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The paper deals with the patterns of quasicrystalline decagonal AlgyCo,;Ni;o and icosahedral AlgsCupsFe;,
phases from the standpoint of the model of anisotropic crystals. In the xy plane, the structure of quasicrystalline
decagonal phase features the quasicrystalline pattern and the dispersive law is represented by a quadratic
dependence. In contrast, the dispersive law is linear in the direction of z axis, because of crystalline pattern of the
structure. The dispersive law for the icosahedral phase in all directions is represented by quadratic dependence,
since the structure of this phase is isotropic one. After calculations it is found that heat capacity of
quasicrystalline phases at high temperatures exceeds the level of 3R, i.e. the Dulong-Petit law is not complied
with. Therefore, with the use of the model described in this paper we explain the previously established
phenomenon of excessive heat capacity of quasicrystalline phases at high temperatures. It is also found that the
heat capacity of the decagonal phase AlgyCo,;Ni;o remains the excessive one to higher temperatures, compared to
the icosahedral phase Alg;CuysFe;,. According to the Gruneisen law, it indicates the greater stability of the
decagonal phase at high temperatures.
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Introduction destroyed at higher temperatures [3,4] than the
icosahedral phases.

At present time, the attention of researchers is
attracted by so called excessive heat capacity of
quasicrystalline phases in the high temperature range
[1, 5]. The excessive heat capacity is manifested in the
system heat capacity excess of the 3R value in the Debye
model and deviation from the Dulong-Petit law at the
temperatures above 300 K. The heat capacity follows the
Gruneisen law and depends on the coefficient of linear
expansion. Thus, it can be said that the heat capacity
regard to stability of quasicrystalline phases to the  'eflects the quasicrystalline phases’ stability to the
temperature action of the molten binder. In the systems temperature action. The_flrst studies of this .phenomenon
of Al-Cu—Fe and Al-Ni—Co the icosahedral AlgCussFe;, of excessive heat capacity were conducted in the papers

and decagonal AlgCo,Niy, quasicrystalline phases, [6, 7]._ O.F. _Prekul et al. [1, 5] have found that _the heat
respectively [, 2], are found. These phases are formed capacity of icosahedral phases AlgsCussFe;, starting from

from the melt at the normal cooling rates and kept after ~ the temperature of nearly 300 K rose continuously,
long-term heat treatment, i.e. they belong to equilibrium ~ éaching a maximum at about 1300 K and then dropped

ones. However, the quasicrystalline decagonal phases are ~ S10Wly. However, the phenomenon of excessing heat

The unique structure of quasicrystals determines
their unusual physical and chemical properties.
Quasicrystals have low coefficients of friction and
surface tension, as well as high hardness, durability and
corrosion resistance. Owing to these properties,
quasicrystals find their practical use in the form of films,
coatings and components of the composite materials. In
the course of manufacturing of the composite materials
with quasicrystalline fillers, the question arises with
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capacity has not been adequately explained yet.

In order to explain the phenomenon of the excessive
heat capacity of quasicrystalline phases, as well as the
fact of stability of decagonal phases at higher
temperatures, this paper deals with the heat capacity of
phases from the standpoint of the model of anisotropic
crystals [8].

I. Model representation of the structure
of crystalline phase

Pursuant to the Gruneisen law [8], if there are no
significant variations in the pressure, it can be assumed
that the coefficient of thermal expansion of the crystal
lattice is linearly dependent on the heat capacity. As the
coefficient of thermal expansion of the lattice grows the
plasticity of the structure and, accordingly, its resistance
to fracture. Therefore, heat capacity is an energy
characteristic of the phase stability.

Free energy of the body F according to [8] is:

ho

fa)ln 1-e T dw,
272243 0

where V — body volume, T — temperature, u — group

velocity, 7 — Plank’s constant. Because of the isotropic

structure of the crystalline phase, only one direction of

polarization is considered in (1). The dispersion relation
has a linear dependence:

F_

@

o=uk, 2
where k — wave vector. Using the Debye formalism [8],
we replace the upper integration limit in (1)

ho
withy=?D, where wp — Debye frequency, and

substitute (2) in (1); after that we obtain:

3

VTT 2
= =—jln 1—exp(—x))x“dx , (3)
27Z2U3h3 ( )

where x = huk . After integrating by parts, we obtain:

3 y3

_J_ 1

F .
3 1-exp(- x)

In(1-exp(- x)) 4

0
We expand the function exp(—x) y (4) to the second

term and after integration obtain the expression
3
k

_D 5
27[23[ ©)

where kp — Debye wave vector. Hence, entropy of the
body:

F= T In(huk) —-T InT—ng,

hukmax /T hdhax /T

8vT dk, ]
0

@r)°

F=
0

In(l—exp[—% u

VK3

_oF —D(—ln(huk)+|nT+1+1j. (6)
T 2423 3

Internal energy of the body E and heat capacity C,
3
VKR

accordingly, take the formof E=F +TS = T
2ﬂ23
3
2L )
oT 2ﬂ23.
It can be seen from expression (7) that the heat
capacity of the crystalline phase is equal to the Debye
vk
sphere 3R = —2 This corresponds to the fact that the
27°3
heat capacity of the crystalline phase at high
temperatures is equal to 3R, i.e. the Dulong-Petit law is
complied with.

Il. Representation of the structure of
quasicrystalline decagonal phase
from the standpoint of the model of
anisotropic crystals

Structure of the quasicrystalline decagonal phase
AlgoCo,:Niyy of the Al-Co-—Ni alloy is anisotropic one,
i.e. it features the quasicrystalline pattern in the xy plane
and crystalline pattern in the direction of the z axis [9].
We’ll describe the pattern of the structure of
quasicrystalline decagonal phase with the use of the
model of highly anisotropic crystals [8]. The decagonal
phase can be considered as a layered structure with the
interaction between its layers. The structure features the
oscillations in the layers themselves and of the layers
relative to each other. Oscillations in the bends of the
layers are found as well. We assume that anisotropy of
the quasicrystalline decagonal phase is manifested in the
difference of the dispersive laws in the xy plane and in
the z direction. In the xy plane for the quasicrystalline
pattern [10] the dispersive law is represented by the

quadratic  dependence ;/12 (;(2 = k)% +k§), where
- group velocity in the plane, and in the z direction for
the crystalline pattern it has the linear dependence = ukZ .
The sum frequency of sound waves can be expressed as
follows, according to [8]:
o =u%k] +y°y". ®)
Taking into account the contribution from sound

oscillations, free energy of quasicrystalline decagonal
phase is determined by formula [8]:

s

2 4

2k2+7 P

©)

In (9) the upper integration limits are replaced using the Debye formalism for the model of anisotropic crystals.
Then formula (9) will be true for the case of high temperatures as well, as in the Debye model [8]. For the internal

integral, we obtain the following expression:
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2= \fasy?

a+
T VX

X =$~/a+72)(r£111ax — integration limit. Coefficient 3 in

(10) takes into account small oscillations of the lattice
nodes lying in the integration plane in three directions.

After expansion in the series €° to the third term, and in
e to the second term, we obtain the expression:

where 4 ,

a — parameter ~u’k’,

zT

owe o]

For the further integration in the direction of wave

(11)

vector kZ , We additionally expand the function |n(1+§]

O T P

X
3f 2 zdz

oe -1

(10)

)=

J

to the sixth term. Then the internal integral of expression
(9) will take the form:

Next, we make an additional replacement of the

i h [22
variable  x==./u“k +b,
T z
parameter, y = $~/U2k22max +b.

Then, taking into account the coefficient preceding
the double integral in (9), we obtain:

2 3 4 5

X X X X X X6

2 8 24 64 160 384

ull xInx-6
h

e

where

b= 72%#1ax

3 2 3 4 5 6
F:% J xInxdx — 6] é—x— XX XX x| (13)
z<yuh=| 0 8 24 64 160 384
After integration, free energy takes the form of:
2 2,2 3,3 4.4 5,5
F= v; ThAL-TInT —L14lp 1072, 37 '2‘ _ 3 h '?‘) +ih'; , (14)
27U 2 2 8 T 80 T 240 T 672 T

. . oF .
where L= \/uzkzzmax +y2;(ff]ax . After simple calculations of the entropy S = o and the internal energy of the

system E =F +TS , we obtain for the heat capacity the expression below:

oE VL2 15212

9 #33

34 5 00

{H_

ST 27%y| 4 T2

The expression AL = h\/ 2kzmax +72)(r¢1ax in its
content is similar to the Debye temperature ~ 6 = ha)D ,

since UKzmax and W(r%ax, in fact, are the components
of the expression for the maximal frequency of the

2
oscillating system generalized by space. Factor VL is
27%yu
similar in its content to the Debye sphere
v 4 k3 ~3R. Indeed, we assume that velocity of
(27)°

sound v in the xy plane is equal to velocity of sound u in
the z direction, and has some value u. Then the factor is

2(,2 4
v U (kzmax +Zmax)
2z u2
plane is determined by the sum of squares of vectors k, i

equal to . Vector %° in the xy

40 13
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(15)

+ — —_—— .
20 74 56 1O 1

ky: %° = ki+k,>. Further, we’ll add the vector directed
along the axis z kymax to vector y* formed by vectors kq
and ky in the plane. Hence we have the wave vector K in
the space xyz, which is equal to K = Kynal + (Xmax)

Then the factor in the expression for heat capacity

becomes equal to LZKZ' Quasicrystalline decagonal
2z
phases have the ordered structure, but not the periodic
one. Their atomic structure is characterized by the
presence of highly symmetrical Mackay clusters [11]. It
causes the shift of vectors kymax and xmac. Therefore K?
should be considered as a certain variable, and it is
necessary to integrate the factor which will be equal to
Kk 2ai =V v i
2 (IJ - 27[2 3
the expression for heat capacity matches the generally
valid 3R. In this case (15) can be represented in the form
of:

. If we assume k =k, the factor in
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I11. Model representation of the structure
of quasicrystalline icosahedral phase

Structure of quasicrystalline icosahedral phase
Alg3CuysFey, of the Al-Cu-Fe has a quasicrystalline

pattern in all directions. Therefore, the dispersive law
will have the quadratic dependence both in the xy plane
and in the direction of z axis. According to [8], sum
frequency of the sound waves will be expressed as:

w2 =u2k§'+;/2;(4. 7)

Since the pattern of the icosahedral phase is an
isotropic one, and only one direction of polarization is
considered, expression (9) should be divided by 3.
Besides, in (9) the integration limit will change:

Mukfax /T hbhax /T
F :8\/—1-3 s In(l—exp(—ﬁwluzkfwyz;/' j]zmgd;(- (18)
3(27) 0 0 T
We integrate over dy in the internal integral as in the then allow k within the differential sign. We obtain:
previous case for the decagonal phase, and obtain:
2y
VT2 Y « F= VT2k j[xlnx—6ln[l+§j]£dx. (20)
F=—s j(xlnx—6ln[1+—de7 (19) 67yh 0 2))x

374yh 0 2

h [2 4 2 4
where x=2.,/u®ks +b, Where b= — parameter,
T z Y Xmax —P

y :$ uZkax +b — integration limit. We multiply the

numerator and denominator under the integral by k?, and

_ VLk 3.1

where k is factored outside the integral sign as a value
which varies only slightly. After expansion of the

|n[1+gj to the sixth term and integration, free energy

will take the form:

3 (L) 3 (L)' 1 (L)

F

2

TInaL-TInT —4T +—hAL——
6y 4 12

where L= Ju2kax +72zfhax - After calculation of the

entropy and internal energy we obtain for the heat
capacity of the icosahedral phase:

2 3 4 5
_E_ ol 102 96 16__30_] 22)

Cc

oT

where expression AL = h\/uzkf'max +72)(r¢1ax in its
content is similar to the Debye temperature. The factor

VLK s similar in the content to the Debye sphere 3R.

67y

Indeed, we assume that velocity of sound y in the xy

plane is equal to velocity of sound u in the z direction,

and has some u. Then the factor is equal to
4 4 1/2

Vk U(kzmax +Zmax)

672 u

directed along the axis z kms’ to vector ¥, which is

formed by vectors k, and k, in the plane. Hence we have

the wave vector K in the space xyz, which is equal to

. Further, we’ll add the vector

oLy
T
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—) ) (21)
384 T*

128 T2 400 T3

K* = Kumax' + %max - If We assume that k =K =k, the

3
Vkp

=3R.
6712

factor will be equal to

IV. Analysis of results

From expressions (16) and (22) it is evident that heat
capacity of the decagonal and icosahedral
quasicrystalline phases at high temperatures will exceed
the Dulong-Petit value 3R as distinct from crystalline
phases. This result is confirmed by studies of the
phenomenon of excessive heat capacity of
quasicrystalline phases at high temperatures in the works
[1,5, 6, 7]. Consequently, according to the Gruneisen
law, quasicrystalline phases have higher resistance to the
temperature action, than crystalline ones. The Debye
temperature according to [1,12] for the icosahedral
phase Alg;CuysFe;, of the Al-Cu-Fe alloy is 510 K, and
for the decagonal phase AlgCo,:Niyy of the Al-Co—Ni
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Fig.1. Temperature dependence of heat capacity of quasicrystalline phase: 1 — icosahedral phase AlgsCu,sFe;, of
the Al-Cu—Fe alloy; 2 — decagonal phase AlgC0,,Niyq 0f the AI-Co—Ni alloy.

alloy — 602 K. The temperature dependence for these
quasicrystalline phases is shown in Fig. 1.

The figure shows that heat capacity of
quasicrystalline phases exceeds the level of 3R, with the
maximums at 500 K — 26.5 J/mol'K for the icosahedral
phase and at 620 K — 27.0 J/mol'K for the decagonal
phase. Further the heat capacity begins to decrease, but
remains elevated to the temperatures of ~1120 K for the
icosahedral phase and ~1500 K for the decagonal phase.
Accordingly, the decagonal quasicrystalline AlggCo,:Niyq
phase remains stable to higher temperatures, than the
icosahedral phase of AlgCussFe;,. This result is
consistent with the literature data. Therefore, composite
materials with the decagonal quasicrystalline fillers can
be manufactured at higher temperatures, compared to
icosahedral quasicrystals. Therefore, the usage of
decagonal quasicrystals is more promising one [13, 14].

In contrast to the results given in this paper, in the
works [1, 5] the heat capacity of quasicrystalline phases
increases continuously to 1300 K. It can be connected
with the fact that the authors measured the heat capacity
of the pure quasicrystalline phase. Bat in real structure in
the state of high temperatures it will be possibly to create
defects of the quasicrystalline phase, as described in [15]
or, possibly, quasicrystalline phase is transformed into
crystalline approximants, which are implemented at high
temperatures [16, 17, 18]. Therefore, due to reduction of
the amount of quasicrystalline phase the heat capacity of
the structure begins to decrease.

Conclusions

1. Structure of the quasicrystalline phase can be
considered in the anisotropic crystals’ model
representation, according to which the dispersive law for
the crystalline pattern is represented as a linear one, and
for the quasicrystalline pattern — as a quadratic one. As a
result, we obtained the expressions for the heat capacity
of quasicrystalline phases at high temperatures, which
exceeds the heat capacity of the crystalline phase 3R.
Therefore, with the use of the model of anisotropic
crystals we can explain the phenomenon of excessive
heat capacity of quasicrystalline phases at high
temperatures.

2. According to the results of calculations of the
temperature heat capacity dependence of quasicrystalline
phases, it is seen that the heat capacity of the decagonal
phase AlgCo,:Niyg of the Al-Co-Ni alloy has a higher
maximum and remains excessive. That is, it exceeds the
Dulong-Petit value up to higher temperatures, than the
icosahedral phase Alg;CujsFe;, of the Al-Cu—Fe alloy.
Pursuant to the Gruneisen law, it means that the
decagonal phase is more stable at higher temperatures,
than the icosahedral phase.
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10.B. CI/IpOBaTKOl, 0.0. JleBkoBH4®

TenoeMHICTh IeKATOHAJBHUX TA IKOCACAPUUYHHX
KBasikpucTaaivyHux (a3 npu BUCOKUX TeMIlepaTypax

1,ZZHinponempoe;CbKa ¢hinia deporcasnoi ycmanosu «IHcmumym oxopoHu IpyHmis Yxpainuy,
¢. qocnione, [[ninponemposcoka obnacms, Yxpaina, yu.syrovatko@gmail.com;
2[Tpuoninposceka depoicasna axademia 6ydisnuymea ma apximexmypu, Jninpo, Yipaina, levk.olga77@gmail.com

B poGoTi po3paxoBaHO TEIUIOEMHICTh KBa3iKpUCTATIYHUX HAeKaroHaTbHuX AlggC0,1Nijg Ta ikocaeapuuHmx
AlgsCussFe;, kBasikpucraniunux ¢a3s ciwasis AlI-Co-Ni i Al-Cu—Fe Biamosiano. 3rigHo 3 3akonoM [ proHeiizeHa
TEIJIOEMHICTh € EHEePreTHYHOI0 XapaKTepHCTHKOM, sika BimoOpaxae criiikicts (a3 mo pyiinyBanHs. [lns
PO3paxyHKiB TEIUIOEMHOCTI CTPYKTYPY KBa3iKpHCTATIUHUX (a3 pO3rISHYTO B YSBICHHI MOJEINi aHi30TPOITHHUX
KpHUCTaNiB. Y pe3ylbTaTi OTPHMaHO, IIO0 TEIUIOEMHICTh KBa3iKpHCTATiYHUX (a3 IpPH BHCOKUX TEMIEpaTypax €
HA/UTAIIKOBOIO, TOOTO mepeBuinye piBeHb Jlrononra-Ilti. TakuM 4rmHOM KBa3ikpHCTalmiuHI (a3u HMpH BHCOKHX
TeMIeparypax € OUIbII cTaOiIbHUMH, HDK KpucTamiyHa ¢asza. s JexaroHalbHOI KBa3iKpHCTANidHOI (a3u
TertoeMHicTs Oinmbme 3R B iHTepBanmi Temmeparyp ~ 480 - 1500 K, a mms ikocaegpuyHOi KBa3iKpUCTATIYHOT
¢a3u — B iHTepBam Temmeparyp ~ 380 — 1120 K. 3 mporo BummBae, mo JeKaroHambHi a3y 3aJHIIAIOTHCS
CTIHKUMU ITPU BUCOKHMX TEMIIepaTypax, 3a sIKHX ikocaeApHyHi (a3u pyHHYIOThCS.

KarouoBi ciioBa: kBasikpucramy, jaekaroHaibHa ¢asza, ikocaenpuuHa (asza, IUCHepCiiHUil 3aKoH,
aHI30TPOIis, 130TPOMis, TeMIepaTypHa 3aJeXHICTh TEINIOEMHOCTI, HAJJIMIIKOBAa TEIUIOEMHICTb, 3aKOH
Hromonra-IITi.
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