REFERENCES

[1] Baenas, N., & Wagner, A. E. (2022). Drosophila melanogaster as a Model Organism for Obesity and Type-2 Diabetes Mellitus by Applying High-Sugar and High-Fat Diets. Biomolecules, 12(2), 307. https://doi.org/10.3390/biom12020307

[2] Basciano, H., Federico, L., & Adeli, K. (2005). Fructose, insulin resistance, and metabolic dyslipidemia. Nutrition & Metabolism, 2(1), 5. https://doi.org/10.1186/1743-7075-2-5

[3] Bayliak, M. M., Abrat, O. B., Storey, J. M., Storey, K. B., & Lushchak, V. I. (2019). Interplay between diet-induced obesity and oxidative stress: Comparison between Drosophila and mammals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 228, 18–28. https://doi.org/10.1016/j.cbpa.2018.09.027

[4] Bayliak, M. M., Demianchuk, O. I., Gospodaryov, D. V., Abrat, O. B., Lylyk, M. P., Storey, K. B., & Lushchak, V. I. (2020). Mutations in genes cnc or dKeap1 modulate stress resistance and metabolic processes in Drosophila melanogaster. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 248, 110746. https://doi.org/10.1016/j.cbpa.2020.110746

[5] Bayliak, M. M., Lylyk, M. P., Maniukh, O. V., Storey, J. M., Storey, K. B., & Lushchak, V. I. (2018). Dietary l-arginine accelerates pupation and promotes high protein levels but induces oxidative stress and reduces fecundity and life span in Drosophila melanogaster. Journal of Comparative Physiology B, 188(1), 37–55. https://doi.org/10.1007/s00360-017-1113-6

[6] Bayliak, M. M., Lylyk, M. P., Shmihel, H. V., Sorochynska, O. M., Manyukh, O. V., Pierzynowski, S. G., & Lushchak, V. I. (2016). Dietary alpha-ketoglutarate increases cold tolerance in Drosophila melanogaster and enhances protein pool and antioxidant defense in sex-specific manner. Journal of Thermal Biology, 60, 1–11. https://doi.org/10.1016/j.jtherbio.2016.06.001

[7] Bayliak, M. M., Lylyk, M. P., Shmihel, H. V., Sorochynska, O. M., Semchyshyn, O. I., Storey, J. M., Storey, K. B., & Lushchak, V. I. (2017). Dietary alpha-ketoglutarate promotes higher protein and lower triacylglyceride levels and induces oxidative stress in larvae and young adults but not in middle-aged Drosophila melanogaster. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 204, 28–39. https://doi.org/10.1016/j.cbpa.2016.11.005

[8] Bayliak, M. M., Vatashchuk, M. V., Gospodaryov, D. V., Hurza, V. V., Demianchuk, O. I., Ivanochko, M. V., Burdyliuk, N. I., Storey, K. B., Lushchak, O., & Lushchak, V. I. (2022). High fat high fructose diet induces mild oxidative stress and reorganizes intermediary metabolism in male mouse liver: Alpha-ketoglutarate effects. Biochimica Et Biophysica Acta. General Subjects, 1866(12), 130226. https://doi.org/10.1016/j.bbagen.2022.130226

[9] Chatterjee, N., & Perrimon, N. (2021). What fuels the fly: Energy metabolism in Drosophila and its application to the study of obesity and diabetes. Science Advances, 7(24), eabg4336. https://doi.org/10.1126/sciadv.abg4336

[10] De Nobrega, A. K., & Lyons, L. C. (2020). Aging and the clock: Perspective from flies to humans. European Journal of Neuroscience, 51(1), 454–481. https://doi.org/10.1111/ejn.14176

[11] Diop, S. B., Birse, R. T., & Bodmer, R. (2017). High Fat Diet Feeding and High Throughput Triacylglyceride Assay in Drosophila Melanogaster. Journal of Visualized Experiments : JoVE, 127, 56029. https://doi.org/10.3791/56029

[12] Driver, C. J. I., & Cosopodiotis, G. (1979). The effect of dietary fat on longevity of Drosophila melanogaster. Experimental Gerontology, 14(3), 95–100. https://doi.org/10.1016/0531-5565(79)90023-8

[13] Emelyanova, L., Boukatina, A., Myers, C., Oyarzo, J., Lustgarten, J., Shi, Y., & Jahangir, A. (2019). High calories but not fat content of lard-based diet contribute to impaired mitochondrial oxidative phosphorylation in C57BL/6J mice heart. Plos One, 14(7), e0217045. https://doi.org/10.1371/journal.pone.0217045

[14] García-Berumen, C. I., Ortiz-Avila, O., Vargas-Vargas, M. A., del Rosario-Tamayo, B. A., Guajardo-López, C., Saavedra-Molina, A., Rodríguez-Orozco, A. R., & Cortés-Rojo, C. (2019). The severity of rat liver injury by fructose and high fat depends on the degree of respiratory dysfunction and oxidative stress induced in mitochondria. Lipids in Health and Disease, 18(1), 78. https://doi.org/10.1186/s12944-019-1024-5

[15] Garrido, D., Rubin, T., Poidevin, M., Maroni, B., Rouzic, A. L., Parvy, J.-P., & Montagne, J. (2015). Fatty Acid Synthase Cooperates with Glyoxalase 1 to Protect against Sugar Toxicity. PLOS Genetics, 11(2), e1004995. https://doi.org/10.1371/journal.pgen.1004995

[16] Guimarães, V. H. D., Lelis, D. de F., Oliveira, L. P., Borém, L. M. A., Guimarães, F. A. D., Farias, L. C., de Paula, A. M. B., Guimarães, A. L. S., & Santos, S. H. S. (2020). Comparative study of dietary fat: Lard and sugar as a better obesity and metabolic syndrome mice model. Archives of Physiology and Biochemistry, 1–11. https://doi.org/10.1080/13813455.2020.1835986

[17] Hannou, S. A., Haslam, D. E., McKeown, N. M., & Herman, M. A. (2018). Fructose metabolism and metabolic disease. The Journal of Clinical Investigation, 128(2), 545–555. https://doi.org/10.1172/JCI96702

[18] Heinrichsen, E. T., & Haddad, G. G. (2012). Role of High-Fat Diet in Stress Response of Drosophila. Plos One, 7(8), e42587. https://doi.org/10.1371/journal.pone.0042587

[19] Herman, M. A., & Birnbaum, M. J. (2021). Molecular aspects of fructose metabolism and metabolic disease. Cell Metabolism, 33(12), 2329–2354. https://doi.org/10.1016/j.cmet.2021.09.010

[20] Lee, K. P., & Jang, T. (2014). Exploring the nutritional basis of starvation resistance in Drosophila melanogaster. Functional Ecology, 28(5), 1144–1155. https://doi.org/10.1111/1365-2435.12247

[21] Lushchak, O. V., Gospodaryov, D. V., Rovenko, B. M., Glovyak, A. D., Yurkevych, I. S., Klyuba, V. P., Shcherbij, M. V., & Lushchak, V. I. (2012). Balance Between Macronutrients Affects Life Span and Functional Senescence in Fruit Fly Drosophila melanogaster. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 67A(2), 118–125. https://doi.org/10.1093/gerona/glr184

[22] Lushchak, V. I. (2021). Interplay between bioenergetics and oxidative stress at normal brain aging. Aging as a result of increasing disbalance in the system oxidative stress–energy provision. Pflügers Archiv - European Journal of Physiology, 473(5), 713–722. https://doi.org/10.1007/s00424-021-02531-4

[23] Lylyk, M. P., Bayliak, M. M., Shmihel, H. V., Storey, J. M., Storey, K. B., & Lushchak, V. I. (2018). Effects of alpha-ketoglutarate on lifespan and functional aging of Drosophila melanogaster flies. The Ukrainian Biochemical Journal, 90(6), 49–61. https://doi.org/10.15407/ubj90.06.049

[24] Munday, R. (1989). Toxicity of thiols and disulphides: Involvement of free-radical species. Free Radical Biology & Medicine, 7(6), 659–673. https://doi.org/10.1016/0891-5849(89)90147-0

[25] Musselman, L. P., Fink, J. L., & Baranski, T. J. (2019). Similar effects of high-fructose and high-glucose feeding in a Drosophila model of obesity and diabetes. Plos One, 14(5), e0217096. https://doi.org/10.1371/journal.pone.0217096

[26] Musselman, L. P., & Kühnlein, R. P. (2018). Drosophila as a model to study obesity and metabolic disease. The Journal of Experimental Biology, 221(Suppl_1), jeb163881. https://doi.org/10.1242/jeb.163881

[27] Ratliff, E. P., Mauntz, R. E., Kotzebue, R. W., Gonzalez, A., Achal, M., Barekat, A., Finley, K. A., Sparhawk, J. M., Robinson, J. E., Herr, D. R., Harris, G. L., Joiner, W. J., & Finley, K. D. (2015). Aging and Autophagic Function Influences the Progressive Decline of Adult Drosophila Behaviors. Plos One, 10(7), e0132768. https://doi.org/10.1371/journal.pone.0132768

[28] Recena Aydos, L., Aparecida do Amaral, L., Serafim de Souza, R., Jacobowski, A. C., Freitas dos Santos, E., & Rodrigues Macedo, M. L. (2019). Nonalcoholic Fatty Liver Disease Induced by High-Fat Diet in C57bl/6 Models. Nutrients, 11(12), Article 12. https://doi.org/10.3390/nu11123067

[29] Reiter, L. T., Potocki, L., Chien, S., Gribskov, M., & Bier, E. (2001). A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Research, 11(6), 1114–1125. https://doi.org/10.1101/gr.169101

[30] Rovenko, B. M., Lushchak, O. V., Lozinsky, O. V., Kubrak, O. I., & Lushchak, V. I. (2012). Mild oxidative stress in fruit fly Drosophila melanogaster caused by products of sucrose hydrolysis. The Ukrainian Biochemical Journal, 84(5), 97–105. http://surl.li/fkufo

[31] Rovenko, B. M., Perkhulyn, N. V., Gospodaryov, D. V., Sanz, A., Lushchak, O. V., & Lushchak, V. I. (2015). High consumption of fructose rather than glucose promotes a diet-induced obese phenotype in Drosophila melanogaster. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 180, 75–85. https://doi.org/10.1016/j.cbpa.2014.11.008

[32] Semchyshyn, H. M. (2013). Fructation in vivo: Detrimental and protective effects of fructose. BioMed Research International, 2013, 343914. https://doi.org/10.1155/2013/343914

[33] Speakman, J. R. (2019). Use of high-fat diets to study rodent obesity as a model of human obesity. International Journal of Obesity, 43(8), Article 8. https://doi.org/10.1038/s41366-019-0363-7

[34] Strilbytska, O., Strutynska, T., Semaniuk, U., Burdyliyk, N., Bubalo, V., & Lushchak, O. (2022). Dietary Sucrose Determines Stress Resistance, Oxidative Damages, and Antioxidant Defense System in Drosophila. Scientifica, 2022, 7262342. https://doi.org/10.1155/2022/7262342

[35] Tappy, L., & Rosset, R. (2019). Health outcomes of a high fructose intake: The importance of physical activity. The Journal of Physiology, 597(14), 3561–3571. https://doi.org/10.1113/JP278246

[36] Taskinen, M.-R., Packard, C. J., & Borén, J. (2019). Dietary Fructose and the Metabolic Syndrome. Nutrients, 11(9), Article 9. https://doi.org/10.3390/nu11091987

[37] Tian, Q., Zhao, J., Yang, Q., Wang, B., Deavila, J. M., Zhu, M.-J., & Du, M. (2020). Dietary alpha-ketoglutarate promotes beige adipogenesis and prevents obesity in middle-aged mice. Aging Cell, 19(1), e13059. https://doi.org/10.1111/acel.13059

[38] Vitushynska, M. V., Matiytsiv, N. P., & Chernyk, Y. I. (2015). Influence of tissue-specific superoxide dismutase gene expression in brain cells on Drosophila melanogaster sensitivity to oxidative stress and viability. Cytology and Genetics, 49(2), 95–101. https://doi.org/10.3103/S0095452715020127

[39] Wong, R., Piper, M. D. W., Wertheim, B., & Partridge, L. (2009). Quantification of Food Intake in Drosophila. Plos One, 4(6), e6063. https://doi.org/10.1371/journal.pone.000606