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In the paper the physical properties and thermodynamic functions of borides X,B (X=W, Mo, Mn, Fe, Co, Ni
ta Cr) are studied with accounting for fluctuation processes. We use the microstructure andysis, the X-ray
structural and the durometric analyses to determine the physical properties of aloys. In the paper it is determined
the phase composition and physical properties of borides. In this paper for the first time it is determined the
thermodynamic functions of borides using the Hillert and Staffansson model with accounting for the first degree
approximation of high-temperature expansion for the free energy potentia of binary alloys. We obtain the
temperature dependences for such thermodynamic functions as Gibbs free energy, entropy, enthapy and heat
capacity C, along with their values at the formation temperature for X,B (X=W, Mo, Mn, Fe, Co, Ni ta Cr). The
approach under consideration enables to give more thorough from the thermodynamic point of view description
of borides formed from the liquid. The outcomes of the thermodynamic function calculation for borides are in
good agreement with experimental data and results of other authors.
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I ntr oduction

The W,B, Mn,B, Fe;,B, Co,B, Ni,B, Mo,B and Cr,B
borides have a body-centered tetragona cell with 12
atoms per cell and belong to the structural type of CuAl,
D2 - 14/mem [1-5].

The W-B, Mn-B, Fe-B, Co-B, Ni-B, Mo-B and Cr-B
systems were studied both  experimentally and
theoretically [6-12]. In the Refs. [6-12] the authors give
results of calculation for Gibbs energy of borides using
the models that can be applied only for equilibrium
conditions. The objective of this paper is to study
physical properties and thermodynamic functions of
borides, their temperature dependences with
consideration of the first degree approximation of high-
temperature expansion for the free energy potential of
binary alloys.

. Materialsand research technique

The investigation was carried out on specimens with
boron content of 5-9.5% (wt.), the rest is meta X
(X=W, Mo, Mn, Fe, Co, Ni ta Cr), for which is used
burden consisting of metal with content 99.99 9%,
amorphous Boron (with Boron content of 97.5,0%
(wt.)). The smelting of specimens was carried out in
Taman furnace with graphite hearth, meting of
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specimens was carried out in alundum sagger under
argon atmosphere. The cooling rate for alloys amounted
to 10 K/s. To ascertain alloy chemistry the chemica and
spectrographic  analysis  were  used [13]. The
microhardness of various phase components was
determined by using aPMT-3.

The phase compositions of the aloys were
determined by the method of X-ray spectra
microanalysis in a JSM—6490 microscope and with the
help of a Neofot-21 optical microscope.

Make use of X-radiation diffraction anaysis, which
was realized in a DRON-3 diffractometer in the
monochromatized Fe-Ka-radiation.

1. Results and discussion

The microstructure of the W-B, Mn-B, Fe-B, Co-B,
Ni-B, Mo-B and Cr-B as-cast alloys at boron content
over 33.3 % (atomic) contains plane-faced borides (Fig.
1,4 b).

The structure of borides consists of alternating
planes of iron atoms (forming the identical square grids)
and planes of boron atoms [14]. The occurrence of the
planes of different packing dendty has to enable the
sharp growth anisotropy of boride. Anisotropy and
interatomic forces result in that boride crystals are right
regular square prisms in shape and grow in (011)
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Fig. 1. Microstructure of alloys with boron content of 7 % (w.) Fe-B (a), Co-B (b)

Tablel
Crystal lattice parameters for borides with boron content of 7 % (w.)
. Lattice constant, (exp) Lattice constant (tab)
Borides Ak o X a X c X Reference
W,B 5.565 4.741 5.564 4.740 [2]
Mn,B 5.147 4.21 5.148 4.208 [2]
Fe,B 5.1074 4.2464 5.109 4.249 [3]
CoB 5.016 4.21 5.016 4.22 [3]
Ni,B 5.01 4.246 4,993 4.249 [4]
Ma,B 5.542 4.736 5.543 4,735 [2]
Cr,B 5.1287 4.282 5.1283 4.2818 [5]
Table2
Dependence of size of crystallites L, level of microstresses, density of dislocations p in borides
with boron content of 7.0 % (wt.)
Borides Sizeof CrystallitesL, A | Level of Microstresses M DislocatDigr:zlta);%lo, an2
W,B 856 5.01-10° 8.64
Mn,B 584 2.12-10° 6.79
Fe:B 452 2.13-10° 6.52
Co,B 872 3.85-10° 6.92
Ni,B 692 1.63-10° 7.6
Ma,B 892 3.23-10° 6.87
Cr,B 815 4,04-10° 7.79
direction. In this direction the bond is strongest and theoretically.
growth rate of prisms, based on (011) face, leads to their 2.1, Gibbs energy for the W,B, Mn,B, Fe,B,

impurity and defect enrichment, which gives rise to
inhomogeneities such as pores, cracks and others (Fig. 1,
a, b).

Determinations of lattice parameter of the phases by
using X-radiation analysis show their corrdation to
tabular data (Table 1).

For the W,B boride we observed a dight increase of
microstrain degree and didocation densty compared to
other borides (Table 2).

The obtaining of thermodynamic functions val ues for
the W,B, Mn,B, Fe;B, Co,B, Ni,B, Mo,B and Cr,B
borides is quite difficult. Thereby, accounting for the first
degree approximation of high-temperature expansion for
the free energy potential in the Hillert and Staffansson
model enables to determine the thermodynamic functions
of borides and their temperature dependences
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Co,B, Ni,B, Mo,B and Cr,B borides.

Gibbs energy of the phase is known to be a function
of variables G=G(p,T,y), where p is pressure, T
denotes temperature, y represents weight content of the
elements. For mole fraction of components in compound

or aloy the condition éz y, =1 holds.
i=1

As it is known, the sublattice modd by Hillert and
Staffansson [15] enables to calculate Gibbs energies of
the phases for equilibrium state. The potentials within the
Hillert and Staffansson model don’t take an account for
the first degree approximation of high-temperature series
for binary aloy thermodynamic potential that must be
borne in mind when deriving the Gibbs energy for the
phases formed from liquid and involving fluctuation
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Table3
Temperature dependence of Gibbs energy and entha py val ue corresponding to the formation of borides
GMeB DH MeB
Borides Equation of Gibbs energy mo Reference mo Reference
(dox/monn) (dox/monn)
] Firg-principles Firg-principles
1 . -
W,B - 72687+53T - 2340°T S8872.19 calculation 835431 calculation
- 97250+1.787T -413310.24 [9] -87000 [9
- i Firg-principles | Firg-principles
- 35264- 0,35T - 88x0°T 36389.38 calculation 32856.35 calculation
Mn.B - 31254+ 0.293T -30705.2 [27] ~38600 [34]
- 316519- 617T -43208.31 [7] -31700 [32]
i 45Tl i Firg-principles i .
29726+ 2,5T - 10°T 26217.7 calculation 31630 In this paper
FeB - 29365 + 6,54T -22244.5 [29] -24294.83 [35]
- 31000+ 337T -25362 [29] -32600.72 [36]
. Firg-principles Firg-principles
5 1 - -
- 32128+2.11 - 2.6X40°T 28989.99 calculation 2534582 calculation
Co B ~ 269000- 1.41T -20117.9 8] 100 ;
- 28564+ 5,077T -20588.89 [30] ) 1371
i i 5.1 i Firg-principles | Firg-principles
_ 35157 +1,36T - 1,5X0°T 329714 calculation 27363.90 calculation
Ni2B _ 22500 + 2.5T -21500 [10] 21129.22 [10]
- 24100,75+ 4,017T -17380.32 [25] -24670 [25]
1 i Firg-principles | Firg-principles
e - 50269+ 5.2T + 2.4X0°T 37054.36 calculation 37895.10 calculation
O
- 42800+ 2.43T -35775.71 [21] 49860 [21]
- 42176+ 2T -37030 [22]
] Firg-principles Firg-principles
6 1 - -
o - 32947+0.78T - 1.340°T 31514.66 calculation 4293090 | . ulation
Iz
- + 1. -28001.
30848+1.48T 8001.96 [32] 414176 [40]
- 28285- 0.33T -28903.09 [31]

processes into consideration. As we know from theory of
binary aloys, the partition function of such a system
cannot be computed exactly, but according to Kirkwood
technique it may be written in the form of infinite series

MeB _

0
Gm ™ = YMe

where Z is coordination number, which equals Z=12 for
boride [2-3].

Using data for pure components OGMe, 0GB [19-
20] and information on interaction energy of components
in the phase L.g from the papers [7, 9, 20-26], we

obtain temperature dependences of Gibbs energy for
borides.

Table 3 contains computational data on Gibbs energy
and entha py of borides at temperature of their formation.

0
Gme*YB G *RT (ZyMeIn Yme *¥gIn VB) * YMeYBLMeB -
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in powers of 1/T [16-17].
So, we define Gibbs energy for boride with
accounting for thefirst degree approximation as:

2 2 2
LmeBYMeYB

2ZRT @

As we can see from Table 3, obtained values of
Gibbs energy are in good agreement with those of other
authors.

Thus, obtained temperature dependences of Gibbs
energies of borides enable to determine their values in
high-temperature region, as well as Gibbs energies of
formation of these phases from the liquid.

2.2.  Entropy, enthalpy and heat capacity C,
for borides.
One of the most important thermodynamic

characteristics of the phase is entropy. The entropy of
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Fig. 2. Temperature dependence of heat capacity C, for borides: Fe;B ta Ni,B (a), Cr,B ra Mn,B (b),
Co.B (c), W,B 1a M0,B (d).

borides one can determine from the formula:

_. &GO
&1 o

S

The accounting in Gibbs energy for the first degree
approximation of high-temperature expanson  of
thermodynamic potential enables to determine the
enthalpy of borides. To calculate the enthalpy of borides
we userelation [33]: DH = DG +TDS.

Temperature dependence of enthalpy of the W,B,
Mn,B, Fe;B, Co,B, Ni,B, Mo,B and Cr,B phases has the
form:

HY® =-127698+21.3T - 3.140°T ",
H M8 =_35126+1.36T - 5.2X0°T *,
H 8 = . 32527+0,5T +10°T %,

H %28 = . 26458+ 0.8T - 2,3X0°T*
H N28 = - 30208+1.7T - 2,45X0°T 1,
H M8 = 43698+ 2.3T - 3.140°T*
H %28 = - 48123+ 2.7T - 1.5X10°T*

Table 3 gives the comparison results of borides
enthalpy values obtained in this paper with those
obtained experimentally and by calculation by other
authors.

So, the outcomes of this research (Table 3) are in
good agreement with those of other authors [10, 21, 25,

R(yMeIn YMmet YB In yB)- -
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2
LMeB

2 2
YmeY
RT2 Me’B

32-37].
We cal culate heat capacity for the W,B, Mn,B, Fe,B,
Co;B, Ni,B, M0o,B and Cr,B borides using the formula

&ASo _ LE
C,=Te =% =—8 xy7,
elTg, RZT

As result, the obtained temperature dependence of
hest capacity C, for borides (Fig. 2) matches with data of
Refs. [12, 33, 37, 40].

Judge by the results obtained we can conclude that
accounting for contribution of the firs degree
approximation of high-temperature expansion of the free
energy potential for binary alloys in the Hillert and
Staffansson  models  enables to calculate such
thermodynamic quantities of the W,B, Mn,B, FeB,
CoB, Ni,B, Mo,B and Cr,B borides as entropy,
enthalpy, heat capacity and their temperature
dependences.

This approach makes it possible to give more
thorough from the thermodynamic point of view
description of borides as well as monoborides formed
from theliquid.

Y-
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Conclusions

In paper are considered structural and physical
properties of the W,B, Mn,B, Fe,B, Co,B, Ni,B, Mo,B
and Cr,B borides in binary alloys with boron weight
content of 5.0-10.0 % (wt.), therest ismetal.

It should be noted that thermodynamic functions of
the phases enable to predict physical and chemical
properties of aloys under variable environmental
conditions such as temperature, pressure and so on. The
well-known computational techniques for
thermodynamic functions of the phases can be applied
only at equilibrium conditions and do not account for

fluctuation processes. Thereby, in the paper the
temperature dependences of such thermodynamic
functions as Gibbs energy, entropy, enthalpy and heat
capacity C, for the W,B, Mn,B, Fe,B, Co,B, Ni,B, Mo,B
and Cr,B borides are obtained with accounting for the
first degree approximation of high-temperature series of
the free energy potential.

The obtained calculation results for thermodynamic
functions of borides are in good agreement with
experimental data.

Filonenko N.Y. — Lecturer of the Physics Chair.
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H.IO. ®inonenko

®Di3u4Hi TAa TEePMOAMHAMIYHI BJACTHBOCTI OopUIiB

Jeporcasnuii 3axnad «/ninponemposcoka meouuna axademis MO3 Yrpainu», eyn. Borooumupa Bepnadcuvroeo, 9,
49044 /[ninponemposcovk, Ykpaina, e-mail: natph2016@gmail.com

V poboTi pociimkeHo Gi3nyHi BIacTUBOCTI Ta TepMoauHaMiuHi GpyHkuii 6opumnis X,B (X =W, Mo, Mn, Fe,
Co, Ni ta Cr) 3 ypaxyBaHHAM (IyKTyaunifiHux npoueciB. J[ynsi BH3HaueHHs ()i3MYHUX BIIACTHUBOCTEH CILIABIB
BUKOPHUCTOBYBAJIM MIKPOCTPYKTYPHHH, PEHTICHOCTPYKTYPHHH Ta MIOpOMETPHYHMI aHami3u. B pobori Oymo
BU3HAUCHO (pa3oBMii cKita] cruiaBiB Ta (i3UYHI BIACTHBOCTI OOPUIIB.

Bnepie Bu3HaueHo TepMoauHaMiuHi GyHKILIT OopuiB 3 BUkopucTaHHAM Mozeni Ximiepra i Creddancona
Ta 3 ypaXyBaHHSAM IIEPIIOTO CTYNEHS HAONMIKEHHS BHCOKOTEMIIEPAaTypHOTO PO3BHHEHHS TEPMOIMHAMIYHOIO
norexuiany 6inapaux cruasis. st 6opuais X2B (X =W, Mo, Mn, Fe, Co, Ni ta Cr)orprmaHo 3a1exKHOCTi Bif
TEMIIepaTypy TaKHX TePMOAMHAMIYHUX (YHKIIH, sk eHepris ['i60ca, enrporis, eHTansmis i Teroemuicts Cp, a
TAaKOXX BHM3HA4YEHO iX 3HAUCHHS IPU TEMIEparypi yTBOpeHHs. Bukopucranuii y paniii pobori minxin nae
MOXKJIMBICTh HaJaTH HAHOUIBII TOBHUH 3 TEPMOIMHAMIYHOI TOYKH 30pYy ONKC OOpHIB, IO YTBOPIOIOTHCS 3
piauHA.

OtTpuMaHipe3yIbTaTd PpO3PaxyHKIB TepMOAMHAMIUHUX (yHKIIH OopunmiB 1noOpe  y3romkyroTbcs 3
€KCIIePUMEHTaIbHIMH JaHUMH Ta JJaHUMH 1HIIUX aBTOPIB.

KirouoBi ciioBa: 6opunu, eneprist [160ca, eHTpOIIis, €HTAIIBIIIS, TEIUIOEMHOCTb, (IIYKTYaliitHIIA Tporiec.
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