
PHYSICS AND CHEMISTRY 

OF SOLID STATE 
V. 22, No. 1 (2021) pp. 168-174 

 Vasyl Stefanyk Precarpathian 

National University 

Section: Physics  

DOI: 10.15330/pcss.22.1.168-174 

ФІЗИКА І ХІМІЯ ТВЕРДОГО ТІЛА 

Т. 22, № 1 (2021) С. 168-174 

Фізико-математичні науки 
 

168 

PACS: 41.20.Jb ISSN 1729-4428 

R.L. Politanskyi1, Z.M. Nytrebych2, R.I. Petryshyn1, I.T. Kogut3, 

O.M. Malanchuk4, M.V. Vistak4 

Simulation of the Propagation of Electromagnetic Oscillations by 

the Method of the Modified Equation of the Telegraph Line 

1Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine, r.politansky@chnu.edu.ua 
2Lviv Polytechnic National University, Lviv, Ukraine, znytrebych@gmail.com 

3Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine, igorkohut2202@gmail.com 
4Danylo Halytsky Lviv National Medical University, Lviv, Ukraine, oksana.malan@gmail.com  

The physical processes associated with the propagation of electromagnetic oscillations in a long line, the size 

of which is the same or slightly greater than the length of the electromagnetic wave (not more than ten times) are 

considered in the work. As a research method, the differential-symbol method, which is applied to the modified 

equation of the telegraph line is used. The two-point conditions for the problem as well as additional parameters 

that are coefficients of the first derivatives in terms of coordinate and time in comparison with the classical 

equation of the telegraph line are considered as parameters for controlling the process of propagation of 

electromagnetic oscillations. Based on the differential-symbol method, the two-point in time conditions under 

which the most characteristic oscillatory processes are realized in a long line is found. Based on the research, it is 

possible to draw conclusions about the effectiveness of analytical methods for the analysis of specific technical 

objects and control of the processes that take place in them. 
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Introduction 

The development of telecommunication technologies 

has led to an active search for new information 

transmission technologies which use complex chaotic 

signals [1], methods of signal processing [2] and 

modulation using artificial intelligence systems [3]. The 

transition to new frequency bands and the complexity of 

signal processing processes led to the search for new 

models and methods in radio systems [4, 5]. 

Another example where accurate calculation of 

transients, phase and amplitude of oscillations in current-

carrying circuits is required are the primary devices of 

measuring systems. Thus, highly sensitive optical sensors 

are promising for qualitative and quantitative analysis of 

harmful substances, including biochemical substances [6-

8]. The combination of numerical and analytical methods 

can increase the efficiency of calculations performed to 

model real systems [9] and their practical improvement. 

Computer simulation methods designed to calculate the 

characteristics of these devices and the precise selection 

of their parameters require accurate calculation of high-

frequency processes occurring in signal circuits [10], and 

refined models of electromagnetic oscillation 

propagation can solve this problem. 

One of the most studied problems of 

electrodynamics is the problem of propagation of 

electromagnetic oscillations in a long line [11, 12]. A 

long line is formed by two or more parallel insulated 

conductors, the distance between which is much smaller 

than their length. The equivalent electrical circuit of the 

long line is shown in Fig. 1. 

The equivalent electrical scheme of a long line 

allows you to build a mathematical model called the 

telegraph equation [13, 14]: 

 

 

mailto:r.politansky@chnu.edu.ua
mailto:znytrebych@gmail.com
mailto:igorkohut2202@gmail.com
https://mbox2.i.ua/compose/1167811789/?cto=GUQ%2FPAgJVBn5HhM7VB4lfYmcx56NmrKFinqElMxumKStprhllJ3LcQ%3D%3D


Simulation of the Propagation of Electromagnetic Oscillations by the Method… 

 169 

 

 {

𝜕𝑢

𝜕𝑥
= 𝑟𝑖 + 𝑙

𝜕𝑖

𝜕𝑡
,

𝜕𝑖

𝜕𝑥
= 𝑔𝑢 + 𝑐

𝜕𝑢

𝜕𝑡
.
 (1) 

 

In system (1), the unknown variables are the current 

𝑖(𝑥, 𝑡) and voltage 𝑢(𝑥, 𝑡) in the line, which in the 

general case are functions of the coordinate 𝑥 and time 𝑡. 

In this equation, we assume that the line is homogeneous, 

and we replace all the point values of resistance, 

conductivity, inductance and capacitance by the 

distributed values reduced to the unit length of the 

circuit: 𝑟 – specific resistance, Ohm/m; 𝑔 – specific 

conductivity, S/m; 𝑙 – specific inductance, H/m; 𝑐 – 

specific capacitance, F/m. 

Using Ohm's law, we can derive from system (1) one 

equation of the second order with respect to one 

unknown function 𝑢(𝑥, 𝑡) [15, 16]: 

 

 
𝜕2𝑈

𝜕𝑥2 =
1

𝛼2 ∙
𝜕2𝑈

𝜕𝑡2 + 𝐷 ∙
𝜕𝑈

𝜕𝑡
+ 𝐶 ∙ 𝑈, (2) 

 

where α, D, and С are new parameters of the 

mathematical model. Let us turn to the physical content 

of these parameters, which are related to the 

electrophysical parameters of the system by the 

following relations: 

 

 𝛼 =
1

√𝑙𝑐
;      𝐷 = 𝑙𝑔 + 𝑟𝑐;      𝐶 = 𝑟𝑔. (3) 

 

The parameter α is constant for the whole line and 

determines the frequency of current and voltage 

oscillations. The parameter D plays the role of the 

attenuation of the amplitude of oscillations, which is 

associated with possible energy losses owing to active 

resistance along the line and the conductivity between 

the wires which form it. The parameter C affects the 

frequency characteristics of the system by changing the 

oscillation frequency, as we show in the next section. 

The influence of the two-point in time conditions and 

the above-mentioned parameters in the found solutions is 

investigated in the work. These solutions are exponential 

decrease or increase in the amplitude of oscillations and 

decreasing oscillations. 

A significant limitation of the classical model is that 

it does not provide a solution to the problem of the active 

line, which contains additional sources of current and / or 

voltage. However, the introduction of additional sources 

of currents and / or voltages can significantly change the 

wave process. In order to give this process the properties 

of the controlled, you need to know in advance all the 

possible types of waves that can be implemented. The 

equivalent electrical circuit of the modified 

homogeneous long line is shown in Fig. 2. 

To model a homogeneous long line with external 

current and / or voltage sources, which we will 

hereinafter call an active long homogeneous line, we 

proposed a modified telegraph line equation in which the 

influence of external sources is modelled by adding the 

first derivatives in time and wave propagation 

coordinates. 

The modified equation of the telegraph line has the 

following form: 

 
𝜕2𝑈

𝜕𝑥2 =
1

𝛼2

𝜕2𝑈

𝜕𝑡2 + 𝐷
𝜕𝑈

𝜕𝑡
+ 𝐵

𝜕𝑈

𝜕𝑥
+ 𝐶𝑈.  (3) 

 

Modification of this equation by introducing terms, 

which are the first derivatives in time and coordinate, 

makes it possible to increase the number of possible 

solutions of the equation, covering a wider range of 

processes. In practice, such a modification means a 

complication of the physical system. 

I. Calculation of processes in a long line 

with the superimposed conditions of a 

two-point problem 

1.1. Physical parameters of the problem and their 

physical meaning 

Consider a long line by setting the values of linear 

 
 

Fig. 1. Scheme of equivalent electric circuit of a long line. 

 

 
 

Fig. 2. Equivalent electrical circuit of the modified long line (with additional current and voltage sources). 
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inductance, capacitance, resistance and conductivity, 

which are characteristic of the propagation of high-

frequency electromagnetic oscillations with frequency 

𝑓 = 3 ∙ 108 Hz, specific inductance: 𝑙 = 0.2 ∙ 10−6 H/m, 

specific capacity 𝑐 = 2 ∙ 10−11 F/m, resistivity 

𝑟 = 3 ∙ 10−7 Ohm/m (aluminium), specific conductivity 

𝑔 = 10−3 S/m (soil of medium humidity). Then the 

values of the coefficients α, D, and С determined by the 

selected electrophysical parameters: 𝛼 = 5 ∙ 108  s m⁄  

(the parameter which determines the oscillation 

frequency), 𝐷 = 2 ∙ 10−10  𝑠 𝑚2⁄  (the parameter which 

determines the ability of the line to absorb 

electromagnetic energy due to leakage of conduction 

currents), С = 3 ∙ 10−10  1 𝑚2⁄  (the gain of the voltage 

gradient along the line, it is determined by the specific 

resistance r and the conductivity g in the line). 

Next, we consider a two-point problem with time 

conditions of the Dirichlet type (4) for two types 

conditions, namely for a constant value and a periodic x 

coordinate function: 

 

 {
𝑢(0, 𝑥) = 𝜑1(𝑥),

𝑢(𝑙, 𝑥) = 𝜑2(𝑥).
 (4) 

 

1.2. A two-point problem with a constant voltage 

along a long line 

Consider a two-point problem with two-point 

conditions in the form of a constant voltage applied along 

a line at the initial moment of time 𝑡 = 0 and at some 

other point in time 𝑡 = 𝑙. Using the differential-symbol 

method [17-20], we can write a generalized solution of 

the two-point problem (3), (4) in the following form: 

 

 

 𝑈(𝑥, 𝑡) = −
𝑒

−
𝛼2𝐷𝑡

2 ∙[𝑐1∙𝑠𝑖𝑛ℎ(𝛼(𝑡−𝑙) 2⁄ ∙√(𝛼𝐷)2−4𝐶)−𝑐2𝑒
𝛼2𝐷𝑙

2 ∙𝑠𝑖𝑛ℎ(𝛼𝑡 2⁄ ∙√(𝛼𝐷)2−4𝐶)]

𝑠𝑖𝑛ℎ(𝛼𝑙 2∙⁄ √(𝛼𝐷)2−4𝐶)
. (5) 

 

Obviously, the nature of the wave process is 

determined by the sign of the root expression 

(𝛼𝐷)2 − 4𝐶, but for the selected parameter values the 

first term is much higher than the second, so the root 

expression will always have a positive value for 

oscillations of electromagnetic nature. 

For further calculations we use the value of the time 

constant 𝑙 = 10−6 𝑐, or 1 microsecond. The accuracy of 

determining this time is at least 0.1 microseconds, which 

is a realistic value for modern electronic devices. Next, 

using the approximate value of the root expression 

(𝛼𝐷)2 − 4𝐶 ≈ (𝛼𝐷)2 and an approximate value for the 

expression 𝑠𝑖𝑛ℎ (𝛼𝑙 2 ∙⁄ √(𝛼𝐷)2 − 4𝐶) ≈ 𝑒
𝛼2𝐷𝑙

2 , we are 

writing the solution of the problem in a form convenient 

for analysis: 

 

 𝑈(𝑥, 𝑡) ≈ с2 + (𝑐1 − 𝑐2) ∙ 𝑒−𝛼2𝐷𝑡 . (6) 

 

Figure 3 shows the time dependences of the voltage 

in the line for two cases: a) voltage rise, b) voltage 

decline. The values of the two-point conditions for the 

case of growth are: 𝑐1 = 1 𝑉, 𝑐2 = 2 𝑉. In the case of a 

decline, the two-point conditions have the following 

values: 𝑐1 = 2 𝑉, 𝑐2 = 1 𝑉. 

Thus, if the two-point conditions of a problem are 

constant voltage along a long line, then the system 

undergoes an exponential decrease or increase in voltage, 

 

  
 

a)                                                            b) 

 

Fig. 3. Time dependence of oscillation amplitude in a telegraph line for constant two-point conditions  and 

constants corresponding to the process of electromagnetic wave propagation in a telegraph line: 

 a) voltage rise 𝑐1 = 1 𝑉, 𝑐2 = 2 𝑉, b) voltage drop 𝑐1 = 2 𝑉, 𝑐2 = 1 𝑉. 
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depending on which of the voltage values is greater: at 

the initial or at some other point in time. The course of 

the process under such conditions does not depend on the 

x coordinate, i.e. the voltage has the same values for the 

entire line at any time. The decrement is determined by 

the values of the parameters α and D, and its value is: 

𝜒 = 𝛼2𝐷 = 5 ∙ 107 𝑠−1. 

 

1.3. Conditions of a two-point problem in the 

form of a periodic function on a spatial variable 

Consider the case with periodic conditions of a two-

point problem, in which the voltage value at the initial 

moment t = 0 and some other time t = l are given as a 

periodic coordinate function. As a periodic condition, we 

use the simplest periodic function, namely the harmonic 

oscillation. Then the two-point conditions of the problem 

have the following form: 

 

 {
𝑈(0, 𝑥) = 𝜑1(𝑥) = 𝑐1𝑠𝑖𝑛(𝑛1𝑥),

𝑈(𝑙, 𝑥) = 𝜑2(𝑥) = 𝑐2𝑠𝑖𝑛(𝑛2𝑥),
 (7) 

 

where 𝑛1 and 𝑛2 are arbitrary real numbers. 

The general solution for the factors 𝑐1 і 𝑐2 for the 

given conditions (7) of the two-point problem is 

determined by the fundamental solutions of the partial 

differential equation (3): 

 

𝑈(𝑡, 𝑥) =
1

2𝑖
{𝑐1 ∙ [𝐺̂1(𝑡, 𝜇)𝑒𝜇𝑥]|𝜇=𝑖𝑛1

− 𝑐1 ∙ [𝐺̂1(𝑡, 𝜇)𝑒𝜇𝑥]|𝜇=−𝑖𝑛1
+ 

  +𝑐2 ∙ [𝐺̂2(𝑡, 𝜇)𝑒𝜇𝑥]|𝜇=𝑖𝑛2
− 𝑐2 ∙ [𝐺̂2(𝑡, 𝜇)𝑒𝜇𝑥]|𝜇=−𝑖𝑛2

} (8) 

 

where 𝐺̂1(𝑡, 𝜇) =
𝑒

−
1
2𝛼2𝐷𝑡

∙𝑠𝑖𝑛ℎ[
1

2
𝛼(𝑙−𝑡)𝜂(𝜇)]

𝑠𝑖𝑛ℎ[
1

2
𝛼𝜂(𝜇)]

, 𝐺̂2(𝑡, 𝜇) =
𝑒

−
1
2𝛼2𝐷(𝑡−𝑙)

∙𝑠𝑖𝑛ℎ[
1

2
𝛼𝑡𝜂(𝜇)]

𝑠𝑖𝑛ℎ[
1

2
𝛼𝜂(𝜇)]

. 

 

We find the value of the function 𝜂(𝜇) for values 𝜇 = ±𝑖𝑛1, ±𝑖𝑛2: 

 

 𝜂(±𝑖𝑛1) = √(𝛼𝐷)2 + 4 ∙ (−𝑛1
2 ∓ 𝑖𝑛1𝐵 − 𝐶),  (9a) 

 𝜂(±𝑖𝑛2) = √(𝛼𝐷)2 + 4 ∙ (−𝑛2
2 ∓ 𝑖𝑛2𝐵 − 𝐶). (9b) 

Let us find the solutions of the equation for 𝐵 = 0. Because the values of the constants (𝛼𝐷)2 = 0.01, 

 С = 3 ∙ 10−10, then (𝛼𝐷)2 ≫ С, therefore value 𝜂(𝜇) can be considered approximately equal: 

 

 𝜂(±𝑖𝑛1) ≈ 𝑖 ∙ 2𝑛1,  (10a) 

 𝜂(±𝑖𝑛2) ≈ 𝑖 ∙ 2𝑛2.  (10b) 

We will write down separately all terms of expression (8): 

 

 [𝐺̂1(𝑡, 𝜇)𝑒𝜇𝑥]|𝜇=𝑖𝑛1
= 𝑒

(−
1

2
𝛼2𝐷𝑡+𝑖𝑛1𝑥)

∙
𝑠𝑖𝑛ℎ[𝑖

1

2
𝛼(𝑙−𝑡)𝑛1]

𝑠𝑖𝑛ℎ[𝑖
𝛼

2
𝑛1𝑙]

=
𝑒

(−
1
2𝛼2𝐷𝑡+𝑖𝑛1𝑥)

𝑠𝑖𝑛(
𝛼𝑙

2
𝑛1)

∙ 𝑠𝑖𝑛 [
𝛼(𝑙−𝑡)

2
𝑛1] , (11a) 

 [𝐺̂1(𝑡, 𝜇)𝑒𝜇𝑥]|𝜇=−𝑖𝑛1
=

𝑒
(−

1
2𝛼2𝐷𝑡−𝑖𝑛1𝑥)

𝑠𝑖𝑛(
𝛼𝑙

2
𝑛1)

∙ 𝑠𝑖𝑛 [
𝛼(𝑙−𝑡)

2
𝑛1], (11b) 

 [𝐺̂2(𝑡, 𝜇)𝑒𝜇𝑥]|𝜇=𝑖𝑛2
=

𝑒
[−

1
2𝛼2𝐷(𝑡−𝑙)+𝑖𝑛2𝑥]

𝑠𝑖𝑛(
𝛼𝑙

2
𝑛2)

∙ 𝑠𝑖𝑛 [
𝛼𝑡

2
𝑛2], (11c) 

[𝐺̂2(𝑡, 𝜇)𝑒𝜇𝑥]|𝜇=−𝑖𝑛2
=

𝑒
[−

1
2𝛼2𝐷(𝑡−𝑙)−𝑖𝑛2𝑥]

𝑠𝑖𝑛(
𝛼𝑙

2
𝑛2)

∙ 𝑠𝑖𝑛 [
𝛼𝑡

2
𝑛2].  (11d) 

 

Substituting the obtained expressions into formula (8) we write the general solution in a form convenient for 

analysis: 

 

 𝑈(𝑡, 𝑥) ≈ 𝑒−𝜒𝑡 ∙ [𝐴1 ∙ 𝑠𝑖𝑛(𝑛1𝑥) ∙ 𝑠𝑖𝑛(𝜔1𝑡 + 𝜑𝑙) + 𝐴2 ∙ 𝑠𝑖𝑛(𝑛2𝑥) ∙ 𝑠𝑖𝑛(𝜔2𝑡)]. (12) 

 

As before, write down the value of the damping 

factor 𝜒, oscillation frequency 𝜔1 and 𝜔2, phase 𝜑𝑙, 

amplitude of oscillations 𝐴1 and 𝐴2: 

The damping coefficient of oscillations depends only 

on the parameters of the line, as for the problem with 

constant two-point conditions: 

𝜒 = 𝛼2𝐷 2⁄ = 2.5 ∙ 107 с−1. 

The oscillation frequencies are determined by both 

the line parameters and the two-point conditions of the 

two-point problem: 𝜔1 = 𝛼𝑛1 2⁄ ; 𝜔2 = 𝛼𝑛2 2⁄ . 

Phase shift 𝜑𝑙 is determined by both the parameters 

of the line and the value of the time, in the condition of 

the two-point problem: 𝜑𝑙 = 𝛼𝑙𝑛1 2⁄ . 

The amplitudes of oscillations depend on the 

constants that define the two-point conditions 𝑐1, 𝑐2, 𝑛1, 

𝑛2 and line parameters: 𝐴1 = 𝑐1 𝑠𝑖𝑛 (
𝛼𝑙

2
𝑛1)⁄ , 

𝐴2 = 𝑐2𝑒
𝛼2𝐷𝑙

2 𝑠𝑖𝑛 (
𝛼𝑙

2
𝑛2)⁄ . 
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In the previous problem, the value of the time 

constant was determined 𝑙 = 10−6 s = 1 µs. In this case, 

a large multiplier 𝑒25 appears in the expression for the 

amplitude 𝐴2. Therefore, to determine the conditions of a 

two-point problem that can be physically realized, we 

can set the value 𝑐2 = 0, which is equivalent to the 

condition 𝑈(𝑙, 𝑥) = 𝜑2(𝑥) = 0. Under such conditions, 

single-frequency damped oscillations are formed: 

 

 𝑈(𝑡, 𝑥) = 𝐴1 ∙ 𝑒−𝜒𝑡 ∙ 𝑠𝑖𝑛(𝑛1𝑥) ∙ 𝑠𝑖𝑛(𝜔1𝑡 + 𝜑1). (13) 

 

We present the results of numerical simulations for 

parameter values: c1 = 1 V; n1 = 2; A1 = -2.14 V; 𝜔1 =
𝛼 = 5 ∙ 108 Hz; 𝜑𝑙 = 500 radian, or up to the full phase 

of oscillations: 𝜑𝑙 = 0.49 radian. 

The spatio-temporal dependence of oscillations in 

the long line is given in Fig. 4. 

Figure 5 shows plots of the voltage distribution along 

the length of the line in order to demonstrate their 

dynamics over time.  

Thus, in Fig. 5a shows graphs of the stress diagram 

at the beginning of the oscillating process immediately 

after the application of voltage to a long line, and in Fig. 

5b - at the end of the oscillating process (approximately 

90 nanoseconds after applying voltage to the line), when 

the amplitude of oscillations has decreased significantly. 

Interestingly, the frequency of these oscillations may 

not coincide with the frequency of free oscillations of the 

system. Based on this, it can be concluded that the long 

line can serve as a device for generating high-frequency 

oscillations that may exceed the natural frequency of the 

system. To do this, you need to set the initial voltage 

distribution in the line, which is described by the 

harmonic sinusoidal function (Fig. 5a). 

II. Discussion of results and conclusions 

Another aspect of applying the differential-symbol 

method for a two-point problem is the ability to control 

the flow of processes in a long line. Measuring the values 

of the process only at two arbitrary time points allows 

you to get a complete picture of the value of voltage or 

current in the line. This leaves open the question of 

approximating a discrete set of measured values by an 

analytical function in order to obtain an accurate 

solution. 

The use of two-point conditions can be an effective 

method of monitoring the state of a long line, because 

measuring the values of the amplitude of oscillations of 

physical quantities in the line can give a complete picture 

of the whole physical process. In particular, this method 

allows you to predict unwanted increases in amplitude, 

which can cause damage to the device. 

Circles with distributed parameters play an important 

 
 

Fig. 4. Spatio-temporal dependence of the amplitude 

of oscillations in the telegraph line for periodic 

conditions and constants corresponding to the process 

of attenuating electromagnetic oscillations with the  

x-dependent amplitude in the telegraph line (standing 

wave). 

 

  
 

a)                                                              b) 

 

Fig. 5. Voltage distribution along the line: a) at the beginning of the process (maximum oscillation amplitude), b) at 

the end of the process (reduced oscillation amplitude). 
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role in the development of the high-frequency range of 

electromagnetic oscillations. In particular, such circuits 

can transmit high-frequency energy (open two-wire lines 

and coaxial cables). On ultra-wideband spectrum, 

segments of such lines can be used as bandpass filters or 

resonators. They can be used to measure wavelength, 

amplitude of oscillations, resistive and reactive 

resistances. 
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Моделювання поширення електромагнітних коливань методом 

модифікованого рівняння телеграфної лінії 

1Чернівецький національний університет імені Юрія Федьковича, м. Чернівці, Україна, r.politansky@chnu.edu.ua 
2Національний університет «Львівська політехніка», м. Львів, Україна, znytrebych@gmail.com 

3Прикарпатський національний університет імені Василя Стефаника, м. Івано-Франківськ, Україна, 

igorkohut2202@gmail.com 
4Львівський національний медичний університет імені Данила Галицького, Україна, м. Львів, oksana.malan@gmail.com  

У роботі розглянуто фізичні процеси, що пов’язані з поширенням електромагнітних коливань у 

довгій лінії, розміри якої є співрозмірними або перевищують довжину електромагнітної хвилі. В якості 

методу дослідження було використано диференціально-символьний метод, який був застосований до 

модифікованого рівняння телеграфної лінії. Параметрами керування процесом поширення 

електромагнітних коливань є граничні умови для двоточкової задачі, а також додаткові параметри, що є 

коефіцієнтами при перших похідних за координатою і часом у порівнянні із класичним рівнянням 

телеграфної лінії. На основі диференціально-символьного методу було знайдено граничні умови 

двоточкової задачі, при яких у довгій лінії реалізовані найбільш характерні коливні процеси. На основі 

проведених досліджень можна зробити висновки про ефективність застосування аналітичних методів для 

аналізу конкретних технічних об’єктів та керування процесами, які у них відбуваються. 

Ключові слова. телеграфна лінія, двоточкова задача. 
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