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In this paper, using Gibbs grand thermodynamic potential, kinetic tensors of electrical and thermal
conductivity generalized equations known in non-equilibrium thermodynamics have been proven. These tensors
determine calculation algorithms of the material tensors of conductor crystals and various galvanomagnetic and
thermomagnetic effects coefficients. These algorithms are pragmatic formulas in cal culation problems of crystals
kinetic properties and in the problems for prediction of semiconductor crystals with preset properties. Their
pragmatism is proven by the huge number of scientific papers dedicated to kinetic properties of semiconductor

crystals study.
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I. Elements of the general theory of
crystalskinetic properties

Kinetic properties of conductor crystals are
predetermined by the concentration of "free” charge
carriers in crystals and their movements in the crystal
lattice interdtitials.

In the state of thermodynamic balance "freg" charge
carriers are moving randomly, their average energy
remains the same and entropy of all the charge carriers
has a maximum vaue. This is thermodynamically
balanced gas of charge carriers.

Prgnce of drift disturbances, such as dectric field
with E tension, or VrT temperature gradient (these
disturbances may exist in the crysta simultaneoudly),
within the crystal causes the gas of charge carriers |eft
state of thermodynamic equilibrium state and makes it a
non-equilibrium ensemble of particles. In this case, each
particle with charge ze is affected by drift force Fd [1-
4].

Frd = zeéd; Eq _é gd( g mQNrrT (1
ze KT @
where: z=+1 — charge denotement, e - charge of
electron, k— Boltzmann constant, £ — average energy of
chargecarrier, T — cr}/stal temperature.

As a result of F; drift force, all charge cariers

begin to move towards force with \5d drift velocity,

which depends on both Iéd , and crystal properties.

The presence of ‘5d drift velocity causes the

formation of particles flow. At the same time,
interchange of eectricity, heat (energy) etc. takes place.
Thus, if the drift fields are present, the set of charge
carriers in crystals is converted into a grand non-
equilibrium canonical ensemble with a variable number
of particles.

Such a grand canonica ensemble, as shown in
reference [1], is characterized by Gibbs grand
thermodynamic potential, taking into account spin
degeneracy:

] am+Dmr - er
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P g zp

In this formula p- a wave vector of the charge

carrier, e{)- charge carriers dispersion law, and Dm{)'

the change of the chemical potential of a particle under
the influence of disturbances, which disturbs
thermodynamic equilibrium of the crystal; in the absence

of such disturbanc&Dm{) =0.
The value Aﬂ{) is calculated in reference [1], which

demonstrates that AIM(E) isan odd function of vector 5
and for isotropic crystal, it has the following value
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The function u= u(e), that is included in those
equations, has the same units of measurement as charge

carrier mobility (mZV >€) . This function describes the

effect of change carriers scattering mechanisms on
kinetic properties of the crystals. In its physical sense,

u(e) isnot averaged particle charge carrier mohility, and

for crystals with  isotropic  disperson  law
r -
35=5((p()=5(p),ltls[l]:
_er ﬂe
p ﬂp

Quantum mechanical calculations demongrate, that
the scattering function in isotropic crystals for important
scattering mechanisms can be described by the following
general formula[b, 6]:

2
uDmp(2-3) aals O

uie)=u
’ dpra

where u(r)(T)

mechanism of temperature function scattering, and r - is
index of scattering and has the following values: r=0
at the account of carrier scattering on acoustic phonons
and on point defects of acrystal lattice; r = 1 1O the case
with scattering on optical phonons at high temperatures
above the Debye's temperature; r = 2 to the case with
scattering on impurity atoms or ions.

In this formula, symmetric and antisymmetric parts

- is the known values for a specific

r
of the tensor (“i' (B,e)) are marked by superscripts s and

a in parenthesis (s), (a), and 5IJ, dijl are known
Kronecker and Levi-Civita functions.
Then, with the use of datistical thermodynamics
methods, total number of particles N of this non-
equilibrium ensemble, itsinterna energy U , enthalpy H,
freeenergy F and entropy S are calculated:
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where f{) is a non-equilibrium distribution function of

single particle, which non-equilibrium gas cariers
gtatistics is based on. This feature is described by the
formula

1

aer - m- Dmlgo
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Formula (8) displays that the entropy of a non-
equilibrium gas corresponds to  wel  known
thermodynamic entropy eguations for equilibrium gas.
This means, that the thermodynamic potential (2) and the
distribution function (9) correspond to the laws of non-
equilibrium processes thermodynamics.

For a smal deviation of the crystal from
thermodynamic equilibrium, when Ohm's law for the

(9)

current is applicable, value PT(P)is smaller than
(M- €F) | that iswhy thermodynamic potential W (2)

and non-equilibrium digribution function fp (9) can be
expanded in Taylor series based on this value, being
limited by the linear term of the expansion. Then we
have:

i. aen- el’qj
w= 2kTaIn|1+e<p n'e 2kTaDerfO(er) (10)
P
aedfo(eé)b r
fr = f(er)+¢- “Dm(p), (11)
p-0%p el 5
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where fo(s{))z — is Fermi-Dirac

exp

function (it isan even function of vector 5) .

In this regard, the second term on the right in
formula (10) is equa to zero, as the sum of odd
symmetric functions within the summation.

If the expansions (10) and (11) will be used for
calculating the values (4) - (7), they will acquire such
values as for grand equilibrium ensemble of particles.
This physically means that, under these conditions of
observation, the number of N particles and
thermodynamic potentials (5) - (7) of non-equilibrium
Fermi gas within the crystals have the same values as for
balanced.

dS_ daWo 1e o

dt dtngqn T p

where V =N e(P)is vector of the charge carrier
velocity in crystal.

Comparing this expression with formula (13), which
describes the second law of thermodynamics, the
conclusion that the vectors j and q are equal are made
next exprons

Zzeé fl’ , (15)
p PP

azzép(eé- m)vE)f\Fl). (16)

The equations (15) and (16) are respectively named
generalized equations of eectrical conductivity and
thermal conductivity in the kinetic theory.

In the field of Ohmic conductivity of the crystal
deviation of its energy state from thermodynamic

In a non-equilibrium gas of charge carriers their
entropy increases and electricity and heat are being
transported, which is described by the first and second
laws of non-equilibrium thermodynamics:

du r rr
— =-divg + JE, 12
a (12)

I~ .

ds 1ar ONITO
—=CclE- 1, (13)

where J ,  are the vectors of current density and heat
flow.

ds
If the formulas (8) and (9) will be used for E

derivative calculation, the result of calculationswill be:

(14)

approximation(11) can be used in the datistical
calculations for non-equilibrium distribution function (9).

Further, in this approximation, with vector 5
summing it should be counted that AIM(E) and charge
vel ocity vector \';5 = \5({)) are odd functions of vector 5

Then, in the Ohmic region of the crystal conductivity
up to a quadratic terms of equation described by the
disturbance that brings charge carriers gas from
thermodynamic equilibrium, its concentration n and
thermodynamic potentials have the same values asin the
state of thermodynamic equilibrium.

Under these conditions, the vectors ] and cr] are

calculated in the Ohmic region of conductance taking
into account (11):

equilibrium is indgnificant. Therefore, Taylor
r e dfy O 1aale 0 ae df O
j = 2z€e§ vEDmr ¢ 0 -2 é r Sy (17)
p P PE deg gdp PE de g
r r 690"06 aEkTo a®- mHlagle Oy a dfy 6
g=2gle- mviDml ~- — =23 p>xDml - — = (18)
A T ey o S ot - T g
r ry\r ry .
The values of the function Ayp Ay(p) will be put q= (gij (B)) E- (h‘] (B))NrrT, (20)
in those equations using formula (3). Then, known r
formal method of trandtion from summation to The coefficients (Jij (B)) ( ﬁij (B)),

integration is used. After, generalized equations of
electrical conductivity and thermal conductivity for

vectors | and § look likethat:

jr:(s i (é))é- (bij (%’;))NrrT, (19)

(yij(l:[s)),(hj(é)) are cdled tensors of kinetic

coefficients and they, accordingly, acquire such valuesin
those equations:
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In those equations n is the concentration of charge energy area , (24)

carriers U(e) —is scattering function. uj; (B)= u; (u(e). B), (25)

the reaction of conducting medium to the eectric field,
| temperature gradient anld magnetic field, characterized by
averaging operator for tensor components 7 x; i B): the vector of induction B .

In generalized electrical conductivity(19) and
therma conductivity(20) equations &l the coefficients

and angle brackets, for the convenience of notes, mean

dfp(€) 0

¥ ..
- v [sS]
v 8h 4 (B.e)Gle) ¢- “e next to correspondent factors are called tensors of kinetic
<h| Ui (B, e)> = € g (22) coefficients. The material tensors of the crystals are
¥ dfy(e) % determined by mediation of these coefficients.
ge(e)(; e Equations (19) and (20) can result in the following
| 2 with linear transformation:
y -1 -1
| a&- mo r _ r r r r ~
W =g 315012, (23) E—(aij(B)) J+(0'ij (8)) A (B)) NrT.(28)

e
G(e) = og(e)de, isthe density of energy statesin the
0

O A X WS P O R

The tensors, multiplied by the vectors | and NrT, following valuesin those equations:
according to Onsager symmetry theory, have the

(13 B o) = o3 B = 2 (o ®) )

i B ) = o3 B) o )= 2 (s ) (o0 8) @

o B+ 053 )= o B)-oo ) = Exr (sG] () o0
(e (8)+ 50,8 ) = (1 ®) (5 (8)(s (B)) (o (E)) =
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Formula (31) is cumbersome and difficult to anayze,
because it is written in abbreviated form and in this form
it describes the Wiedemann-Franz law for charge
carriers therma conductivity in the crystal in the
presence of a magnetic field.

r r
There are symmetric tensors (pij (B)) (“ij (B)) ,

(”ij (é)) (Xij (é)) in the equations (28)-(31), namely

material tensors of resistivity, Seebeck coefficient,
Peltier and thermal conductivity of the crystal efficient,
which must be either experimentally measured or
theoretically calculated. They are the even functions of
magnetic induction vector. .

The coefficients R]-j (B) and are the

R (®)

Vector products of corresponding vectors are put
inside the square brackets, and symmetrical tensors and
corresponding coefficients of transverse
galvanomagndic and themomagnetic effects are
described by the formulas (28)-(31) in these equations.

Analysis of equations (32), (33) and relationships
(28)-(31) shows, that the isotropic crystal, when being
placed in a magnetic field, becomes anisotropic and
relatively simple phenomena of eectrical conductivity
and thermal conductivity in the crystal become more
complex. In this case, additional transverse
galvanomagnetic and thermomagnetic effects appear.

Galvanomagnetic effects are caused by the influence
of magnetic field on the Ohmic part of eectric current,
and thermomagnetic - on the therma part, according to
the generalized conductivity equation (19).

Kinetic tensors and coefficients, included in the
equations and relations (28)-(33), in addition to
determining the nature of the conducting environment
important material properties, are widely applied in the
modern solid-state electronics, which uses crystals of
different naturein its production.

All the kinetic coefficients, included in generalized
electrical conductivity (26) and thermal conductivity (27)
equations, according to the formulas (19,a), (19b),
(20,@), (20,b) consist of symmetric and antisymmetric
parts of the tensor. Symmetric part, according to the

11

: % §<uij (é)>)- 16(:'(‘;) IJ (é)

2]

U
e

= ‘<~‘C

(31)

coefficients of transverse galvanomagnetic effects of
I
Hall and Ettingshausen, and the coefficients Nij (B), and

S i (é) are the Nernst-Ettingshausen’ s and Righi-Leduc's

coefficients of transverse thermomagnetic effects. They
are the even functions of the magnetic induction vector,
and within isotropic crystals, these coefficients are scalar
even magnetic induction functions, i.e.:

Rj (B) =R(B) = R(- B); R;(B) = P(B) = P(- B),
N; (B) = N(B) = N(- B), i (B) = S(B) = S(- B).

So, the equations (26) and (27) can be formulated for
isotropic crystals:

r - r ,r . N
B))NrT+N(B) g8 NITR, (32)
r - r ,r . N

i (B))NrrT+S(B)@' RNITH, (33)

formula (3), is an even function of magnetic induction

r
vector B, and antisymmetric isan odd function.

-1
r
Now, the inverse tensor ((“ij (B)() is calculated

under the rules of tensor algebra and the cal culations will
be presented in the following manner:
@)

(b " )= (98)-

The values of the inverse tensor are put in the
equations (28)-(31). Then, al the tensors of the equations
are split into symmetric and antisymmetric parts, basic
tensor multiplications are done in the right part of the
equations and this part is split into symmetric and
antisymmetric parts. After, with the ssimple identification
method, it is easy to prove such common basic formulas
for symmetric tensors and different coefficients of
transverse galvanomagnetic and thermomagnetic effects:

(ri®)=(-P®) @

) (a5) (< ®)
(2 ®) =( {7 o )+ D B 8)

(35)

(36)
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N(Erz)( ,,ﬁ) ( ‘S’(B)b|§a’(8)+r“""(B)bfs’(s)) (37)
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Equation (40) is the Wiedemann-Franz law for
charge carriers thermal conductivity in the crystal in the
presence of a magnetic fidd, and the formula (41)

defines the  coefficient P(IIB) of transverse

thermomagnetic Righi-Leduc effect.

Calculation formulas (34)-(41) have a very complex
structure and symmetry in any direction of magnetic
induction vector in the crystal.

These formulas have the simplest structure and
symmetry when magnetic induction vector is directed
along the main axis of the crystal energy valley. Then, all
the symmetric tensors become diagonal, and
antisymmetric tensors have the simplest form. Any axis
can be considered as the main within isotropic crystals.

NF T, al the tensors and coefficients in the equations

(34)-(40) depend on the induction vector B3 , Symmetric

tensors become diagonal, and antisymmetric have the
simplest form. In this case, the equations (34) - (41) look
like this, taking into account the structure of electrical
conductivity and thermal conductivity generalized
equations tensors (19) (20):

(i (B3)) = (i (Bs) ).
11(B3) = 1 5 (B3) _ 1, J00m.T)

en J(0,1,B,,m , T)D(B)

For example, if the main axes of Cartesian ; (O):i J(0,0,m ,T) (34, 2)
coordinates system are designated by the indices "123", 33 en JOLmM,T)’ ’
and the magnetic induction vector is directed aong “3”
axis, which is parallel to the main axis of the energy RB _ 1 J(0,0,m ,T)J(0,2, 53 m,T) (@.9)
valley of the crystal and is normal to the vectors Ej and 3 n J(0,1,B,, m ,T) D(Bj) ’

(aij (Bg)) =(a" (B, )dij) ca11(Bs) =a (Bs) =
k 16I3@LBy,m,T) U J(0,2,Bym ,T)° €J(L2Bym T ua Hf 1
N UL LRI SR S LR
ze T@J(O,l,B ,m ,T) g \](O:LB3 m T) @J(O,Z,B ,m ,T) o] bD( )
k éJaLm,T) .U
0 xei ‘Is 36,
(a22(0)) = ~ &0o1m. 1) U (36.2)
J(0,2,B;,m ,T)  €J(12,Bym T m T)U
NGBy =2 O % o 2By il (37, 2)
8eg3(0153m T)*D(B3) @J(0,2,B3,m T) J(0,1,Bg,m T)g
(i () =T{a;; (B). (38, )
P(Bg) =T xN(By), (39, a)
(s) (s) (a) @7
() = et sl ) oo
(s) (a) (a) (S)u
P(®)(¢58) = & gze;, wdei (2) k@) o () k@) g @a

B oux piBHHHHHX JJIs1 TOJIOBHOT'O PO3PAaxXyHKOBOI'O (l)yHKHiOHaJ'Ia BUKOPUCTAHO TAKE IO3HAYCHHS !
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The equations (34)-(41) with the functiondlity (42)
prove common calculation agorithms of important
kinetic properties of onevalley crystals with any

isotropic dispersion law s{) = g(p) of charge carriers,

that are scattered at any defects of the crystal lattice.
(42,a) functionality should be used for the cal cul ations of
(34,a)—(41,a) properties within a strong magnetic field,
and (42,b) functionality should be used within a weak
magnetic field. In thisregard, it is possible to name these
equations as determinative equations.

The algorithms of these equations allow calculations
of kinetic properties of 2D (with a microscopic film
thickness) crystals, which spatial quantization of charge
carriers energy spectrum can be observed in [11].

II. Thekinetic properties of isotropic
crystals within magnetic field

It is shown that non-equilibrium grand canonical
ensemble of particles is characterized by the grand
thermodynamic potential (2), entropy (8) and a derivative
of time entropy, describing the second law of non-
equilibrium thermodynamics(13). According to this law,
non-equilibrium ensemble of charge carriers in the

crystal causes dectricity flow with densty ] and heat

flow with density cr] in the crystal. These flows are
described by the equations (19) (20).

According to the theory of Onsager symmetry, the
tensors of kinetic coefficients included in this equation,
describe material tensors of the kinetic properties of the
crystal, which should be either theoretically calculated
or experimentally measured, with the determinative
equations (34)-(41).

The analysis of these formulas shows, that with the
presence of the electronic spectrum parameters, chemical

potential u« , and mechanism of charge carriers

¥ ..iuej
~aee 0 u(e) Gle

ogf— 0 oI 2’G(e)(;

g 42
0&KT 3 d(By) = & dera ()
1. . .
:—ZJ(l,(J-Z),m,T) (42, a)
IZf

i,j,m,T) (42, b)

e
Ode—n(m 1), G(e):gg(e)de, (41, ¢

scattering at crystal lattice defects, i.e. the scattering

functions with the scattering indicator r, it is possible to
theoretically calculate and experimentally measure dl the
kinetic properties of the crystals described with the
formulas (34,8)-(41,8). In addition, these formulas show,
that the anisotropy acquired by the crystal under the
influence of a magnetic fileld disappears, when the

magnetic induction vector B of this fidd is equal to
zero.

Such methods of calculations and measurementsin a
weak magnetic field are described in detail in [8- 11] for
selenious lead with isotropic Kane dispersion law. All the
calculations in these works have been done with the use
of MathCAD computer package, and the closeness of the
caculated and experimental values of various kinetic
properties of the crystal was estimated with the help of

Pearson's correlation coefficient corr(Kg, K¢ ), inscribed
into the package. Kg isthe vector of experimental values

of the kinetic property K, and K; is the vector of the

theoretical values of this property within this correlator.

In the case of good correlation between experimental
and caculated values, i.e. closeness between these
values, Pearson's correlation coefficient is very close to
1, while in the case of weak convergence the coefficient
is significantly smaller than 1.

Pearson correlation coefficient in the anaysis was
important in this numerical range:

corr(Ke, Kt ) @0.975+0.99 in the cited works [8-11].
These values of correlation coefficient proved closeness

between experimental and theoretical data in the analysis
of therelevant works.
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A.C. bymxak

Beaukuii repmoguHaMiynni norenuiana I'iodca B Teopil
KiHeTMYHHUX BJIACTHUBOCTEN KPUCTAIIB

Hayionanvnuii ynisepcumem «/Ivgiecora nonimexuixa», C. bandepu, 12, m. Jlvsis, Yrpaina, 79013

B naniii po0oTi 3a JOMOMOrOH BEIMKOrO TEPMOAMHAMI4HOro noreHuiany ['i66ca Oymu oOrpyHTOBaHI
KiHeTHYHI TEH30pH BiZIOMHMX B HEPiBHOBa)KHIN TEPMOIMHAMILI y3araJbHEHHX DIBHSAHb €IEKTPONPOBITHOCTI Ta
teruonposinHocti. Lli TeH30pu BU3HAYAIOTH PO3PAXYHKOBI aNrOPUTMHM MaTepialbHUX TEH3O0DIB IPOBIIHUX
KpHUCTaJIiB Ta Koe(ilieHTIB Pi3HUX raJIbBAHOMArHiTHUX i TepMOMarHiTHUX edekris. Li anropurMu — nparmaTuyHi
dopMynu B pO3paxyHKOBHX 3ajlauaxX KiHETMYHMX BJIACTHUBOCTEH KpHCTaliB Ta B 3aJadax I[POrHO3YBAaHHS
HAMIBIPOBIIHMKOBMX KPHMCTAliB i3 3aJaHUMH BJACTUBOCTSMH. IX NpParMaTHYHICTb MiTBEPIKYETHCS
BEJIMYE3HOI0  KIIBKICTIO HAyKOBUX pPOOIT IPHUCBSYEHMX JOCHI/UKEHHSIM KIHETMYHHX  BIACTHBOCTEH
HaIliBIIPOBITHUKOBUX KPUCTAJIB.

KirouoBi ciioBa: norennian [166ca, eneKTporpoBiHiCTh , TETUIONPOBIHICTD, ATOPUTM, TEH30D.

14



