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In this paper, the model of InAs/GaxIn1-xAs cubic quantum dot superlattices (CQDS) of various 
dimensionality has been proposed. The energy spectra of electrons and holes of the quantum dot superlattice have 
been determined in the effective mass approximation and modified Kronig-Penney model. In the frame of this 
model, the spectra of charges of 3D, 2D and 1D-superlattices can be obtained by changing respective distances 
between the elements of the superlattice. The energy dependence of the electron and hole subbands (under-the-
barrier subbands and over-the-barrier subbands) on the wave vector of the superlattice has been calculated. The 
number of under-the-barrier subbands is determined by QD size and width of each subband is defined by QD 
size, distances between superlattice elements and subband numerical index. 

The dependences of the Fermi energy and concentration of charge carriers on temperature, concentration of 
impurities, energy of impurity levels have been obtained and analyzed. We have taken account of the dependence 
of electron relaxation time on temperature caused by scattering of carriers on both phonons and donor centers. 
The effect of the impurity system on electroconductivity of the CQDS is investigated. It has been shown that in 
the presence of deep impurities (-750 meV) the temperature dependence of conductivity of the superlattice has 
characteristic peaks, which are defined by concentrations of impurities and dimensionality of the superlattice. A 
different temperature dependence of conductivity has been observed for impurities with the energy of occurrence 
-150 meV. 
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Introduction 

In recent years the growing interest of researchers, 
engineers and technologists has been drawn to low-
dimensional systems, among which superlattices 
constitute a special class. The practical significance of 
such systems for electronics and optoelectronics is 
justified by increased performance and reduced energy 
losses. Superlattices, particularly quantum dot (QD) 
superlattices, are rather important to fundamental science 
as completely new types of artificial materials with 
unusual physical properties. Nanostructure engineering 
[1] of these materials makes it possible to get 
nanostructures with predetermined physical properties, 
which are widely used in electronic and optoelectronic 
devices [2]. 

Within the approximations of electron effective mass 
and rectangular potentials, the theory of electronic 
dynamic conductivity was developed for multibarrier 
structures (both of plane and cylindrical shape) in [3-5]. 

The authors in [6] study superlattices of tunnel-connected 
GaAs QDs, periodically assembled along the elliptic 
quantum wire, in the matrix AlxGa1-xAs. It is shown that 
the electron energy spectrum in such superlattices is a 
series of energy minibands, and the position and number 
of these minibands is determined by the QD size. The 
width of allowed and forbidden minibands depends on 
the thickness and height of potential barriers. 

Models of three-dimensional superlattices of 
InAs/GaAs and Ge/Si quantum dots of various geometry 
(cubic and tetragonal) are considered in [7, 8]. The 
authors calculated electron and phonon spectra of the 
superlattices. The dependence of conductivity tensor of 
the superlattice on its main parameters is studied and 
shown that properties of the superlattice are more 
sensitive to interdot distances than to the form of 
quantum dots. 

In [9] in the tight binding approximation the 
electrical properties of GaAs/AlxGa1-xAs spherical 
quantum dot superlattices (SQDS) of various 
dimensionality are studied, depending on the Fermi 
energy and temperature, concentration of aluminum in 
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the matrix. For given parameters of the system the 
calculations were performed to obtain conductivity, 
containing contributions of the s- and three p-minibands, 
with its maximum near the miniband center. The growth 
of conductivity is observed with decreasing QD radius 
and aluminum concentrations, and also with increasing 
SQDS dimensionality. The temperature dependence of 
conductivity is also examined at various parameters of 
such systems. 

In this paper, the model of InAs/GaxIn1-xAs cubic 
quantum dot superlattices (CQDS) of various 
dimensionality has been proposed. The energy bands 
spectra of the system have been studied. The temperature 
dependence of the Fermi energy of the CQDS with 
impurities has been received and analyzed. We have 
taken account of the dependence of electron relaxation 
time on temperature caused by scattering of carriers on 
both phonons and donor centers. The effect of the 
impurity system on electroconductivity of the CQDS is 
investigated. 

Setting of the problem 

Let us consider a system of spatially assembled cubic 
quantum dots of equal size, which are placed in the 
matrix, as shown in Fig. 1, i.e., a cubic quantum dot 
superlattice (CQDS). If 1 2 3a a a= = , CQDS will be 
called a 3D superlattice, when 3 1 2a a a=  , a 2D 
superlattice, and for 3 1 2a a a= , a 1D superlattice. It is 
clear that the translation vector of the superlattice 

1 1 2 2 3 3n n a n a n a= + +
r r r r , 

where in (0, 1, 2,...)± ± , iar ( 1, 2,3)i =  are basic 
translation vectors. Their directions coincide with the 
axes of the Cartesian coordinate system. 

We are interested in nanoscale heterosystems of 
wide-gap semiconductors. A theoretical study of such 
systems often involves solving the Schrödinger equation 
for electrons or holes. The problem can be solved by 
various methods: using finite elements [10], attached 
plane waves [11], or pseudopotential [12] etc. We limit 
ourselves to research CQDSs of small size (2-10 nm) 
semiconductor quantum dots, which are characterized by 
size quantization of charged particles. In view of the 
above, we employ the parabolic band approximation and 
the effective mass approach to determine the energies 
and wave functions of not only electrons but also holes 
(heavy holes). 

The Schrödinger equation which describes the 
motion of a charged particle (electron or hole) in a 
CQDS can be written as follows: 

2 1
( ) ( ) ( )

2 ( ) v vV r r E r
m r

 
− ∇ ∇ + ψ = ψ 

 

h r r r
r . (1) 

The periodic potential ( )V rr  which corresponds to an 
infinite sequence of cubic quantum dots  

1 1 1 1

2 2 2 2

3 3 3 3

0

0,    
( )

,   in another region of space,

n a x n a L
n a y n a L

V r
n a z n a L

U

 ≤ ≤ +
  ≤ ≤ +=   ≤ ≤ +



r  (2) 

( )m rs is the effective mass of a particle. 
Schrödinger equation (1) cannot be solved exactly. 

We shall simplify expression (2) of the particle potential 
energy and approximately present ( )V rr  in the form of a 
sum of three independent periodical coordinate functions 
х, у and z: 

( ) ( ) ( ) ( )V r V x V y V z= + +
r . 

It is necessary to solve the Schrödinger equation with 
a periodical potential to calculate the energy spectra of 
electrons (holes) in the superlattice 

0

0,   
( )

, ( 1)
i i i i i

i
i i i i i

n a x n a L
V x

U n a L x n a
≤ ≤ +

=  + ≤ ≤ +
, (3) 

where 1,2,3i = ; 1x x= , 2x y= , 3x z= . This choice of 
the potential allows one to split the motion of a charged 
particle in three directions. Three-dimensional 
Schrödinger equation (1) in this case will be written in 
the form of three identical one-dimensional equations. 
Then the envelope wave function of equation (1) can be 
represented as a product of three one-dimensional 
eigenfunctions 

1 2 3

3

, , 1 2 3
1

( ) ( , , ) ( )
i i

i
r x x x xν ν ν ν ν

=

ψ = ψ = ϕ∏r ,  (4) 

the energy 
1 2 3

E E E Eν ν ν ν= + + . It is necessary to use the 

following equation to determine 
i

Eν  and 
iνϕ :

 
2 1 ( ) ( ) ( )

2 ( ) i i ii i i
i i

V x x E x
x m r x ν ν ν

 ∂ ∂
− + ϕ = ϕ ∂ ∂ 

h
s , 1,2,3i = , (5) 

Shrödinger equations (5) correspond to the well-
known Kronig-Penney model. According to this model, 
the solution of every equation from (5) is known [13]. 
The energy of the system is determined from the 
corresponding dispersion relations in various energy 
regions of the particle. 

If 00 E Uν< < , the dispersion relation has the form 

 
 
Fig.1. Geometry of the cubic quantum dot 
superlattice. 

 



V.I. Boichuk, I.V. Bilynskyi, R.I. Pazyuk 

 96

( ) ( )2 2

2 1

2 1

cos( ) cos( )ch( )

sin( )sh( ) 0,
2

i i i

i i

i i

i i

ik a L d

m m
L d

m m

ν ν ν

ν ν

ν ν
ν ν

− χ ξ +

χ − ξ
+ χ ξ =

χ ⋅ξ

      (6, а)

 
In case of 0E Uν > , it is written 

( ) ( )2 2

2 1

2 1

cos( ) cos( )cos( )

sin( )sin( ) 0,
2

i i i i

i i

i i i

i i

ik a L d

m m
L d

m m

ν ν ν ν

ν ν

ν ν ν
ν ν

− χ ξ +

χ + ξ
+ χ ξ =

χ ⋅ξ

(6, b)

 

where 
( )1 0

2

2
i

i

m U Eν

ν

+
χ =

h
,

2

2

2
i

i

m Eν

νξ =
h

,  

1 2,m m  are effective masses of a quasiparticle inside and 
outside the QD. Hence, 

3

1
( ) ( )

i i
i

E k E kν ν
=

= ∑
r

, { }, ,1 2 3ν = ν ν ν .   (7) 

The dispersion relation of electrons and holes in a 
CQDS allows one to determine the specific 
electroconductivity of the system. Let us place this 
system in a uniform electric field. If the intensity of this 

field is relatively small, the current density vector is 
defined by the following general formula [14]: 

( ) ( )
2

3 , ,
4
e fj T E v v dk

E
∂

τ ∇Φ
∂π ∫=

rrr r r , (8) 

where f  is the electrons distribution function, vr  is their 
average velosity, ( )Tτ  is relaxation time; the intensity of 
the external electrostatic field is expressed through the 
scalar potential ( )E ∇Φ

r r
= − . Relation (8) can be written 

i ii i
i

j E′ ′= σ∑ .  (8’) 

For the conductivity tensor of formula (8’) the 
account is taken of contributions of all occupied 
electronic minibands of the structure, therefore   

, ,e n h m
ii ii ii

n m
′ ′ ′σ = σ + σ∑ ∑ , (9) 

where ,e n
ii′σ , ,h m

ii ′σ  are components of electron and hole 
conductivity tensors. In particular, for electron 
conductivity we have: 

 

 ( ) ( ) ( )

( )

( )

exp
2, , ,,3 24

exp 1

nE k Ee F
k TBee n e n e nT E v k v k dki jii BZk T nB E k Ee F

k TB

 −
 
 
 σ = τ∫∫∫′ π   −   +     

r

r r r

r
, (10) 

 

In equation (10) the following notation is introduced: 
e is the electron charge, Bk  is the Boltzmann constant, T  
is tempetature, FE  is the Fermi energy of the electon 

system, ( )n
jv k

r
 is the i-component of the electron group 

velocity vector of the n-thsubband.  

( ) ( )1 2 3
1 2 3

, ,1, , .
n
en

i
i

E k k k
v k k k

k
∂

=
∂h

 

The integration in (10) is done over the Brillouin 

quasizone. By analogy the expression of hole 
conductivity matrix elements can be obtained.  

The Fermi energy is found from electroneutrality 
conditions. We consider the case of doping the matrix by 
one type of monovalent donor impurity atoms. Then we 
get the equation to determine the Fermi energy as a 
function of temperature: 

 

 2 2
( ) ( ), , exp 1exp 1 exp 1

nD
n m E EE k E E E kn k m ke F DF F h

k Tk T k T BB B

= +∑ ∑
     −− − +
      ++ +          

r rr r , (11) 

 

where Dn  is donor concentration, DE  is the energy of 
occurrence of the donor level, FE  is the Fermi energy of 

the heterosystem, ( ) ( )eE kρ
r

 and ( ) ( )m
hE k

r
 are energies of 

electron and hole subbands respectively, the energy of 
occurrence of donor states DE  is counted from the 
bottom of the conduction band of the semiconductor 
matrix. The left part of equation (11) specifies 
concentration of electrons in electronic subbands, the 
first term in the right part refers to concentration of holes 

in hole subbands, and the second term of the right part of 
the equation relates to concentration of holes at the 
impurity levels.  

It is seen from equation (10) that conductivity ,e n
ijσ  is 

determined also by relaxation time ( )T,Eτ . Most authors 
assume for simplicity that relaxation time τ is constant 
and equal to, e.g., 12

0 10 s−τ =  [8]. At a first 
approximation this assumption is substantiated in case of 
small temperature changes. However, it is known that in 
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case of most semiconductors [15] there is a significant 
nonlinear change of relaxation time with temperature. 
The dependence ( ),T Eτ = τ  is caused by scattering of 
electrons both at phonons and at donor centers. 
Scattering at acoustic phonons at the expense of the 
deformation potential allows one to express relaxation 
time as follows [16]:  

ar
a aC Eτ = ,  where 

1
2ar = − , 

2 42 2

3 2 3
0 1

(2 )

2 2 2
s

a

a

Mc
C

B m V kTE m

ππ
= =

hh , (12) 

5 ñì10
ñsc −  is the phase velocity of longitudinal ( 1s = ) 

and transverse ( 2,3s = ) sound waves, m  is the effective 
mass of a quasiparticle, 0V  is the volume of an 
elementary cell.  

Whereas scattering at polarization phonons is 
characterized by the following relaxation time: 

pr
p pC Eτ = , where 

1
2pr = + , 

2 22 2
0 1 2 0
43

1 2

(2 )
4 ( ) 22 2

p

p

V M M
C

kTe M M mB m

ωπ
= =

π +

hh .    (13) 

Taking into account scattering at donor centers 

Dr
D DC Eτ = , where 

3
2Dr = + , 

2 2 2 3 / 2
1 0

4 23

8(2 ) 2 ln
2 2

D
DD

mErE mC
n eB m

−  π ε
= ≈  

π  

h

h
,   (14) 

0r is the screening radius, Dn  is concentration of a donor 
impurity.  

General relaxation time can be derived from the 

equation 1 1 1 1

a p D

= + +
τ τ τ τ

. 

Analysis of the results 

Specific numerical calculations are carried out for 
cubic quantum dot superlattices of the InAs/GaxIn1-xAs 
with the parameters  

1 00.023em m= , 2 0(0.023 0.044 )em x m= + , 
0.77 eVeV =

 
1 00.55hm m= , 2 0(0.55 0.04 )hm x m= + , 0.33 eVhV =

 
As seen from (10), it is necessary to determine the 

Fermi energy of the heterosystem in order to get specific 
conductivity of the CQDS. 

In Fig.2 curves of temperature dependences of the 
Fermi energy are presented for a 3D InAs/GaAs CQDS 
(L=96 Å) at different concentrations of donor impurities 

14 16 18 310 ,10 ,10 cmDn −=  and different energies of 
occurrence of the impurity level 

150, 450, 750 meVDE = − − − . We obtained different 
behavior of dependences of the Fermi energy on 
temperature at different concentrations Dn . In case of 

18 310 cmDn −=  the functions ( )F FE E T=  (curves 7,8,9) 
are monotonic, whereas at certain temperatures there are 
minima (curves 1-6) at smaller concentrations 

14 16 310 ,10 cmDn −= . The change in energy of occurrence 
of the impurity level significantly changes the energy 

FE  at the presence of large donor concentrations 
( 18 310 cmDn −= ). At small Dn  ( 16 3 14 310 cm ,10 cmDn − −= ) 
the chemical potential slightly depends on DE  and if 

600KT > , and 16 310 cmDn −= , and 100KT > , and 
14 310 cmDn −= , then ( )F F DE E E≠ . 

 
Fig. 2.Temperature dependence of the Fermi energy of the 3D InAs/GaAs CQDS (L=96 Å) at different 

concentrations of impurities (curves 1,2,3 refer to 1014 cm-3; curves 4,5,6 relate to 1016 cm-3; curves 7,8,9 refer to 
1018 cm-3) and energies of occurrence of the impurity level (curves 1,4,7 attribute to -750 meV; curves 2,5,8 refer to 

-450 meV; curves 3,6,9 relate to -150 meV). 
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The next stage of our work was to research the 
dependence of charge carrier concentration in the 
subbands on the given parameters. 

The calculations of electron concentration en  in the 
subbands showed that depending on the energy of 
occurrence of the donor levels different types of 
dependences are possible at given concentrations of 
impurities. At the donor energy 

( ) ( )min 714 meV min 609 meVD gr excE E k E k< = − < = −
r r

, e.g., 750 meVDE = − , electrons both in the excited and 
the ground subbands are practically absent and charge 

carrier concentration en  monotonously rises with 
temperature (curves 2,4,6 in Fig.3) for all values Dn  
( 14 16 18 310 ,10 ,10 cm−  respectively). For donor energies 

( ) ( )max 340 meV max 666 meVD exc grE E k E k> = − > = −
r r

, e.g., 150 meVDE = − , there are different temperature 
dependences of concentration en . For each Dn  there is 
its own temperature interval within which charge carrier 
concentration does not depend on temperature. In 
particular, if 16 310 cmDn −= , the relevant region is 

 

 
Fig. 3.Temperature dependence of concentration of ground state electrons for the 3D CQDS InAs/Ga0.15In0.85As 

(L = 96 Å) at different impurity concentrations (curves 1,2 refer to 1014 сm-3; curves 3,4 stand for 1016 сm-3; curves 
5,6 relate to 1018 сm-3) and energies of occurrence of the impurity level (curves 1,3,5 refer to -150 meV; curves 

2,4,6 stand for -750 meV). 
 

 
Fig.4.Temperature dependence of electroconductivity of the InAs/Ga0.15In0.85As (L=96 Å) CQDS of various 

dimensionality (curves 1,2 stand for 1D; curves 3,4 refer to 2D; curves 5,6 relate to 3D), energies of occurrence of 
the impurity level DE  (curves 1,3,5 refer to -150 meV; curves 2,4,6 stand for -750 meV) at concentration of 

impurities 18 310 cm− . 

 ne,см-3 
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260KT < , and if 16 310 cmDn −= , then 160KT < . If 
temperature is higher, there is a monotonous increase of 

en  with temperature. It should be noted, that at 
18 310 cmDn −=  en  does not change with temperature in 

the region under consideration ( )800KT ≤ . 
Let us place the considered system in the external 

electric field. We assume that intensity of the electric 
field is directed along the Oz coordinate axis for 
superlattices of various dimensionality. In case of a 3D-
superlattice of cubic symmetry, conductivity does not 
depend on the intensity direction, hence σ  can be seen 
as a scalar. And in case of 2D or 1D-superlattice, current 
density of the CQDS is anisotropic i. e., σ  depends on 
the direction of the vector E

r
. 

The specific conductivity of the InAs/Ga0.15In0.85As 
superlattice depends on both concentration and ionization 
energy of donors, and also on temperature.Fig.4presents 
the temperature dependence of electroconductivity of 
systems of various dimensionality (curves 1,2 stand for 
1D; curves 3,4 refer to 2D; curves 5,6 relate to 3D) and 
energies of occurrence of the impurity level DE  (curves 
1,3,5 refer to -150 meV; curves 2,4,6 stand for -
750 meV) at concentration of impurities 18 3c10 mDn −= . 
We take the following parameters for the systems: QDs 
size L=96 Å at interdot distance d=12 Å. As seen from 
the figure, conductivity rises with the increase of 
dimensionality of the system. The temperature 
dependence of conductivity is different for different 
values DE . When the energy of occurrence of the 
impurity level 150 meV DE = −  (curves 1,3,5 in Fig.4), 
electroconductivity of the CQDS is of “metallic” 
character as it monotonously decreases with temperature 

increase. At 750 meV DE = −  (curves 2,4,6 in Fig.4) 
electroconductivity rises with the temperature increase. 
Its nonmonotonous character in the region of low 
temperatures ( )300 KT < , in our view, is explained by 
the presence of two mutually competing mechanisms: 
rise of concentration of charge carriers (electrons) and 
reduction of their relaxation time.  

An increase of concentration of impurities Dn  to the 
value 18 310 cm−  by doping of the matrix with a 
monovalent donor impurity leads to the increase of 
conductivity by orders of magnitude (curves 5,6 in Fig.5) 
in comparison with 16 310 cmDn −=  (curves 3,4) and 

14 310 cmDn −=  (curves 1,2). In the region of low 
temperatures ( )300 KT <  electroconductivity σ  
significantly depends on both concentration Dn  and 
energy DE  of donors. As seen from Fig.5, at 

14 310 cmDn −= , beginning from 160 KT > , the 
dependence ( )DEσ  disappears (for concentration 

16 310 cmDn −=  at 560 KT > ). Simultaneously, at high 
temperatures ( )500 KT >  conductivity slightly depends 
also on concentration of impurities Dn . It can be 
explained by the fact that electron transitions from 
subbands of the valence band to electronic subbands of 
the conduction band become essential at such 
temperatures. 

Conclusions 

In the paper properties of the system of spatially 
assembled cubic quantum dots that are embedded in the 

 
Fig. 5. Temperature dependence of electroconductivity of the 3D InAs/Ga0.15In0.85As (L=96 Å) CQDS at different 
concentrations of impurities: 1014 сm-3 (curves 1,2); 1016 сm-3 (curves 3,4); 1018 сm-3 (curves 5,6) and energies of 

occurrence of the impurity level (curves 1,3,5 refer to -150 meV; curves 2,4,6 stand for -750 meV). 
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matrix (i.e., quantum dot superlattice) have been 
investigated. We have considered an InAs/GaхIn1-хAs 
nanoscale heterostructure. The energy spectra of 
electrons and holes of the quantum dot superlatticehave 
been determined in the effective mass approximation and 
modified Kronig-Penney model. In the frame of this 
model, the spectra of charges of 3D, 2D and 1D-
superlattices can be obtained by changing respective 
distances between the elements of the superlattice. 

The specific calculations have been performed for 
the CQDS with quantum dots of small size 96 Å for InAs 
QDs. A detail energy dependence on the wave vector of 
the electron and hole subbands of the superlattice has 
been obtained. There are two types of subbands: under-
the-barrier subbands with the energy smaller than the 
energy gap betweeen the conduction band and valence 
band and over-the-barrier subbands with greater energy. 
The number of under-the-barrier subbands is determined 
by QD size and width of each subband is defined by QD 
size, distances between elements of the superlattice and 
numerical order of the subband. 

In case of the matrix doped by donor impurities, in 
the presence of impurities of one type we have studied 
the dependence of the Fermi level, concentration of 
charge carriers on temperature (40≤T≤800 K), 
concentration of impurities (1014 сm-3, 1016 сm-3, 1018 сm-

3), energy of impurity levels on the bottom of the 
conduction band of the semiconductor matrix (-750 meV, 
-150 meV). 

In particular, it has been found that the temperature 
dependence of concentration of electrons and holes in the 
subbands of the superlattice is determined by the position 
of donor levels with respect to the ground electronic 
subband. When the energy of the impurity levels is lower 

than the bottom of the ground electron subband, the 
increase of temperature in the superlattice causes a 
monotonic rise of concentration of charge carriers. If 
donor levels are above the top of the subband, there is a 
monotonously decreasing functional dependence of 
electron concentration on temperature, which saturates 
with the rise of temperature. 

The comparison of the degree of occupation of the 
ground and excited subbands shows that occupation of 
the ground subband is significantly larger than that of 
excited subbands for the larger region of temperatures 
(T ≤ 500 K). In particular, for small electric field 
intensities when the Ohm law is valid, we have 
calculated the density of conductivity of 3D, 2D, 1D-
superlattices. It has been shown that in the presence of 
deep impurities (-750 meV) the temperature dependence 
of conductivity of the superlattice has characteristic 
peaks, which are defined by concentrations of impurities 
and dimensionality of the superlattice. A different 
temperature dependence of conductivity has been 
observed for impurities with the energy of occurrence -
150 meV. 
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Мінізонна електропровідність у надґратках кубічних квантових точок 
гетеросистеми InAs/GaxIn1-xAs 
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У даній роботі запропоновано модель надґраток кубічних квантових точок (НККТ) різної вимірності 
InAs/GaxIn1-xAs. Для визначення енергетичного спектру електронів та дірок надґратки квантових точок 
використано наближення ефективної маси та модифіковану модель Кроніга-Пенні. У рамках цієї моделі 
зміною відповідних відстаней між елементами НГ отримано спектри зарядів 3D-, 2D- та 1D-награток. 
Обчислено детально залежність енергій від хвильового вектора електронних та діркових надґраткових 
підзон: підбар'єрних та надбар'єрних. Кількість підбар'єрних підзон визначається розмірами КТ, а ширина 
кожної підзони задається розміром КТ, відстанями між надґратковими елементами та номером підзони. 

Отримано та проаналізовано залежність енергії Фермі та концентрації носіїв струму від температури, 
концентрації домішок, енергії домішкових рівнів. Враховано залежність часу релаксації електронів від 
температури, зумовлену розсіюванням носіїв як на фононах, так і на донорних центрах. Досліджено вплив 
домішкової системи на електропровідність НККТ. Показано, що за наявності глибоких домішок  
(-750 меВ) температурна залежність провідності InAs/GaxIn1-xAs НГ має характерні максимуми, які 
визначаються концентраціями домішок та вимірностями НГ. Для домішок з енергією залягання -150 меВ 
отримуємо іншу температурну залежність провідності.  
Ключові слова: квантова точка, надґратка, електронні стани, мінізона, електрична провідність. 
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