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This paper presents an elementary model of a crystal and its thermodynamic equilibrium state. It was shown 
that the thermodynamic characteristics of the crystal at this state are described by the Gibbs grand thermodynamic 
potential. If the crystal is removed away from the equilibrium state, then in this state it will be described by the 
set of kinetic properties, and these properties are statistically calculated with the use of the non-equilibrium Gibbs 
grand thermodynamic potential. Crystals’ thermodynamic and kinetic properties have analytical dependence on 
the current carriers dispersion law and chemical potential of these carriers. In this work, it was shown that the 
determination of the dispersion law and chemical potential – these are complicated problems of statistical and 
kinetic theories of crystals’ properties. 
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An elementary model of a crystal. The 
thermal and kinetic properties of 
crystals 

Crystals are composed of the structural particles and 
they are located within a crystal volume. The structural 
particles create the crystal lattice. This lattice has a 
symmetry. Points of the location of the structural 
particles are called the lattice sites. The space between 
these particles is called the interstitial site. As the crystal 
structural particles there are atoms, ions or molecules. 
The interaction between these particles holds them in the 
lattice sites. 

In a crystal can exist the free charge carriers and 
when the crystal is in the thermodynamic equilibrium 
state, these carriers are moving chaotically in the crystal 
interstitial site. Experiments show that electrons with the 
charge   or positive holes with the charge −  can be the 
free charge carriers in crystals. A collection of the charge 
carriers in the crystal is called the electron or hole gas, or 
called as the gas of the charge carriers. 

In thermodynamic equilibrium, there is not any 
action of forced fields on the crystal, and its temperature 
remains constant and the same value in all its points. In 

all crystal states its structural particles hamonically 
vibrate around their nodes, the directions of these 
vibrations are varying chaotically, and the charge carriers 
gas is moving chaotically in the interstitial sites of the 
crystal lattice. It is agreed to think that the system of 
structural particles and the system of charge carriers only 
weakly interact with each other. 

Thus, the crystal as a thermodynamic system, is 
composed of two thermodynamic subsystems of 
particles. One subsystem – this is the gas of charge 
carriers, this gas is considered to be an ideal. The other – 
this a set of structure particles, which harmonically and 
chaotically vibrate around nodes of crystal lattice. 

The thermal properties of conducting crystals are 
determined by the concentration of free charge carriers 
and the character of their motion in the crystal interstitial 
site. 

In the thermodynamic equilibrium state, the free 
charge carriers are moving in a chaotic way, their 
average energy is conserved, and the entropy of the 
system of these carriers obtains its maximum value. This 
is an equilibrium gas of the charge carriers. As it was 
shown in the works [1-5], this gas is described by the 
Gibbs grand canonical thermodynamic potential: 

mailto:jabudjak@ukr.net
mailto:tadeuszwaclawski00@gmail.com


Ya.S. Budzhak, T. Wacławski 

 346 

 

 εµεεε
µε

ε
dfGVd

kT

G
V ∫

∞
−=∫

∞

+
−

−=Ω















 0

),(0)(2
0

1exp

)(
2 . (1) 

 

In this formula,   is the crystal volume,   ( , ) = exp(     ) + 1    is the Fermi-Dirac function,  ( ) =∫     ( )  ,  ( ) is the density of the energy states 
(DOS) of charge carriers lying in allowed band. 

Furthermore, with the use of the potential (1) and 
methods of statistical thermodynamics, it can be shown 
that the thermodynamic functions of the charge carriers’ 
gas are given by the following general formulas:   = Ω −   Ω     −   Ω     ,  = −  Ω     −   Ω     ,  = Ω −   Ω     , 

 = −  Ω     =   , Ω = −2    
  ( )  ( ,  )  ,  = −  Ω    =  −   ,   =        ,   = −Ω,  = −   Ω    , 

and thus, we have: 
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The analysis of the above formulas shows us that the 
all set of thermal properties of the charge carriers’ gas in 
a crystal is fully described by the potential (1) and this 
potential depends on the energy dispersion relation via  ( ) and the reduced chemical potential  •. 

Thermal properties of the crystal lattice are described 
by the well-known Debye potential [4, 5]:  
 ),,( TNDD θΩ=Ω . (2) 

In this formula,   is the general amount of the 
crystal structural particles,   is the parameter of the 
crystal lattice named the Debye temperature. 

The calculations of these thermal properties of the 
crystal lattice, with the use the potential (2), are given in 
the cited literature. 

The general thermal properties of a crystal are 
additive, and their values for an entire crystal are 
calculated by summing the values of thermal properties 
of the crystal lattice and the thermal properties of the 
charge carriers’ gas in this crystal. 

Under some drift perturbations in a crystal, that is, 
the electric field  ⃖ , the temperature gradient ∇ ⃖  (these 
perturbations may exist simultaneously in a crystal), the 

charge carriers’ gas will go out from equilibrium and turn 
into the non-equilibrium particles’ ensemble. In this case, 
the drift force  ⃗  will be act on every particle of charge    [4, 5]:  

    ⃖   =      ⃖   ,       ⃖   =  ⃖ −             ∇ ⃖ , (3) 
where   is the electronic charge,  = ±1 is the sign of 
charge,   is the average energy of a charge carrier,   is 
the Boltzmann’s constant,   is the crystal temperature. 

As a result of the action of the drift force    ⃖   , all 
current carriers start to move in a rectilinear direction. 
Their drift velocity  ⃗  depends on the force  ⃗  and the 
crystal properties. 

The presence of this drift velocity  ⃗  forms a particle 
flux in the crystal. There is electric charge and heat 
(energy) transport in this crystal. Thus, under the drift 
fields in the crystal, the set of charge carriers turns into 
the non-equilibrium grand canonical ensemble with the 
varying amount of the particle. This grand canonical 
ensemble, as it was shown in work [1], when the spin 
degeneracy was taking into consideration, is defined by 
the Gibbs grand canonical thermodynamic potential: 
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In this formula ,  ⃗ is the charge carrier wavevector,  =   ⃗ is the charge carriers’ energy dispersion relation, Δ ( ⃗) 
is the change in the one particle chemical potential by the action of these perturbations (these will remove the crystal 
away from the equilibrium state). When the perturbations are absent, Δ ( ⃗) = 0. 
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The valueΔ ( ⃗) was calculated in the work[1], where it was shown that Δ ( ⃗) is an odd function of the vector  ⃗, 
and in an isotropic crystal under action of the magnetic induction vector   ⃗ , this value is given as:  
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In this formula,     and      are the well-known 
Kronecker delta and Levi-Civita symbols, and  ( ) is the 
well-known scattering function and it describes the effect 
of scattering processes by crystal lattice defects on the 
crystal kinetic properties. 

Analysis of statistical calculations of the 
crystals’ thermal and kinetic 
properties 

In the cited works, it was shown that in a crystal (this 

crystal is described by the Gibbs’s grand canonical 
thermodynamic potential (4)) the electric charge and heat 
transport processes exist, and they are described by the 
following generalized electrical and heat conduction 
equations:
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In equations (6), (7), the symmetric tensors     (  ⃗ ) ,     (  ⃗ ) ,     (  ⃗ ) ,     (  ⃗ )  – these are respectively, 
the material tensors of the resistivity, Seebeck effect, 
Peltier effect and thermal conductivity of the crystal. 
They are even function of the magnetic induction vector   ⃗ . 

The coefficients  (  ⃗ ) and  (  ⃗ ) – these are the 
coefficients of transverse galvanomagnetic Hall and 
Ettingshausen effects, and the coefficients  (  ⃗ ) and  (  ⃗ ) are the coefficient of transverse thermomagnetic 
Nernst-Ettigshausen and Righi-Leduc effects. In the 
isotropic crystals they are even and scalar function of the 
magnetic induction vector   ⃗ , that is:  (  ⃗ ) =  (−  ⃗  ),  (  ⃗ ) =  (−  ⃗  ),  (  ⃗ ) =  (−  ⃗ ),  (  ⃗ ) =  (−  ⃗ ). 

The analysis of equations (6), (7) shows that in the 
presence of a magnetic field, an isotropic crystal 
becomes anisotropic, and the relativity simple processes 
of the electric and heat conduction will become more 
complicated. In this case, the additional transverse 
galvanomagnetic and thermomagnetic effects there 
occur. 

The galvanomagnetic effects are produced by the 
action of a magnetic field on the omic part of the 
electrical current, and the thermomagnetic effect – by the 
action of this field on the thermal part of the current, 
accordingly to the generalized equations of the electric 
conduction (6). 

The kinetic tensors and coefficients in equations (6), 
(7) describe the nature of the important material 
properties of conducting medium and they are of 

pragmatic significance for problems of the crystal 
properties prediction during synthesis of the crystals with 
prescibed properties. In the presence of a weak magnetic 
field in the crystal (when condition ( ( ) ⃖ ) ≪ 1 
holds), or when the magnetic field is absent, all four 
kinetic tensors turn into scalars, and therefore all 
important kinetic properties of an isotropic crystal are 
described by the following set of scalars:  ( •, ),  ( •, ),  ( •, ),  ( •, ),  ( •, ),  ( •, ),  ( •, ),  ( •, ) and the concentration of charge carriers (current 
carriers)  =  ( •, ). 

All these kinetic coefficients and  =  ( •, ) for 
macroscopic crystals, as it was shown in the works [1-5], 
can be calculated with the use of the following 
algorithmic functional: 
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With the use of this functional, in the presence of a 
weak magnetic field, or when the magnetic field is 
absent, the full set of kinetic properties of isotropic 
crystals will be described by the following formulas:  ( •, ) = 1   (0, 0, •, ) (0, 1, •, ),  ( •, ) = 1    (0, 0, •, ) (0, 2,  •, ) (0, 1, •, ) ,  ( •, ) =      (1, 1,  •, ) (0, 1,  •, ) −  • ,  ( •, ) =     ( •, )   (1, 1,  •, ) (0, 1,  •, ) −  (1, 2,  •, ) (0, 2,  •, ) , 
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 ( •, ) =   ( •, ),  ( •, ) =   ( •, ),  ( •, ) =        ( •, )  (2, 1, •, ) (0, 1, •, ) −   (1, 1, •, ) (0, 1, •, )   ,   ( •, ) =  ( , , •, ) ( , , •, ),   ( •, ) =  ( , , •, ) ( , , •, ),  ( •, ) =  (0, 0,  •, ). 
The above formulas show that an anisotropic crystal 

(that its anisotropy was obtained by the action of a 
magnetic field) turns into an isotropic crystal, when the 
magnetic induction vector   ⃗  fulfils the condtition ( ( ) ⃖ ) ≪ 1, or   = 0. 

The Gibbs potential (1) and functional (8) depend on 
the energy dispersion relation  ( ) ⃖    (via  ( )) and the 
chemical potential   ( via the Fermi_Dirac function   ( , ) =  exp(     ) + 1   ). Therefore, the crystal 
thermal and kinetic properties have the same 
dependences on ( ) ⃖    and  . 

The energy dispersion relation is called the analytical 
formula  ( ) ⃖   , which describes the dependence of the 
crystal charge carrier energy   on this carrier 
quasimomentum  ⃖. 

The energy dispersion relation  ( ) ⃖    – this is a 
difficult and an essential quantum-mechanical problem. 
For isotropic crystals, the quantum-mechanical 
calculations give basis for the following general isotropic 
dispersion relation:  
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In this formula,  ( ) is the quantum mechanical 
energy function of the first-order with respect to the 
parameter   ,   is the electronic mass,    is the charge 
carrier reduced effective mass in a crystal. 

A function  ( ) is called homogeneous function of 

the first-order if for all values of parameter   , the 
condition  (   ) =    ( ) holds. 

The above analysis of the statististical calculations of 
the crystals thermal and kinetic properties shows that all 
these properties analytically depend on the dispersion 
relation (9). and all calculated parameters, in the 
algorithmic calculations, depend on the dispersion 
relation (9). 

There are the following parameters:  ( ) is the 
current carriers density of states (DOS) lying in allowed 
bands of crystals,  ( ) = ∫     ( )  ,  ( , ) is the 
dimensional scattering function which describes the 
action of the current carriers’ scattering processes (in the 
defects of crystal lattice) on the crystals kinetic 
properties. 

For the dispersion relation (9), these quantities take 
the forms:  ( ) = 83√  2    ℎ   /   / ( ),  ( ) =   ( )  = 4 √  2    ℎ   /   / ( )    ,  ( , ) =   ( )  / ( ),    ( , )= 32 1    ( )  / ( )    ,   ( ) = 83√  2    ℎ   / , 
 ( , ) =  ( )( ) (    )        =  ( )( ) (    )         ,  ( , ) =  ( , )  (   / )( )   ( )    . 

In the last formula,  ( ,  ) is the temperature 
function, it has a dimension of the mobility and it is 
described by the following formula: 
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where   ,   ,    are the dimensional crystal constants, which depend on the nature of the crystal and the scattering 
mode of current carriers in the crystal lattice,  ( ,  ) is the known Kronecker symbol, it has the following values:  ( ,  ) = 1 for  =  ,  ( ,  ) = 0 for  ≠  ,   is the scattering parameter and it has the following values:  = 0 for 
the scattering by the acoustic phonons in the crystal lattice,  = 1 for the scattering by the optical phonons of the crystal 
lattice,  = 2 for the scattering by the charged impurities (ions) of the crystal lattice. 

For the dispersion relation (9), the algorithmic functional  ( ,  ,  •,  ) takes the form: 
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where the dimensionless integral  ( ,  ,  •,  ) is given as:  
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The algorithmic formulas for the thermal and kinetic 
properties of crystals have an analytically dependence on 
the dispersion relation via the function  ( ) and on the 
reduced chemical potential  • =  /   via the Fermi-
Dirac function   ( ,  •) = (exp( −  •) + 1)  . In these 
relationship, the quantity   denotes the charge carrier’s 
free energy in a crystal (electron’s or hole’s energy), and  • =  /   is the reduced free energy of this charge 
carrier, which is called the reduced chemical potential. 

In statistical physics it was shown that  •is a root of 
the known neutrality equation for the fabricated crystals. 
Thus, theoretical calculations of the chemical potential   
are associated with algebraic methods of finding 
solutions of the neutrality equations for crystals. 

Consider n-type semiconductor crystal which is 
doped with both type of impurities, donors and acceptors. 
The concentrations of donors is   , and the 
concentrations of acceptors is   . The respective 
activation energies of them are   ,   . As it was shown 
in the cited works [4, 5], there is the impurity screening 
by current carriers in such semiconductors, and the 
neutrality equation has the following form: 
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In this equation,   • =   /  ,   • =   /   there 

are the reduced activation energies of donors and 
acceptors,  ( •,  ) =  (0, 0, •, ) = ∫     ( , )  −    ( , •)      is 
the electron gas concentration in a crystal. 

In consequence of this shielding, the donors’ 
activation energy    depends on the electron gas 

concentration and temperature, and this energy is given 
by the following general formula: 
   ( ) =    ( , ). (14) 

In this formula,  ( ,  ) is the shielding function and 
it takes the form: 

 
  ( , ) =  2 (  ( )  )    − (  ( )  )    ( )    , 
 

where  =     • =          (  )   ( •, )  •    / 
 is the 

shielding parameter,   =  ( •, )0           ( •, )  •    / 
is the shielding radius. In 

these formulas,   is the radius of a hydrogen atom,   is 
the dielectric constant,   is the free electron mass,    is 
the reduced effective mass of a current carrier in a 
crystal,   ( ) and   ( ) are, respectively, the real and 
imaginary parts of a root of the following cubic equation:   −    −   + 2 = 0. 

This equation has tree roots. Under the condition of 
the calculation problem, which brings to formula (14), 
there is only one root having maximal positive value of   ( ). 

The shielding function  ( ,  ) has the following 
properties:  ( ,  ) < 0 for  < 2,  ( ,  ) = 0 for  =2,  ( , ) → 1 for  ≫ 2. 

The Heaviside function Φ( − 2) in equation (13) 
has the following values: Φ( − 2) = 1 for  ≥ 2 and Φ( − 2) = 0 for  < 2. 

From the formula for shielding parametr we have the 
following equation: 
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For  < 2, equation (13) has the following form:  ( •, ) =      ( )  −∂  ( , •)∂    =   −  . 

 
It should be noted that when  < 2, then by formula (15) the above equation is fulfilled the case of crystals with the 

high concentration of degenerate current carriers. In this connection, the integral in this equation can be calculated 
reasonable well with the Sommerfeld expansion and the equation obtains the following form  

  ( •, ) =  (  ) + ( −   ) (  ) +   6 (  )   (  )   =   −   . 
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In this equation,    is called the Fermi level. In its 
mathematical and physical meaning this equation may be 
divided into the following two equations: 

  (  ) =   −   =  (  ), ( −   ) (  ) +   6 (  )   (  )   = 0. 
A root of this equation has the form   =    1 −   6 ⋅ (  )    (  ) ⋅   (  )    , 

thus   • =   •  1 −   6 ⋅ 1  • (  • ) ⋅   (  • )   •  , 
 

here  • =    ,   • =      are, respectively, the reduced 
chemical potential and reduced Fermi level. 

Finally, we have that the general solution of the 
neutrality equation (13), when  < 2 and      = . ⋅      (  )   , will be given by the following two 
equations: 
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These equations show us that under these condition, 

heavily doped crystals have signs of metals. In metals, 
the current carriers concentration (16) does not depend 
on temperature, and the chemical potential decreases 
with a fall in temperature. 

Under a condition that  ≫ 2, the shielding function  ( , ) → 1, thus equation (13) turns into the following 
equation: 
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However, if a condition  ≫ 2 holds, then from 

formula (15) it follows that the electron gas 
concentration is low and there is a non-degenerate gas in 
the crystal. 

Then, we have: 
  ( •, ) = ∫     ( )  −    ( , •)     ≅ ( •, ) = ∫     ( ) ⋅      ⋅   • =  ( ) ⋅   • , 
  ( ) = ∫     ( ) ⋅      . 
Therefore, the neutrality equation (13) has the 

following form: 
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This equation has the following analytical solution 
[4, 5]: 
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The notation used in this formula are listed below: 

 (  ,  ,  ) =   4    1 + 2      + 8(  −  )  
−  1 + 2      , 

  =  ( )exp  −     . 
The equation just listed is not adequate to describe 

degenerate current carriers. 
The general analysis of equation (19) shows that the 

chemical potential  • (20) determined from this equation 
has a maximum at some temperature   . The extremum   •  and a temperature value, where the reduced chemical 
potential has its maximum value, may be determined 
from the following equation system:  ( •, ) = 0,   ( •, )  = 0, 
where the function  ( •, ) is given by the formula:  ( •, ) =  ( ) ⋅   • −   1 + 2exp(  • +  •) +   = 0. 

The functional analysis of this system of 
transcendental equation shows that its solution always 
exists. 

If the shielding parameter of a doped crystal  ≅ 2, 
then by formula (15) the current carriers in this crystal 
are weak degenerate. This makes the solving of the 
neutrality equation (13) more complicated. The method 
of solving this problem is detaily described in work [5]. 
This solution is defined by complicated functions and 
they are a complex subject of analyses, then in this work 
this solution is not given. 

The calculations of the thermal and kinetic properties 
of conducting crystals given in this work show us that all 
they are described by the following algorithmic 
functional: 
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with the indices  = 0, 1, 2;   = 0, 1, 2. 

For calculations of the thermal crystal properties this 
functional has the such indices:  = 0;   = 0. Therefore, 
we have:  (0, 0, •, ) =    

  ( , )  −   ( ,  •)     =  ( •, ) = − 1   Ω  • . 
As it was shown above, the thermodynamic Gibbs 

potential Ω = −2 ∫     ( )              = −2 ∫     ( )  ( ,  )   

fulfils this equation, and the general algorithmic 
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functional (21) for the dispersion law (9) has the form: 
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In crystals with a narrow energy gap   , the 
dispersion law (9) is described by the Kane’s 
nonparabolic band:   2   =   +      =   +  ( )      , 

where  ( ) =      is the parameter of nonparabolicity. 
Hence, the dimensionless integral  ( ,  , •, ) is given 
as: 
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In crystals with a wide energy gap   , the 
nonparabolicity parameter  ( ) =     ≪ 1 → 0. That is 
to say in such crystals, the the dispersion law is a 
parabolic, and integral (24) takes the following form: 
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where  ( ,  ) =  +   −  /2 + 3/2. In this formula, the 
function   ( , )( •) is well-known the Fermi integral: 
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µ
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For crystals with non-degenerate current carriers, 
where their reduced chemical potential  • < −4, this 
integral is given as :  

 

 
•

+Γ=• µµ ejiajiaF )1),(()(),( , (25а) 

 
where Γ( ( ,  ) + 1) is the gamma function. 

In a case of a strong degeneracy  • > +4, the Fermi 
integral is given as: 

 

 ),()()(),(
jia

jiaF •≅• µµ . (25б) 

 
Formulas (26), (27), (28) give the possibility to 

calculate the kinetic properties of crystal with a parabolic 
dispersion law for non-degenerate and strong degenerate 
current carriers. 

In crystals with a narrow energy gap   , the non-
parabolicity parameter, as a rule, fulfils the condition  ( ) =     < 1. In this connecton we expand the integral  ( ,  ,  •, ( )) in a Taylor series of the parameter  ( ) 
and we restrict ourselves to the linear term of this 
expansion: 
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Since in the last formula ( ( ,  ) −  − 4 )   ( , )( •)  ( , )( •) ⋅ ( ) = Δ( ,  , •) ⋅  ( ) < 1,then it may be written in a 
form to be more conveniently to analysis:  ( ,  ,  •, ( )) ≅   ( , )( •)exp(Δ( ,  , •) ⋅  ( )).
 (29) 

 Formula (29), together with the algorithmic 
functional (29), give us the possibility of analysis and 
calculate all set of the thermal and kinetic properties of 
the current carriers gas in conducting crystals with the 
Kane’s dispersion law. 

In crystals with a wide energy gap   , the 
nonparabolicity parameter  ( ) =     ≪ 1 → 0, as a 

rule, fulfils the condition  ( ) =     ≪ 1 → 0. Hence, 
we have: 

( ) )(0exp)())(,,,( ),(),(
••• =≅ µµβµ jiajia FFTjiI .  (26а) 

Formula (29) implies that in isotropic crystals with a 
wide energy gap   , there is a parabolic energy 
dispersion law of current carriers and all set of the 
crystals thermal and kinetic properties is given by 
formula (30), that is by the appropriate Fermi integral. 

In the cited work [5], it was shown that real 
semiconductor crystals have fundamental characteristics   • (  ,  , ) and   (  ,  , ) and these 
characteristics depend on the crystal nature and do not 
depend on the concentration of dopant atoms. These 
characteristics can be determinated with the use of the 
following integral equations:    

  ( , )  −   ( ,  • )     =  0 4        / ,    
  ( , )  −   ( ,  • )     =   (  ,  , ). 

For the Kane’s dispersion law in this formula, the 
quantity  ( , ) is given by  ( , ) = ( +  ( )  ) / , 
and  ( , ) =   ( , )  ,  0 = 35.342,  ( ) =     ;   ( ,  • ) is the known Fermi-Dirac function,    is the 
dielectric constant of the crystal. 

Critical values of the reduced chemical potentials   • (  ,  , ) and concentrations   (  ,  , ) give the 
condition of turning the semiconductor crystal into 
metalic type of crystal. Therefore, if for a crystal the 
condition  • <   • (  ,  , ), ( •, ) <   (  ,  , ) 
holds, then this is a semiconductor type crystal, and if the 
condition  • >   • (  ,  , ), ( •, ) >   (  ,  , ) 
holds, this crystal has metallic properties. 

In crystals of metals the current carriers 
concentration does not depend on temperature and the 
current carriers are strongly degenerate. In 
semiconductor crystals, they are weakly degenerate (−4 <  • < +1.2) or non-degenerate ( • < −4), their 
concentration strongly dependent on temperature. Their 
chemical potential depends on temperature and it has a 
maximum in its temperature domain. The existence of 
this maximum shows that there are electron transitions 
from donor energy levels to the conduction band. Thus, 
the electron concentration grows as temperature 
increases. The impurity atoms concentrations and donors 
ionization energy may be determinated with the use of 
this extremum. 
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До питання про проблеми статистичних розрахунків термодинамічних 
та кінетичних властивостей провідних кристалів 

1Національний університет «Львівська політехніка», м. Львів, Україна, e-mail: jabudjak@ukr.net 
2Краківська політехніка, м. Краків, Польща, e-mail: tadeuszwaclawski00@gmail.com 

В даній роботі описана елементарна модель кристалу та його термодинамiчно рiвноважний стан. 
Показано, що термодинамічні характеристики кристала в такому стані описуються великим 
термодинамічним потенціалом Гіббса. Якщо кристал виведений із стану термодинамічної рівноваги то в 
цьому стані він описується множиною кінетичних властивостей, які статистично розраховуються за 
допомогою великого термодинамічно нерівноважного потенціалу Гіббса. Термодинамічні і кінетичні 
властивості кристалів мають аналітичну залежність від закона дисперсії носіїв струму кристала та їх 
хімічного потенціалу. В роботі показано, що визначення закону дисперсії та хімічного потенціалу – це 
складні проблеми статистичної  і кінетичної теорії властивостей кристалів. 

Ключові слова: потенціал Гіббса, закон дисперсії, хімічний потенціал, дрейфова сила. 
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