d= + + + , (23) 

where the root of cubic equation (23) will be calculated by Cardano formula: 
 ( )3b wµ ν= − − , (24) 

23x xµ = − ,  ( )2w q z= − + , ( )2q zν = − − , 23t x x= + , ( ) ( )32 27 3q s tµ µ= − + , 23s x= , 

( ) ( )3 33 2z p q= + , ( )23 / 3p s µ= − , 
and the coefficients are: 

 
( )

2 2
23

2 3 3 4
w v w vd w vµ

µ
+ +     = + + + +     

     
, 2

3
c wµ ν= + + . (25) 

With account of (23), after integration of (22) up to the constant Q , we can get the Wagner-Vengrenovich 
distribution [30]: 

 2 1

2 2

2( ) (1 ) ( ) ( ) exp exp tan
1 4 4

c u cg u u u u b u cu d
u d c d c

σ α β γ ω ε γ− −
  − +    ′ = − + + +    −    − −  

, (26) 

 

 
where, 

2

2 2 2

18 ( 1)( 1) 11( ) 8( ) 14 5
( 2 1)( 2 2 2 1)

x b c d bc d b c bd
b b c d cd c d

α
+ + + + + + + + +

=
+ + + + + + +

, 
3 2 3 5 3

2 2

(3 9 12) (6 2 4) 4
( )( 2 1)

b b x b b x b b
b b bc d b b

β
+ + + − + + −

=
− + + +

, 

4 (3 1)x x
bd

σ
+

= , 4
2

α σ β
γ

− − −
= , 

3
( 1)( 1)b c d

ω = −
+ + +

, 

(2 ) ( 1) (2 ) 2 (2 )b c b c bε σ α ω β γ= − − + − − + − + − . 
It should be noted that according to (8) and (9), x  

cannot be equal to 0 and 1 remaining within the range 
0 1x< < . 

If x  is tending to zero ( )0x → , 4σ → , 5α → , 
3ω → − , 1β → − , 1γ → − , 0ε →  and the distribution 

(26) is up to the constant Q  equivalent to the distribution 
V [5] 

 5 3( ) (1 ) exp
1

g u u u
u

−  ′ = − − − 
. (27) 

Otherwise, if x  is tending to unit 1x → , for 
instance, if 0.99999x = : 4σ ≈ ; 2.88889α ≈ ; 

1.69341β ≈ − ; 1.70329γ ≈ − ; 0.29999ω ≈ − ; 
0.78535ε ≈ − ; 1.65063b ≈ ; 0.34937c ≈ ; 2.42332d ≈  

the distribution (26) is up to the constant Q , equivalent 
to the distribution V [12]: 
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( )

4
1

2.88889 1.69341 2 1.70329

0,3exp exp 0.123 tan 0.64647 0.112931( )
(1 ) ( 1,65063) ( 0.34937 2.42332)

u uug u
u u u u

−
 −   − ⋅ +−   ′ = ×

− + + +
, (28) 

 

 

II. An evolution of the Wagner-
Vengrenovich distribution caused by 
sliding of the dislocations 

It is considered that the number of germs fixed on 
the surface of NC (Z) remains constant throughout the 
germs development process in case it is controlled by the 
atoms diffusion along the diffusion tubes. However, the 
coherent conjugation between NC and the matrix is 
getting disturbed as the size (radius) of the crystals is 
growing. Thus, the fields of elastic stresses near NC will 
be weakening causing some fading in the 
germ/dislocation interaction. This leads to unleashing 
and sliding of the dislocations. This process runs until the 
sliding dislocation is captured and fixed again by the 
elastic stresses field near another NC. Therefore, Z is not 
a constant and is decreasing with increase in the NC size 
inversely to r [31] 

 

1
2

0q
2
Z

Z
rπ

= , (29) 

where 0Z  – the initial number of dislocations fixed on 
the surface of NC with radius r.  

The flux of matter due to dislocation diffusion dj  (1) 
with account of (29) can be written as 

 
1 2

0q
2

2d d
R r

Z dCj D q
r dRπ =

 =  
 

. (30) 

Applying condition (5), the equation for the flux of 
atoms towards a NC maintained by the dislocation 
diffusion (30) and Wagner’s mechanism of mass transfer 
(3) and with account of the ratio between the fluxes (7), 
the formula of the NC growing rate can be represented as 

 **
4

1 1 1 1
1

dr x rА
dt r x ru κ

  = + −  −  
,  (31) 

 ** 4
5

1 11 1dr x rB u
dt x rr κ

 − = + −  
  

, (32) 

where 
** 2

mA С Rσυ β∞= Τ , ** 2 3/ 2 2
0 4m dB C Z q D Rσυ π∞= Τ . 

The rate 
1 1g kr r  for the growth mechanism can be 

found from the above expression (31) (or (32)) 

 1

1

2 4
1 4

g

k

r x
r x

+
=

+
,  (33) 

and then it can be easily transformed into another 
expressions for temporal dependencies of the NC 
maximal and critical radiuses 

1

2 **
22

1g
tr A
x

=
−

, 
( )( )1

2 **
2

12
1 2

k
xr A t

x x
+

=
− +

, (34) 

( )( )1

1/6**6 ,
5 3 1g

Br t
x x

 
=   − −   

 

 
( )

( ) ( )1

1/65**

6

6 5 3

6 3 1

B x
r t

x x
κ

 −
 =
 − − 

. (35) 

 
Thus, the maximal 

1gr  and critical 
1kr  radiuses of the 

nanocrystal can be found from (34) for the growing 
conditions controlled by the kinetic coefficient β  and x  
as a contribution of the dislocation diffusion.  

If 0x = , the NC growing is completely controlled by 
the rate of new chemical bonds establishing [5].  

 

1

2 **2gr A t= , 
1

2 **1
2kr A t= , 1

1

2g

k

r
r

= .         (36) 

 
The above equation (35) corresponds to the temporal 

dependencies of 
1gr  and 

1kr , under conditions controlled 

by the dislocation diffusion coefficient dD  with ( )1 x−  
as a contribution made by that part of the total flux, 
which is limited by the rate of new chemical bonds 
formation (chemical reaction) on the surface of NC 
(Wagner’s mechanism).  

If 1x = , the NC growing is completely controlled by 
the solute atoms diffusion along the dislocation tubes 
[10, 12] 

1

6 **6 ,
5gr B t=  

1

5
6 **5 ,

6
r B tκ

 =  
 

 1

1

6
5

g

k

r
r

= .          (37) 

Then the size distribution function 
 

 ( ) ( )1 1g u Q g u′′= ⋅ ,  (38) 
 

with 
1 3

1 0
3 / (4 ( ) )Q M u g u duπρ ′′= ∫  should be found. In 

order to do that, ( , )f r t  and r&  should be substituted in 
the continuity equation (4) with their corresponding 
values from (16) and (31) (or (32)). Then the variables 
can be separated through transition from differentiation 
by r  and t  to differentiation by u : 

 
2

14( ) ,
( )

g

g

d
dg u duu u du
g u u

u

υ υυ

υ
υ

+ −′′
= −

′′ −
 (39) 

and taking into account **
1 ,r r Аυ = &  
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 ( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( )( )

6 4 2 2 2

2 4 3 2 2 2 2 2

4 4 3 1 16 8 20 5
.

1 4 2 4 4 4

u u x x u x x x xdg u
du

g u u u u u x x u x x ux x x

+ − − + + − +′′
= −

′′ − + − + − + + +
 (40) 

The fourth order polynomial in denominator of (40) should be decomposed to simple terms in order integrate this 
equation. So, the polynomial can be represented as  
 ( ) ( ) ( )( ) ( ) ( )4 3 2 2 2 2 2 2 24 2 4 4 4u u x x u x x ux x x u au d u bu p+ − + − + + + = + + + + , (41) 

or 
 ( ) ( ) ( ) ( ) ( )2 2 4 3 2u au d u bu p u a b u ab d p u ap bd u dp+ + + + = + + + + + + + +  (42) 

Let us transform (42) into 
 ( ) ( ) ( )4 3 2 3 2u a b u ab d p u ap bd u dp A u B u E u D′ ′ ′ ′+ + + + + + + + = + + + , (43) 

where, 

( )
( )
( )

A a b

B ab d p

E ap bd
D dp

′ = + 


′ = + + 


′ = + 
′ = 

, (44) 

This way, a system of equations is obtained and the following variables can be determined 

,
2

L na +
=  ,

2
L nb −

=  ,
2

E md
b

′ +
=

2
E mp

a
′ −

= , 24 2L x x= − , 24E x′ = , ( )( ) ( )( )2 2 2 2 ,m L n LE a b′= − Μ − −  

2 4 8 ,n L H D′≥ − +  2 ,D′Μ ≥  24D x x′ = + , 234H x x= − . 

The expression 22 4E L n D′ ′= Μ − Μ −  can be used for verification. 
Taking into account the above expression, (40) can be represented as: 

 ( )
( )

( ) ( ) ( )
( ) ( ) ( )

6 4 2 2 2

2 2 2

4 4 3 1 16 8 20 5

1

u u x x u x x x xdg u
du

g u u u u au d u bu p

+ − − + + − +′′
= −

′′ − + + + +
. (45) 

Let us transform (45) into a sum of the simple elementary fractions in order to complete its integration 

( )
( )

( ) ( ) ( )
( ) ( )( )

6 4 2 2 2

2 2 2

4 4 3 1 16 8 20 5

1

u u x x u x x x xdg u
du

g u u u u au d u bu p

+ − − + + − +′′
= − =

′′ − + + + +
 

 
( )

( ) ( )
2 2 2 ,

1 1

Du E du Fu G duA du B du C du
u u u au d u bu pu

+ ⋅ + ⋅⋅ ⋅ ⋅
= + + + +

− + + + +−
 (46) 

where an undefined coefficients method can be employed to find the coefficients , , , , , ,A B C D E F G . A system of 
equations will be obtained after equating the same u  exponent coefficients in the left and right part numerators:  

 

2

4
( 2) (1 ) ( 2) ( 2) 0
( 2 2 1 ) ( ) ( )

( 1 2 ) ( 2) ( 1 2 ) ( 2) 4 3 1
( 2 2 2 ) ( )

( ) ( 2 ) ( 1 2

А В D F
A a b B b a C D b E F a G
A a ab b p d B ab b p a d C b a

D p b E b F d a G a x x
A p ab d ap a db b B p ap d db ab
C p ab d D b p E p

− + + = −
+ − + − − + + − + + − + =

− + − + + + + − + − + − + + +

+ + − + − + + − + − = − + +
− − − + + + + + − + − + +

+ + + + − + + −

( )
( )

2

2

) ( 2 ) ( 1 2 ) 0
( 2 2 ) ( ) ( )

( 2 ) ( 2 ) 0

( 2 ) 16 8

20 5 .

b F a d G d a
A d db p ab dp ap B ap db dp C ap db

Dp E b p Fd G a d

A ap dp db Bdp Cdp Ep Gp x x

Adp x x









 + − + + − =


− + + + − + + − + + +
+ + − + + − =
 − + + + + + = − +

 = +

. (47) 

 
An analytical function for the size distribution will be obtained by integration of (46) up to the constant Q  for any 

0 1x≤ ≤ : 

( ) ( )
( )

/2 / 25 2 2

( ) exp
11

D F

B

u u au d u bu p Cg u
uu

+ + + +  ′′ = × − −
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 1 1

2 2 2 2
2 2 2 2exp tan exp tan

4 4 4 4

Da a Fb bE u G u

a a b bd d p p

− −

   
   − + − +
   × ×
   
   − − − −
   

, (48) 

If x  is tending to zero ( )0x → , 0a → , 0d → , 0b → , 0p → , 5B ≈ − , 2D ≈ − , 2F ≈ − , 3C ≈ − , 0E ≈ , 
0G ≈  and the distribution (48) matches the distribution W [5] up to the constant Q  

 5 3( ) (1 ) exp
1

g u u u
u

−  ′′ = − − − 
. (49) 

If x  is tending to unit 1x → , for instance 0.99999x = , 2.57753a ≈ , 2.39425d ≈ , 0.57753b ≈ − , 2.08834p ≈ , 
2.73445B ≈ , 3.12433D ≈ − , 3.14119F ≈ − , 0.20008C ≈ − , 4.05171E ≈ − , 0.74734G ≈  and the distribution (49) 

matches the one reported in [31] up to the constant Q  

( )
( ) ( )

( )

1.562 1.5715 2 2

2,734

2.578 2.394 0.578 2.088

1

u u u u u
g u

u

− −
+ + − +

′′ = ×
−

 

 1 10.2 1.289 0.289exp exp 0.277 tan exp 0.11tan
1 0.856 1.416

u u
u

− −+ −     × − − −     −     
. (50) 

 

III. Ostwald ripening of the reinforcing 
phase particles controlled by the 
matrix diffusion, the diffusion along 
dislocations and the rate of the 
interphase atom transfer. Rate of 
growth 

The diffusion mechanism of the growing during OR 
was proposed by Lifschitz and Slezov in their well-
known paper [3]. That is why a term “LSW theory” is 
used traditionally to refer to the theory that represents 
growing of particles during OR either according to the 
diffusion or to the Wagner’s mechanism.  

It is traditionally considered that the rate of 
interphase transfer of atoms is comparatively high [32-
36] making the diffusion approach to the nanoclusters 
(CL) growing more popular and leaving the Wagner’s 
mechanisms beyond regular consideration. This approach 
was used in the majority of theoretical works dealing 
with OR while their results were in good agreement with 
experiments.  

It should also be noted that a meaning of the term 
“CL” in many cases is much wider: depending on the 
particles’ size, they can be referred to as CL, 
nanoclusters or nanocrystals (NC). The Wagner’s 
mechanism is sometimes considered as a chemical 
reaction running on the surface of NC and resulting in 
formation of new interatomic bonds.  

Recently, some deviations from the classical LSW 
theory were reported in some works dealing with 
advances in nanotechnologies. For instance, it has been 
shown by Sarma and coworkers [37-39] that the 
experimental particles size distribution did not match the 
theoretical LS pattern while the dependence r ~ 1 3t  
was not observed either. It means that the diffusion 
mechanism does not control growing of nanoparticles 
when the synthesis is performed by the chemical 

methods.  
In case of the quantum dots (QD) containing 

nanocomposites and heterosystems, the diffusion 
mechanism of growing control does not act either. 
Neither LS nor W theoretical patterns can describe these 
experimental data. Instead, the generalized Lifschitz-
Slezov-Wagner (GDLSW) distribution can be used in 
case of 3-D systems while 2-D systems can be 
adequately described through the generalized 
Chakraverty-Wagner (ChW) approach [25, 27, 28, 41, 
43, 45].  

As noted above, the modified LSW theory was 
constructed for the case when the particles growth is 
controlled by the diffusion (bulk or surface), the rate of 
atoms transfer across the interphase or the rate of 
chemical reaction simultaneously. However, extra 
adaptations should be made in order to apply this theory 
to the metal systems where the growth can be controlled 
by the dislocation diffusion, which runs along separate 
dislocations or dislocation tubes. 

When this mechanism is involved, the flux of atoms 
along the dislocations dj  can be represented by (1). 

When the growth occurs under the mixed 
dislocation-matrix diffusion, this flux can be written as 
 dj j jυ′ = + , (51)  
where the matrix diffusion-controlled flux of atoms can 
be characterized through the bulk diffusion coefficient 
Dυ  and written as [3, 4] 

 24 rC C
j D r

rυ υ π
−

= .  (52) 

In this case, the total flux of the atoms participating 
in formation of new bonds can be written in this form: 
 i d ij j j j j jυ′= + = + + . (53) 

In the framework of the Lifschitz-Slezov diffusion 
mechanism of growth [3, 4], it is a priori considered that 
all atoms transported towards CL by the bulk diffusion 
will be bonded with the particle surface. In other words, 
the rate of new interatomic bonds formation is 
considered high and the structure of the CL material is 
quickly developing. In many case this is correct and 
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experimental data prove this assumption. However, this 
mechanism can act only if the rate of new interatomic 
bonds formation is much higher than the rate of diffusion 
(physical or chemical). If this is not so, only insignificant 
number of the atoms delivered to the surface will be 
involved in formation of new interatomic bonds or take 
part in the chemical transformation. The majority of 
atoms will be blocked and accumulated near CL surface.  

Then their concentration should be considered. In 
general, it is unknown ( )xC . However, as a first 
approximation and to avoid dynamic instability, it can be 
taken as equal to the mean concentration of atoms 
dissolved in the matrix xC C= . 

A particle fixed in the array of atoms blocked near 
CL can eventually be moved to the surface by thermal 
movement. The flux of such particles per unit of time dj  
will be proportional to the blocked atoms concentration 

C , CL surface area ( )24 rπ  (taking that it is a sphere) 
and the proportionality coefficient β  known as the 
kinetic coefficient 
 2

1 4j r Cβ π= . (54) 
Since the rate of new interatomic bonds formation is 

comparatively low, not all particles among those 
delivered by the flux 1j  will be involved in the process 
and the reversed flux of particles directed away from the 
surface 2j  can be represented as 
 2

2 4 rj r Cβ π= ,  (55) 
where rC  – the surface or near-surface concentration of 
atoms. A difference between these two fluxes shows a 
number of atoms involved in formation of new 
interatomic bonds per unit of time 

( )2
1 2 4i rj j j r C Cβ π= − = − . 

Flux ij  is referred to as kinetic unlike the diffusion 
flux j′  (3). 

Therefore, two different fluxes: diffusion j′  and 
kinetic ij  are bringing the atoms to take part in 
formation of new interatomic bonds (53). However, a 
contribution of each flux is unknown. Let us denote the 
contribution of jυ  as x  and the contribution of dj  as y  
while j  will be the total flux 

j
x

j
υ= ,   djy

j
= ,       (56) 

then the kinetic flux contribution can be written as 

 1 ijx y
j

− − = . (57) 

Taking into account that j xj yj′ = +  and 

( )1ij x y j= − − , the ratio between the diffusion and 
kinetic fluxes will be  

 
1i

j x y
j x y
′ +

=
− −

. (58) 

If 0x =  and 0y = , as seen from (53), the total flux 
can be written as ij j= . This means that the rate of new 
interatomic bonds formation controls the growth of CL 

or, in other words, this case represents the extreme 
Wagner’s mechanism and the particles size distribution 
should correspond to the theoretical W pattern.  

If 1x =  and 0y = , then j jυ= : the growth of CL is 
controlled by the matrix or bulk diffusion – this is the 
extreme diffusion mechanism of growth discussed in [3]. 
In this case, the size distribution corresponds to the 
pattern LS. 

Finally, if 0x =  and 1y = , then dj j= . The 
particles growth is controlled by the dislocation diffusion 
while the size distribution will correspond to the pattern 
discussed in [12]. 

All three parts of (53) will be contributing in the total 
flux j  if the x and y values are ranged between 
0 , 1x y≤ ≤ . Let us find an analytical form of the size 
distribution function for this case. 

The continuity equation (4) can be used to determine 
this function ( ),f r t . Using the condition (5), we can 
represent the flux j  through the explicit form of (53) 

 
( )

2

2

4 2

4

r r
d

r

C C C C
j D r D Zq

r r
r C C

υ π

β π

− −
= + +

+ −
, (59) 

After substituting (54) into (5) and performing some 
simple transformations, the growth rate equation can be 
obtained in the following three forms 

 
3

31 1
1 1

g g

k

r rdr A x y r
dt r x y r x y rr

  
= + + −   − − − −   

, (60) 

where 
22 mC

A
kT
βσυ∞= , σ  – a specific value of the 

surface energy, k  – the Boltzmann’s constant; 

 
2

2 2

11 1g

g k

rdr B x y r y r
dt x r x rr r

  − −
= + + −     

, (61) 

where 
22 mC D

B
kT

υσυ∞= ; 

 
2 3

4 2 3

11 1
kg g

dr C x r x y r r
dt y y rr r r

  − −
= + + −     

, (62) 

where 
2

d mC D Zq
C

kT
συ

π
∞= . 

The equation (60) is related to the CL growth rate 
controlled mainly by the rate of interatomic bonds 
establishing where x  is a contribution of the matrix 
diffusion and y  – a contribution of the diffusion running 
along the dislocations.  

The equation (61) corresponds to the case when the 
CL growth rate is controlled mainly by the flux of atoms 
maintained by the matrix diffusion. Here y  means a 
contribution of the flux of atoms running along the 
dislocations while the kinetic flux contribution 
corresponds to 1 x y− − . 

Similarly, (62) corresponds to the CL growth 
governed by the dislocation diffusion with y  as a 
contribution of the matrix diffusion and 1 x y− −  the 
kinetic flux contribution. 
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IV. Temporal dependencies for the 
maximal gr  and critical kr  (or mean 

r ) sizes of CL 

The temporal dependencies for gr  can be determined 
by integration of (60)-(62) and taking gr r= . However, 
these operations are possible only if the value of ratio 

/g kr r  is known. According to [32], this ratio can be found 
from the specific growth rate equation /r r&  if its 

maximum point derivation is zero – 0
gr r

d r
dr r =

  = 
 

&
. 

Performing these transformations and using for example 
(60), one can obtain  

 3 2
3 1

g

k

r x y
r x y

+ +
=

+ +
. (63) 

Having found the ratio /g kr r , we can get after 
integration of (60)-(62): 

for the prevalent Wagner’s mechanism  

 
( )( )

2 2
1 3 1g

Ar t
x y x y

=
− − + +

; (64) 

for the prevalent diffusion mechanism 

 
( )

3 3
3 1g
Br t

x x y
=

+ +
; (65) 

and for the prevalent diffusion along the dislocation 
mechanism  

 
( )

5 5
3 1g
Cr t

y x y
=

+ +
. (66) 

Then the temporal dependencies of kr  can be found 
from (63) using (64)-(68) 

 
( )

( ) ( )
2

2

2 3 1

3 2 1
k

A x y
r t

x y x y

+ +
=

+ + − −
,  (67) 

 ( )
( )

2
3

3

3 3 1

3 2
k

B x y
r t

x x y

+ +
=

+ +
,  (68) 

 
( )

( )
5

5

5 3 1

3 2
k

C x y
r t

y x y

+ +
=

+ +
. (69) 

Equations (64) - (69) can further be used to 
determine the values corresponding to the following 
extreme approaches: 

Wagner’s mechanism ( 0x = , 0y = ) 

2 22 ,
2g k
Ar At r t= = , [8];            (70) 

diffusion mechanism ( 1x = , 0y = ) 

3 3
2gr Bt= , 3 4

9kr Bt=  [9];          (71) 

dislocation mechanism ( 0x = , 1y = ) 

5 5
4gr Ct= , 

4
5

4

4
5kr Ct=  [31].          (72) 

V. Size distribution of the nanoparticles 
(clusters) 

The CL size distribution function ( , )f r t  can be 
obtained from (4) using one of the growth rate equations, 
i.e. (60).  

 ( ) ( )4

1,
g

f r t g u
r

= , (73) 

where ( )g u  is the relative NP size distribution function  

( ( ) ( )g u Qg u′= ).                      (73*) 
However, ( )g u′  should be found in order to 

determine ( )g u . This can be realized by substitution of 
( , )f r t  in the continuity equation with its value from (73) 

and substitution of r&  with its value from (60). Then (4) 
should be differentiated by u  instead of differentiation 
by r  and t . Then the variables can be separated in (4) 
and it will be written as  

 
( )
( )

2

3

4 g

g

du udg u du du
g u u u

υυ υ

υ υ

− +′
= −

′ −
,  (74) 

where the dimensionless growth rate 

3

1 1 3 21 1 ,
1 1 3 1

r dr x y x y u
A dt x y u x y x yu

υ
   + +

= = + + × −   − − − − + +   
 

and 
( )( )

1
1 3 1

g g
g

r dr
A dt x y x y

υ = =
− − + +

. 

Substituting υ , d
du
υ  and gυ  into (74), this equation 

will be transformed into: 
 

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

5 3 2 2 2 2 2 2

2 3 2 2 2 2

4 2 7 2 3 2 1 6 2 2 3 3 2 4 3 1

1 4 3 3 3 1

u u y yx x y x u yx x x u y y yx y y yxdg u
du

g u u u u u yx y x y x u y yx y y x

+ − + + + + − − + + + + + − + +′
= −

′ − + − + + + + + + + +
.   (75) 

The size distribution of CL can be obtained after decomposition of the third order polynomial in the denominator of 
(75) followed by integration of ( )g u′  up to the constant Q  

 ( ) ( ) ( ) ( )21g u u u u b u cu d
γα βσ −′ = − + + + 1

2 2
2exp exp tan

1
4 4

cuc
u c cd d

ω ε γ −

 
 +−   ×    − 
 − −
 

, (76) 
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the values of the coefficients , , , , , , ,b c d σ α β γ ε  and 
the method of their calculation are given in Appendix 1. 
After finding ( )g u′ , the values of Q , ( )g u  and ( , )f r t  
can also be obtained. 

The equation (76) remains valid for the general case 
when all three fluxes jυ , dj  and ,ij  are contributing 
into the growth (dissolution) process, i.e. 0 , 1x y≤ ≤ . 
Provided that (76) is correct, the distributions W, LS and 
the one reported in [12] should be obtained from this 
formula as the extreme cases. 

Actually, if the Wagner’s mechanism is acting 
( 0x →  and 0y → ), the distribution (76) matches the W 
distribution up to the constant Q  

 ( ) ( ) 5 31 exp
1

g u u u
u

−  ′ = − − − 
. (77) 

When the extreme diffusion mechanism is acting 
( 1x → , 0y → ), the distribution (75) matches the LS 
distribution up to a constant  

 ( ) ( ) ( )
7112 3 3 11 2 exp

1
g u u u u

u
− −  ′ = − + − − 

. (78) 

Finally, if 1x → , 0y →  and the growth is 
controlled by the diffusion running along the dislocation 
tubes, (76) matches the distribution reported by 
Vengrenovich in [12], section V 

( )
( ) ( ) ( )

4 1

2

2

0.3 2exp exp 0.123tan
1

4
1

cu
u

u cd
g u

u u b u cu d
γα β

−

 
 +   − −   − 

− 
 ′ =

− + + +
. (79) 

VI. Discussion 

The Wagner-Vengrenovich theoretical patterns (20) 
are shown in Fig. 1a for various values of х taken with 
step 0.1x∆ = . 

Separate patterns for 0x =  and 0.1x =  are given as 
an embedding since they cannot be adequately 
represented in the main scale of Fig. 1a. It can be noted 
that the W distribution (27) is smoothly transforming into 
the V shape (28). 

Same curves being normalized by their maximums 
are shown in Fig 1b. These normalized functions are 
more suitable for comparison with the corresponding 
normalized experimental histograms. 

In order to do that, the experimental histograms must 
be normalized in the same way as the theoretical 
patterns. The scale of the horizontal axis should be 
changed to the conventional units / /g gu r r d d= = , 
where r  (d) is a radius (diameter) of NC and gr  ( )gd  is 
its maximal value taken from the series of histograms. 

Using this rescaling, the relative (normalized) diameter u 
will be kept within 0 and 1.  

The vertical axis represents a number of particles per 
unit of diameter taken within some range d∆ . This axis 
can be normalized by the maximum of histogram in 
the similar way. This way, the histograms will be 
normalized by unit along both axes. Due to this 
operation, the experimental histograms and theoretical 
curves can be led to a common scale and then 
compared to assess a qualitative similarity between 
them. The initial and central curvature moments 
should be compared for the theoretical and 
experimental data arrays to evaluate a degree of their 
quantitative similarity.  

A comparison between the normalized experimental 
histograms and normalized theoretical curves calculated 
by (20) is shown in Fig. 2 for different values of x. The 
experimental data were obtained for the size distribution 
of Al3Sc NC in the binary alloys Al-Sc (0.12 atom % of 
Sc ) after keeping them at 350 °С during: a) − 2; b) − 5; 
c) − 72; d) − 104; e) – 168 hours [45]. 

The dotted lines correspond to the W ( 0x = ) and V 
( 1x = ) distributions. 

Besides, for comparison purposes, the LS 
distribution [78] calculated up to the integration constant 
is also shown as a separate dotted line.  

The solid line represents the Wagner-Vengrenovich 
distribution (20) for the corresponding values of x. As 
seen from the Fig. 2, neither W nor V distributions are in 
agreement with the experimental histograms. The LS 
distribution seems more suitable for that and, at some 
values of x, the Wagner-Vengrenovich distribution can 
be used as well. However, it can be noted that the latter 
distribution (20) is in a better agreement with the 
experimental data than the Lifschitz-Slezov approach.  

A distribution (38) is represented by the curves in 
Fig. 3a. This case shows a system with a variable Z that 
is decreasing with increase in the NC size reversely to r. 
The curves are calculated for different values of x taken 
with a step 0.1x∆ = . The curves corresponding to 0x = , 

0.1x =  and 0.2x = are shown in a separate embedding 
since they cannot be adequately presented in the main 
figure scale. 

Same curves are presented in Fig. 3b after 
normalization by their maximums. 

A comparison between the experimental histograms 
(Fig. 2) and the theoretical distributions (38) are shown 
in Fig. 4 for various values of x. The dotted lines mean 
the W distribution ( 0)x = , distribution (38) ( 1x = ) and 
LS distribution. 

It can be seen that the theoretical data are in good 
agreement with the distribution (38) at 0.3x =  and 

0.4x = . However, it can be concluded that an agreement 
between the Wagner-Vengrenovich distribution (20) and 
experimental data is better than that for the distribution 
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Fig. 1. The Wagner-Vengrenovich distribution curves (20) calculated with the step 0.1x∆ =  – (а).  
Same curves but normalized by their respecting maximums – (b). 
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Fig. 2. A comparison of the experimental histograms of the NC 3Al Sc  size distribution [45] with the Wagner-
Vengrenovich distribution (20) (solid line), for themal treatment of Al-Sc  alloy (0.12 atom % Sc ) at 350 C°  

during: а) - 2; b) - 5; c) - 72; d) - 104; e) - 168 hours. 
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(38) in case Z const≠ . 
A kinetics of OR of nanodisperse phases of the metal 

alloys becomes much more complicated if all three 
mechanisms are involved in the mass transfer from the 
matrix towards a NP or back (Fig. 2), (the one 

mechanism depends on the bulk diffusion coefficient 
Dυ , another one – on the coefficient of diffusion running 
along the dislocation tubes dD  and the last one – on the 
rate of atoms transportation across the interphase (kinetic 
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Fig. 3. The distribution (38) curves calculated with the step 0.1x∆ =  – (а). Same but normalized curves – (b). 
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Fig. 4. A comparison between the experimental histograms shown in Fig. 2 with the (38) distribution (solid line). 
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coefficient β )). In this case, all kinetic characteristics of 
the nanodisperse systems including the NC size 
distribution function become dependent on two 
parameters – x  and y  (see (61) – (69), (73*), (76)). A 
series of the theoretical curves calculated by the formula 

( ) ( )g u Qg u′=  with ( )g u′  taken from (76) is shown in 
Fig. 5 a and b for a fixed value of x and various values of 

y. The value 0.3x =  means that the matrix diffusion flux 
contributes 30 % to the total flux j . The range of y 
changes is limited by the conditions 

 

0 , 1
0 1

x y
x y

≤ ≤
 ≤ + ≤ , (80) 

meaning that if 0.3x = , y would change within [ ]0 0.7÷ . 
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Fig. 5. The distribution (73*): а) – depending on у; b) – Same curves (73*) but normalized by their 

maximums.
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Fig. 6. A comparison between the curve (73*) with the experimental histograms of the NC 3Ni Al  size 
distributions in the alloys 15 5CuNi Al  during their thermal treatment at 450 °С during а) – 24; b) – 96;  

c) – 380 hours [47]. 
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For instance, a line for 0.4y =  (Fig. 5a) corresponds to 
the following contributions into the total flux j : jυ  – 
30 %; dj  – 40 %; ij  – 30 %. Thus, the theoretical curves 
in Fig. 5a correspond to the particle size distributions 
involving all three fluxes , and idj j jυ . Same curves 
after normalization by their maximums are given in Fig. 
5b.  

Finally, the whole series of the theoretical curves 
calculated according to the distribution ( ) ( )g u Qg u′=  
for all possible values of x  and y  is shown in 
Appendix 2. A comparison between experimental 
histograms and the theoretical curves corresponding to 
different values of x  and y  is given in Fig. 6. Both 
experimental and theoretical results are normalized by 
their respective maximums along both axes. The 
histograms in Fig. 6 represent the 3Ni Al  particle size 
distribution for the alloy 15 5CuNi Al  after processing at 
450 °С during а) – 24; b) – 96; c) – 380 hours [46]. It can 
be noted that the particles size has decreased from 10 to 
30 nm during this thermal treatment. The dotted lines 
represent various size distributions (W, LS and V) while 
the solid one shows the theoretical distribution 
corresponding to the values of x and y indicated in the 

figure. 
As seen from Fig. 6, none of the W, LS or V 

distributions is in agreement with the experimental 
histograms. The closest agreement can be found for the 
theoretical distribution proposed in this paper (73*). In 
this case, the growth of 3Ni Al  NP will be controlled by 
the Wagner’s mechanism based on the rate of the 
interphase atoms transfer.  

In case of the histograms related to the Al-Li 
systems, the proposed theoretical distribution is in a 
satisfactory agreement with the experimental data (see 
Fig. 7 a, b, c). The theoretical curve (solid line) is 
compared with the experimental size distributions 
obtained for the Al3Li NP (δ ′ -phase of the Al-Li alloys 
containing 2.1 atom % of Li). An aging of the alloys took 
place at 225 °С during а) – 36 ( d  ~41 nm); b) – 96 

( d  ~60 nm); c) – 240 ( d ~83 nm) hours [47]. It is 
interesting to note that the LS distribution shows the best 
agreement with the experiment for shortest treatment 
time (36 h) (Fig. 7 a). It means that initially, the process 
of CL growing is controlled mainly by the matrix or bulk 
diffusion. As treatment time is increasing, the Wagner’s 
mechanism becomes more and more influential (Fig.7 b, 
c). 
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Fig. 7. A comparison of the theoretical curve (73*) with the size distribution of the 3Al Li  NP (δ ′ -phase) in the 
Al-Li  alloys with different content of Li  after thermal treatment at 225°С during: a) – 36 (2.1 atom % Li ); b) – 

96; c) – 240; d) – 36 (2.45 atom %  Li ) hours [47]. 
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A histogram of δ ′ -phase for the Al-Li alloys with 
increased content of Li (up to 2.45 atom %) is given in 
Fig. 7 d. Thermal treatment of these alloys was 
performed at 225 °С during 36 hours. According to [47], 
no significant change in the mean size of the δ ′ -phase 
particles (45 nm vs 41 nm) was registered for increase in 
the Li atom % from 2.21 to 2.25. However, the 
mechanism of the Al3Li NP growth changes: the LS 
curve can be applied to the 7 a case but cannot – to the 7 
d case. The theoretical distribution (73*) with respective 
x and y values should be applied to the latter system. 

Therefore, we can state that the theoretical size 
distribution proposed in this paper can be adequately 
applied to a wide variety of experimental histograms for 
the alloys 15 5CuNi Al  and Al-Li  (more examples cannot 
be discussed here due to the article size limitations). It 
means that the mechanism describing growth of CL 
involving all three fluxes , and idj j jυ , can in fact be 
applied to real systems while the calculated size 
distribution (73*) should be used for comparison with 
some experimental histograms in order to determine 
possible mechanisms of the nanoparticles growth 
process. 

Conclusions 

As seen from some features of OR of the 
nanodispersed phases occurring in the metal alloys, an 
amount of the growth mechanisms and their nature 
provide a significant influence on the ripening kinetics. It 
has been found that if two mechanisms of growth 
controlled by the coefficients Dυ  and dD  corresponding 
to the diffusion fluxes , dj jυ  are involved, the NP size 
distribution function depends on the adjustment 
coefficient x  used to fit theoretical distributions to each 

given set of experimental data. 
When three growth mechanisms are involved (the 

two above mechanisms and the interphase kinetic flux 
ij ), the analysis becomes much more complicated. In 

this case, the size distribution functions falls into 
dependence on two parameters x and y. On one hand, 
such comparison between experiment and theoretical 
calculations becomes more difficult, on the other – a 
theoretical curve corresponding to the experimental 
histograms can be found with more accuracy. As seen 
from the comparison between the experimental and 
theoretical size distributions, the NP growth mechanisms 
analyzed in this paper seem quite feasible during the 
process of Ostwald ripening. 
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Р.Д. Венгренович, Б.В. Іванський, М.О. Стасик, С.В. Ярема, А.В. Москалюк, 
В.І. Кривецький, І.В. Фесів 

Оствальдівське дозрівання нанодисперсних фаз в металевих сплавах 
(огляд) 

Чернівецький національний університет ім. Ю. Федьковича, 58012, Чернівці, Україна, e-mail: office@chnu.edu.ua 

В огляді проведено аналіз кінетики оствальдівського дозрівання нанодисперсних фаз в металевих 
сплавах, за умови, що ріст (розчинення) наночастинок зміцнюючої фази контролюється одночасно 
матричною дифузією, дифузією вздовж дислокаційних трубок і швидкістю переходу атомів через 
міжфазну границю розділу (вагнерівський механізм росту). Встановлено, що загальною закономірністю 
різних механізмів росту (розчинення) наночастинок в процесі дозрівання є їх не поодинока дія, а 
одночасна. Кількість задіяних механізмів росту (один, два, три) залежить від багатьох факторів, зокрема: 
хімічного складу нанодисперсної фази, умов експлуатації (зміни механічних навантажень, температурних 
режимів, зовнішнього середовища), технологічних умов синтезу тощо. Показано, що коли ріст 
(розчинення) наночастинок в процесі оствальдівського дозрівання контролюється одночасно 
коефіцієнтом матричної дифузії Dυ  і коефіцієнтом дифузії вздовж дислокацій dD , то відповідна функція 
розподілу частинок за розмірами залежить від одного параметру x , який змінюється в межах 0 1x≤ ≤ , 
де x  – визначає співвідношення між дифузійним jυ  і дислокаційним dj  потоками. У випадку, коли 
одночасно діють три механізми росту (розчинення), загальний потік j , який відповідає масообміну між 

частинками і матрицею, складається із трьох частин: j j j jidυ= + + , де кінетична складова ij  

визначається кінетичним коефіцієнтом β . Тоді відповідна функція розподілу наночастинок за розмірами 
залежить від двох параметрів x  і y , які визначають співвідношення між дифузійним ( dj j jυ′ = + ) і 
кінетичним ij  потоками ( 0 , 1x y≤ ≤ ). Можливість реалізації на практиці пропонованих механізмів 
росту наночастинок в процесі оствальдівського дозрівання може бути підтверджена або спростована 
шляхом порівняння експериментальних і теоретичних даних. Приведені в огляді результати співставлень 
експериментальних гістограм з теоретично розрахованими кривими вказують на реалістичність 
пропонованих механізмів укрупнення наночастинок дисперсних фаз в процесі дозрівання. 

Ключові слова: наночастинка, оствальдівське дозрівання, теорія Ліфшица-Сльозова-
Вагнера, нанокристал, кластер, функція розподілу за розмірами. 
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Appendix 1 
 

Let us decompose the third order polynomial in the denominator of (75) by u  
( ) ( ) ( )3 2 2 2 2 24 3 3 3 1 ( )( )u u yx y x y x u y yx y y x u b u cu d+ − + + + + + + + + = + + + , (А1) 

where the root of cubic equation (А1) calculated by Cardano formulas:  

3
b wµ

ν= − − ,     (А2) 

2 23 4y x yx y xµ = + + − − , 
2
qw z= − + , 

2
q zν = − − , 

32
27 3

sq tµ µ
= − + , 23s y yx= + , 23t y yx y= + + , 

3 3

3 2
p qz    = +   

   
, 

23
3

sp µ−
=  and coefficients 

2 2
22 3, ( )

3 2 3 3 4
w wc w d wν ν µ

µ ν µ ν
+ +     = + + = + + + −     

     
.  (А3) 

After decomposition to the simple terms, the equation (75) can be rewritten as 
( )
( ) ( )2 21 1

dg u u
g u u u u b u cu du

σ α ω β γ ε′ +
= + + + +

′ − + + +−
. (А4) 

Then the coefficients , , , , ,σ α ω β γ ε  should be defined before integration of (А4). Let us reduce all terms in 
the right part of (A4) to a common denominator and then equate all coefficients at the terms with corresponding 
orders of u  in the numerators of (75) and (А4). As a result, a system of equations will be obtained for determination 
of the coefficients values: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( )

1

2

3

4

4
2 1 2 2 0

2 2 1 2 1 1 2

1 2

2 2 2 1 2

2 ;

c b b c c b

bc c d b c b bc d c b d c b

b k

b d c bc bd bc bd d bc d c d b b k

bc bd bd bd d b k
bd k

γ β σ α

σ α ω β γ ε

σ γ ω β γ

ε

σ α ω β γ ε

σ α ω β ε

σ

+ + − = −
 + − + − − + + − + − + =
 − + − + + + − − + + + − + + − +
+ − =
 − + − + + − + + + + − + + − =
 − + + + + = −

 =

 , (А5) 

where 2
1

22 7 2 3 1 2y yx x y xk − − − + −= , 2
2 6 2 2xk yx x += + , 2

3 9 6 3 xk y y y+= + , 2
4 4 4 12y yx yk + += . 

Having resolved (А5), the following expressions can be obtained:  
4k

bd
σ = , 

2 2

2 2

1 2 3

4

( 2 1 ) ( 2) ( 2 2 3 )

( 2 3 3 4 2 ) 4(
(2 1 )(1 )

(2 1 ) )
3 4 3 2 2 1)

(1

k d bd bc k bd c b k d b c bc

k d c b bd bc bc bd d c
b b d c

b b
b

d c

α
+ − + + − − − + + + + +

= − +

− − − − − − −
+

+ + + +

+
+ + +

+ + +
+ +

 

5 2 3
3 4 2 1

2 2 4 2 3 3

4
( 2 2 2 )

bk k b b k b k
b b c bd d b d b bc b b b c

β
+ + + −

− + + + + − + +
= −

−
, 

3
( 1)(1 )b d c

ω = −
+ + +

, 

3
2

2 2

2
1 2

2 2 2

23 2 2 2 2 3
4

3

2 2

2

2

( 2 ( 2 (2 2
2 (2 2 2 1 )( )

( 2 2 2 2 2 2 2
2 (2 2 2 1 )( )

) ) 1)

) 4 (2 )

dk d bc bd d dk b dc d bd dk c bc b d c
d dc c c d d b bc d

k c d c b bd bc c dc bc bdc dc d c bdc bc bd c d d bd
d dc c c d d b

d
bc d

γ
− − − + + + − + − − − +

+ + + + + − +

− + − + − + − − − − − + + + − −
+ + + + + −

+
= +

+
+

+

, 

2

3 2 2 2

2 2 2 3 2 2
1

2

2 3
2 2 2

2 2
4

2

( ( )

( 2 ) ( 2 2 1) (2 2 2 2 )
(2 2 2 1 ) ( )

(3 2 4 2 2 ) ( 2 1)) 4 2 2
(2 2 2 1 )

d k dc bd d b d k d bc c c b dk d c bd dc c bc b c bc
dc c c d d d b bc d

k c dc c c b bc bc d c bd d b d d bd bdc dc bd bc d
dc c c d d d

ε
− + + + + − − + − + − − + − + + − + +

+ + + + + − +

− − + + + + − − + − − + + − + − − +
+ + + +

= −

+ 2( )b bc d− +
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Fig. 1. A2. The whole series of the theoretical curves calculated according to the distribution (73*)  
for all possible values of x and y 

 


