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MODELLING OF DERIVATIVES PRICING USING METHODS OF
SPECTRAL ANALYSIS

IVAN BURTNYAK, ANNA MALYTSKA

Abstract. In this article expands the method of finding the approximate price for a wide class of
derivative financial instruments. Using the spectral theory of self-adjoint operators in Hilbert space
and the wave theory of singular and regular perturbations, the analytical formula of the
approximate asset price is established. Methods for calculating the approximate price of options
using the tools of spectral analysis, singular and regular wave theory in the case of fast and slow
factors are developed. Combining methods from the spectral theory of singular and regular
perturbations, it is possible to estimate the price of derivative financial instruments as a schedule
by eigenfunctions. The approximate value of securities and their rate of return are calculated.
Applying the theory of Sturm-Liouville, Fredholm’s alternative and analysis of singular and
regular perturbations at different time scales have enabled us to obtain explicit formulas for the
approximate value of securities and their yield on the basis of the development of their
eigenfunctions and eigenvalues of self-adjoint operators using boundary value problems for
singular and regular perturbations. The theorem of closeness estimates for bond prices
approximation is proved. An algorithm for calculating the approximate price of derivatives and
the accuracy of estimates has been developed, which allows to analyze and draw precautionary
conclusions and suggestions to minimize the risks of pricing derivatives that arise in the stock
market. A model for finding the value of derivatives corresponding to the dynamics of the stock
market and the size of financial flows has been developed. This model allows you to find the prices
of derivatives and their volatility, as well as minimize speculative changes in pricing, analyze the
progress of stock market processes and take concrete steps to improve the situation to optimize
financial strategies. The used methodology of European options pricing based on the study of
volatility behavior and analysis of the yield of financial instruments allows to increase the accuracy
of the forecast and make sound management strategic decisions by stock market participants.

Keywords: stock market, derivatives, spectral analysis, spectral theory, singular perturbation
theory, regular perturbation theory.
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1. INTRODUCTION

Short-term interest rate dynamics models were considered in the paper by [12] for derivatives
pricing. Significant contributions to the theory of rate of interest were made by [1], [8-10], namely:
finding a credit spread of credit market instruments, calculating option prices for interest rates,
determining the risk and derivatives” rate of return of the stock market financial instruments. The
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models developed by these scholars have their advantages and disadvantages, but each of them is used
to increase the liquidity of financial markets. Applying more sophisticated models, despite their
theoretical justification, leads to obtaining of complex multi-parameter functions of the yield curve,
which results in significant errors in calculations.

Using spectral analysis, [5] applied a spectral theory of self-adjoint operators to different models,
and to the Vasicek model, in particular. [11] considered the short-term interest rates described by the
Vasicek model with stochastic volatility, depending on two factors, one of which is fast, and the other is
slowly variable. In our paper, the spectral theory and the theory of singular and regular perturbations
are applied to self-adjoint operators in Hilbert spaces that describe processes with multidimensional
stochastic volatility having 1-fast variables, r-slowly variables, I > 1, r > 1, l € N, r € N. This theory is
applied to the short-term interest rates described by the Vasicek model, in particular. The approximate
value of securities and their yield are calculated. Applying the Sturm-Liouville theory, Fredholm
alternatives, as well as analysis of singular and regular perturbations at different time scales, we
obtained explicit formulas for convergence of bond prices and their yield. To obtain explicit formulas,
we need to solve 21 Poisson equations.

2. THEORETICAL BACKGROUND

The purpose of the article is to establish bond indicative prices and their profitability by methods of
spectral theory and theory of perturbations.

Let (Q, F, P) be the probability space that supports a correlated Brownian motion
(W*, W, .., WY, W?, .., W?) and an exponential random variable e~Exp (1), which is independent
of (W¥, W1, .., WY, W#, ., W?), We will assume that the economy with (l+r+1) factors is described by
the homogeneous time and continuous Markov process x = (X, Yy, ..., Y}, Z4, ..., Z;), which is defined in
some state spaceE = I x R! x RY, where (Yy,...,Y;) €R,, (Zy,..,Z;) €R". [ is the interval at R with
points ejand e,, such that —c0 < e; < e, < . We assume that x has the beginning at E and instantly
disappears once X goes beyond I. In particular, the dynamics of x with physical measure P is as
follows:

Xt = {(Xt'Ylt! "'!Ylt' th, . Zrt)), T > t,

A <t T; =inf(t > 0: X, € ),

where (X, Y4, ..., Y1, Z4, ..., Z;), are set

dX, = v(X)dt + a(X)f Yap s Yie Zit s Ze) AWE,
dy;, = la-(Y- )dt + iﬁ-(Y- Yaw,"’, j =1,1.
je =g e NG j\LjeJaWe ’
dZy = &;¢i(Zy)dt + \/Egi(ﬁ)dwtzi. i
A(W*, W), = py dt, j = 1,1.

WX W), = py,dt, i = 1,r.
d(WYi,W2), = Pyzdt, j=11 i=1r.
AW, W), = py pdt, j=11, s=1,
dW#, W), = p,,dt, i=1,n, k=1r.
(X0, Y10y e Y10 Z1gy +v» Zrg) = (X, Y10y - Vio» Z10s - » Zro) € E.

1r.

o~
o~

2 S

<1, and

where Pyys =0, J#T, Pz, =0, 1 # k Pxyj» Pxzp Pyjzp Meet the conditions pxy]_| , |szi|' |ijZi

correlation matrices of the form:

1 pxy] pri
pij 1 pijl'
pzix pziy]- 1

semipositively defined, thatis 1+ 2pyy przPy 2, = Pxy,” = Pz’ = Py;z° 20, =11 i=1r.

Process X may represent many economic phenomena and processes.
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3. RESEARCH OBJECTIVE, METHODOLOGY AND DATA

For example, the reserve size, the index price and reliable short-term interest rates, etc. Even more
broadly, X is an external factor that characterizes the value of any of the above-mentioned processes.
Physical measure [P of process X is understood as the process X, which has an instant drift v(X;) and
stochastic volatility a(X;)f (Yi¢, .., Yit, Z1¢, -, Zn) > 0, which contains both components: local a(X;) and
nonlocal f(Yy, ..., Yit, Z1t, -, Zne)- Note that infinitesimal generators (infinitized) for ¥; and Z; have the
form V i, j

€ —
Y

: ( sz(y])ay]y] T (yj)ay,) z, = O ( 9i%(2)07 4, + ci(zi)azi),

i

are characterized by the measures el and §;, respectively. Thus, Yy, ..., Y} and Zj, ..., Z, have an internal
J

time scale € >0 and — 5 > 0. We consider € <<1 and §; << 1, so that the internal time scale Y; Y; is small,

L

and the internal time scale Z; is large. Consequently, Y; i) =1, l, are fast variables, and Z;, i = 1,n are
slowly variables. Note that 535’} and Bgi have the form [6]

= —az(x)a + b(x)0, — k(x), x € (e1,€3),3 k(x) =0

for all x € I, are always self-adjoint in the Hilbert space H = L?(I,m), where I € R is the interval with
the points e and e, and m is the diffusion density rate.
Dom(8){f € L*(I,m): f,d,f € ACoc(I),&fL*(I,m), BCs on e; and e,} where AC,,.(I) is the space of
functions which are absolutely continuous on each compact subinterval I [3]. The boundary conditions
for e; and e, are applied on the output, input, and regular bounds.

We will evaluate the derivatives with payoff at time t > 0, which may depend on the trajectory X.
In particular, we will consider the forms of payoff:

Payoff = H(X¢)l(r>r),

where T is a random moment of time during which there is a failure to make a payment of premium.
Since we are interested in the derivatives estimation, we must determine the dynamics
XYy, ., Y1, Zy, ..., Zy), under the evaluation of the degree of neutral risk, which we denote as P. We
have the following dynamics [7]:

dX, = (bXo) = aX)f (ies o Yies Zats s Zed) 2 (Yt oo, Yie Zags o, Zi) )t
+a(Xt)f(Y1t, ey Ylt' th, ey Zrt)thx,

1 1 3
@ﬁj(th)A,-(Yw s Yio Zg s Zyg) | dE +J—E_jﬁj(m)dwt ,
Az = (5'Ci(zit) —J8:9:Zi)lYaty o, Yio Zagy Zrt)) dt + \/8,9:(Z;)dW,
A(W* Wiy, = Pxy;dt, j =1, l

dYje = “J( t)

d(W*, W?), = pygdt, i
A(WYi, W), = pyjzldt j= i=1r
d(Wy]’ Wys)t - pyjysd ] s = T

AW, W) = pyzdt, i =L, k=TLn.

(X0, Y10, --» Y10, Z1gs -+ rO) = (X, Y10, Y10, Z10s -+, Zro) € E,
where
(xt)fgf(it..).;i.};i.....zm) + 01 ) Yo Z1p o) Zrt)) dt
AW, = dW,” + A;(Yap, o, Vi Z1, o, Zr)dE,
AT = AW+ T, (Vs Yoo Ty o Ze )

AWy = dW + (

1
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where Pyys =0, J#S, gz, =0, I # k.
We establish such conditions so that the system (1) has the only strong solution.
Random time 7 is the time of the derivative asset. In our case, default can occur in one of two ways:
1) when X fall outside the interval I,
2) atrandom time 75, which is managed by the risk level h(X;) = 0.
This can be expressed as follows:

T =11y,
=inf{t>0:X, &1},
t
T, = inf {t >0: f h(X,)ds = e(X,Yq, ..., Y1, Z4, ...,Zn)},
0
e~Exp(1) L.

Note that the random variable ¢ is independent of (X, Yy, ..., Y}, Zy, ..., Zy).

To track 7, we use the process indicator: D; = 57,3, where D = {Dy,t = 0}, is a filter generated
by D and F = {%;t >0} is filter's generator (W* W1, .WY, W%, .. , W?"). We use the filtering
G = {6, t = 0}, where 6; = §,VD,. Note that (X,Yy, ..., Y},Zy, ..., Z,) are applied to G and 7 is a stopping
time ({{T < t}} € &, forall t > O).

We will evaluate the derivative asset of some payoff (payment) using the neutral pricing risk and

Markovian chain X, the price u®' (t,%,y1, .. Y1, Z1, ., Zy) Of some derivative assets at the initial moment
of time has the form:

_ t
uSS (6, %, Y1, Vi 21y e s Zy) = By, y1z0mzs [exp (—f r(XS)ds> H(thl{t>f})],
0

where € = (€4, ..., €)), 5§ = (81, .., 6;), and (X, ¥4, ...¥1, 21, .., Z,) € E is a starting point of the process

X, Yy, ..., Y1, Zy, ..., Z,,). By Feynmann-Kac formulas, we can show that uay(t, X, V1, V1, Z1, -, Zy) Satisfies
the following Cauchy problem [3]:

(<00 + 859 )us =0, vy, Y120,.2,) EE L €RY, @)
uE'S’(O,x,yl, V1 21, ey Zp) = H(X), 3)

where the operator 288" has the form:

=7 5
8 = By Ry + Dja o g + Ly By [ Mgy + T/ + Ti i,

= 55;'2(yj)6y2,-y,- +a;(y)d,, j=1L
&1 = B (0xy, @GO f Y1y o V1 20, o, 200y = Ay V1, e V1, 21, 0, 20)) Dy
L) = %az(x)fz(yl, Vi Z1y eens 20) 0% + (D(X) = ALY, 0o Vi 21, eoes Ze) (Vs e V1o 21y oves 20)) Oy — K (),
Msij = Pz, (¥1)9:(2005 1,
My; = gi(z) (ple.a(x)f(yl, V1 Z1y s Z0) 0y — (Y1, - V1, 24, ""Zr)) a,
My, = %912 (20927, + €i(2)0z, k(x) =7(x) +h(x), Lo; =2},
We assume that the diffusion with the infinitesimal generator E},J_ has an invariant distribution I1

with density m; (y;).

) 2650) | } -
() = D) (y) {fyw 52(6) vj=1L

Besides the initial condition (3), the function u®% (t,x,yy,...v;, 21, .., 2,) must meet boundary
conditions at the points of e; and e, of the interval /. The boundary conditions at points e; and e,
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belong to the domain 988" and will depend on the nature of process X on the points of I and are
classified as mnatural, output, input or regular [1]. The Cauchy problem (2)-(3) for
(f,ay, ey, By, oo, Brs Ay, o Ay, €4y ooy €, G4y e 1o T4, o, ;) has no analytical solution. However, for fixed 8,
the conditions containing € and are arbitrarily deviated in the €-axis, which causes singular
perturbations. For a fixed ¢; condition containing §; are small for some small §'-axis, which causes
regular perturbations. Thus, the €-axis and &’-axis yields the combined singular-regular perturbation of

0(1) of the operator £,.To find the asymptotic solution of the Cauchy problem (2)—(3), we develop ues’

in orders ,/¢; and V8 [21:
, . . i
= Z Z Z Z \/6_1]1 ...\/E_ljl \/6_1L1 \/6_7- uj1:---,jn,i1.---il’

120 ;20 j120  j,;=0

j ji i b
where Zilzo ---Zilzozhzo ---erzov ! \/_ V61 /6y uj1 cofridyyedy =
lr
m;=20 m =0 m ]
mi_, e le>0 Zilzlo 2]11:01 ' ]nl;rg\/_ ! \/— Y 61 TR, 61” ujl,...,jr,il,...iy my = ©,..., My = 0.

The appr0x1mate price is calculated

€8
u uoor+Z ZM

The choice of development in half-integer orders €j and §; are natural for Qed’,
By conducting an analysis of singular perturbations at the corresponding levels, we obtain that

u u UsT do not depend on yj, ...y;. The basic findings of the asymptotic analysis are given

Y12 T .00
0,0” “1j0

using the following formulas [4]

0(1): Xj=1%; Uz o7 + (-0, + (22))1‘6,? =0, uw(o, X, 21, ., Zy) = H(X),

0(Ve): Lo Uz, 5+ L, Uz, 5+ (=0, + @2))%5 + Z Qlkuik,-,a + Z Ly

k=) %]
ch]uo o 1 O,(O X,Z1, 0, Zy) = 0,

1;; = (0, ..10,1,0, ....o).

According to the analysis of regular perturbations we have

O(J&): (=0, + (L5 = Bidy s, Uy (0.%,2,.,2,) = 0, i = L.

Zi 70, Nk

Operators (8,), A;, B; and d,, are defined by the formulas

(2,) = 262a?(0)9% + (b(x) — fa(x))d, — k(x), x € (e1,€5),

A = _V3ja(x)axa2(x)a£x - Vz;'az (x)0%, — Uzja(x)dra(x)d, — Uyjalx)dy,

B; = —vy;a(x)0y —vg; and 0, = 8,605 + f2'05p, Vii = GiPxz{f) Vo = gi{l}), Vi =1nand norm
function

(X=X, y)7(y;)dyj, V)= 1,1,

X1z = fRz Xy YT )T (V2)dy1 Ay, AX D10 =

St X1, ey (1) e 1y )y e dyy, (X)i—1y = (X0, (F02) = [0, (f?) = 52

We find solutions to the equations (4)-(6) on the basis of eigenfunctions, eigenvalues of the operator
(&), each of which meets a corresponding Poisson equation

L0101 =2 = {1, L0202 = {f* )1 — (fD12 0 8au®r = {f Nz — e,

Lo1m1 = f2 —(f2)1, e o = <f~Q>j—2,j—1 (f‘Q)]—l,j' v By = (f1—20-1 — {211,

(4)
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Theorem 1: Assume that we can solve the following equation to find an eigenvalue:

=LY, = Ay, Y € dom((L;)),

and also that H € . Then the solution u

o007 has the form:

[o¢]

uaw = z CnlzbnTn ) Cn = (lpn, H), Tn = e_tln.

n=1

Theorem 2: Let ¢, ¥, , T, be described using Theorem 1. We define
Tr—Tn
cﬂjk,n = (lllk, cﬂj'(»bn)/ Uk,n = A:q
Then the solution u; 57 of equation (5) has the form:
]!

qu’E = Zn Zk:tn CnAjk,n lpk Uk,n - Zn Cnﬂjn,nwntTn-

Note that qu,W is linear in the parameter group (93,9, 4, 11 ;).
Theorem 3: Let ¢, Y, and T,, be defined with Theorem 1, and Uy, with Theorem 2, we have
= T —Ty, tT,
Bik,n = (lpk:Biazilpn)r Bik,n = (lpk'Bilpn)r Vik,n = (Akk—ln)z + Ay

Then the solution Us 7 has the form:

u5,1_’i = Z Z Cn gik,nl;bkuik,n - Z Cngin,nwntTn

n k#n n

+ Z Z (aZiCn) Bik,nll)kUik,n - Z(azicn)Bin,nwntTn
n

n k#n

1
+ Z Z Cn Bik,nlpk(aziln)vik,n - Z CnBin,nl»bn (azi/ln) E tZTn-

n k#n n
We draw attention to the fact that Us 7 is linear in (v1;0,vq;f2',v0;G', Voi f2).
. . . . €8 _ 1 _ .
Having obtained the approximate solution u®® ~ ugg + 2 J'=1\/?J'u1_j,o’ + Z?:m/giua 7 for the

derivative asset pricing.

4. RESULTS AND DISCUSSION

For a more exact result we assume that the Payoff function H(x) and its derivative are smooth and
limited functions. Thus, we limit our derivative analysis to a smooth and limited payoff; in this case,
the closeness estimates is based on the following theorem:

Theorem 4: For the fixed (t,x, ¥, ..., Y1, Z1, ..., ;) there exists an invariable C such that for any ¢; < 1,
6; < 1 we have:

€6’ _ l _ _ l
ued’ — (ua,o’ + ZJ'=1\/€_J'”1_,-,0' + Z?=1\/Eu6,1,i)| S CXjor 6 + 211 6).

Theorem 4 gives us information on how the approximate price behaves when €; — 0 and §; - 0.

Let X be short interest rates. One of the most widely known models of short interest rates is the
Vasicek model, in which X is modeled as the Ornshtein-Ulenbeek process with multidimensional
stochastic volatility. P dynamics of X are given, in particular

dX, = (k(6 — Xp) — f(Yy, ... Yy, Zy, o Z)O(Ye, 0 Y 2, e Zp))dt
+f Yy, s Y, 2o, ey Zp) + AW, 7(X,) = Xy, h(X,) = 0,

where Yy, ..., Y}, and Z, ..., Z, are fast and slowly variable volatility factors as described. We calculate the
approximate price for a zero coupon bond.
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We write the operator (£,) and the density associated with it at a rate m(x)
(8,) = 25202 + k(0 — x)0y — x, (8)
2 -k 5 - 1__
m(x)—ﬁexp(ﬁ(e—x) ) B—B—Ef.(l,
2 -k 5 B 1__
m(x)—ﬁexp(ﬁ(e—x) ) = —;f.(l.

To find a bond price with a payoff H(X,) = ;5 = 1, we need to solve the equation (7) to find the

eigenvalues for the segment I = (— oo, ) with (£,) in compliance with (8). Since both points o and oo
are natural limits, then the solution has the form [13].

Y = Mo exp (~AE =3 42) Hy(E + ),

_ \z
K T
Nn = (\/; 2n+1n!) 4

\/E —
A=—7, §==(x-0),
Ip=Ay=0—-—"4Kkn, n=012,...

Here, H,, are Hermite polynomials. We will write the expressions for the operators A; and B;:
Aj = ~0j3050 — (O + Uj2)0% — Wj10y,  Bj =010, — Yo

Operators Ajy n, Bjxn, and Bjy , are written on the basis of recurrence relations:

0.H, = 2nH,_,, 2xH, = H, 1 + 0, H,, Ajin = —VJ3
2B
£ \m/\ k a (n—m)! N, ™
=0, + U},)
50 (5 i
Lo )\ G (n—m)! N,y ™

(—1> 5+ 2\/_ n N, 5
K kn (n—l)']\fn 1 kn—1(’
-1 2\/_ nlV;,
Bijkn = —9; (7) Opn + CED Skn—1( — YjoOkn,
n—

<§>(§)+<if ) - - D
%)

CEE T
-1\ /-2 2Vk nlV, 2V (—2 nl MV,
+ <_) (T) — o 6kn 2 (T) 5kn 3
K a 7] (n—2)'M,_, G a/l(n—3)N,_;
9 5 (1 o n)6 + 4 n! NV, 5 +(—2) n!l N, 5 }
0T N2 K3 5) %k o) (=D, kn=1 7 \G ) (n=2)N,_, "2
e (E AV MMy o 4) N
- ilf (F) kn % (n_ 1)'Nn 1 kn—-1 ( (n Z)INn 2 kn-2
a7 {(52) 0+ (52 o= D oo}
lOf kn O'\/_ n—1)']\fn L kn-1
Calculation of ¢,, can be found in [12]

2 [
cn=Wn 1) = g\/gNnAne_Az/‘}-

The approximate price of a bond can now be calculated applying the theorems 1-3.
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For zero-coupon bonds, the bond curve is often considered, and not the bond price itself. The yield

Re¥ fora zero-coupon bond, on which one dollar is paid at time ¢ is defined by the relation:
ued = exp (—REEt).

. N o . . 5
We obtain the approximation for a zero-coupon bond, developing in series as bond prices u&%’, and

the yield R%%" in orders J& and /5;:

l T <
l n
—(R+X o, JER—_—+T J8iR_— |t
e — 0,0/ SIEIV TN of TAI=1N BN 1
Us o+ E *lefu_1j,_o'+ E ,/6l~u_0'—1,i+ =e j i

j=1 i=1
l T
-R_—t -R —t -R_—t
= 0,0 e — 0,0 R — 0,0 e
e +Z“/€’R1p0'e +Zw/(SLRO’1,ie +
j=1 i=1

Grouping in orders /€ and ,/§; we obtain:

Note that figures are constructed component-wise on each corresponding time scale, in much the
same way as components in [2], [11].

5. CONCLUSIONS

The spectral theory and the theory of singular and regular perturbations are applied to investigate
the short-term interest rates described by the Vasicek model. The approximate price of bonds and their
yield are calculated. Applying the Sturm-Liouville theory, Fredholm's alternatives, as well as analysing
singular and regular perturbations in different time scales, we obtained explicit formulas for the
convergence of bond prices and yields. To obtain explicit formulas, we need to solve 2l Poisson
equations. The main advantage of our pricing methodology is that by combining methods from spectral
theory, regular perturbation theory, and the theory of singular perturbations we reduce everything to
the solution of the equations to find their eigenfunctions and eigenvalues.

Developed methodology for modeling the pricing of derivatives, makes it possible to predict the
results of targeted actions of stock market participants, and to correct behavior based on the influence
of various factors present in the market.
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bypraak Isan, Maaunpka I'anna. MogearoBaHHsA LIiHOyTBOpeHHs JAepMUBaTUBIB MeTOAaMM CIEKTPaAbHOTO
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Y 11ii1 cTaTTi pO3MIMPIOETHC METOA 3HaXOA KeHHsI HaDAVMKeHOI iU A4 IMPOKOTO KAacy MOXigHMX
¢inaHCcOBMX IHCTpyMeHTiB. BMKOPMUCTOByIOUNM CIEKTpalbHY TEOPil0 CaMOCIPsIKEHMX OIleparopis y
liapbepTroBOMYy IIpOCTOpPi Ta XBMABOBY TeOpPil0 CHUHIYAAPHMX Ta PperyAsApHNMX 30ypeHb, BCTAaHOBAEHO
aHaAiTM4HY ¢QopMyAay HaOAMKeHOI IiHM akTMBiB. Po3po0aeHO MeTOAM pO3paxyHKy IIiH OIIIIOHIB 3a
AOIIOMOIOIO iHCTPYMEHTIB CIIeKTpaAbHOTO aHaAi3y, Teopil CMHTYASPHUX Ta PEryASPHUX XBUAb Y BUIAAKy
IBUAKMX 1 moBiabHMX axropis. [ToeaHyIOuM MeTOAM i3 CIIEKTpaAbHOI TEOPil CUHIYASPHUX Ta PeryAsSpHIX
30ypeHb, MOKHa 3HAITH IiHy HOXiAHMX (iHAHCOBMX iHCTPYMEHTIB K PO3KAad 3a BAaCHUMMN (QPYHKIIiLIMMN.
PospaxosyeTncst mpubamsHa BapTiCTh LIHHMX MamepiB Ta iXx HOpMa HpMOYTKy. 3acTOCOBYIOUM TEOPilo
HItypma-Aiysiaas, aaprepHatusy ®pesroabma Ta aHaAi3 CMHIYASIPHUX Ta PeryAApHMX 30ypeHb Yy pisHMX
JacoBMX MacIITabax MOKHa OTpuMaru siBHi GOpMyAM BapTOCTi LIHHMX Hanepis Ta X 40xigHOCTi Ha OCHOBi
po3KaAagy BAacHMX (PYHKLINM Ta BAAaCHMX 3HA4eHb CAMOCIIPSDKEHMX OIlepaTOpiB, IO BUKOPUCTOBYIOTH
KpailoBi 3ajadi A4S CHHIYASPHUX Ta peryAdapHmx 30ypeHb. /oBeieHO TeopeMy, 3a AOIOMOTIOIO SIKOI
3HAXOASTBCS OIiHKM HaOAV>KeHOI 11iHN JepuBaTnBiB. Po3po6.1eHO aaropuT™M 00YMCcAeHHs HaODAVDKEHO! TiHU
AepuBaTMBiB i TOYHOCTI OIIiHOK, IO A03BOASE IIPOBOAMTM aHaAi3 Ta 3poOMTH 3amOOiKHI BUCHOBKM i
nporosutii, o0 MiHiMi3yBaTU pU3NKU IIOA0 IIiIHOYTBOPEHH: AepPMBATUBIB, SIKi BUHMKAIOTh Ha (POHAOBOMY
punKy. Po3pobaeHO MOAeAb 3HaXOAKeHHs BeAMUMHMU I[iHM AepuUBaTUBiB, IO BiAIIOBiAalOTh AMHaMIITi
¢ong0BOTO PMHKY Ta BeAndnHU PiHAHCOBMX MOTOKiB. Taka MOJeab 403BOASIE€ 3HAXOAUTHU IIiHU AepUBaTHUBiB
Ta IXHIO BOAATUABHICTh, @ TAKOX 3BeCTU A0 MiHIMYMY CII€KYASTUBHI 3MiHM B IIIHOYTBOP€HHI, 3/1IICHIOBATA
aHaAi3 MpPOXOAXKeHHs IpolleciB Ha (POHAOBOMY PMHKY Ta pOOUTU KOHKPETHi KPOKM AAsl ITOKpaIleHH:
cutyanii oo onrtuMisarii ¢gpiHaHcoBUX cTpareriii. BukopucraHa MeToAMKa LIIHOYTBOPEHHS €BPOIENCHKIIX
ONIIIiOHIB Ha OCHOBi J0CAiA>KeHHs IIOBeAIHKM BOJATMABHOCTI Ta aHaaAidy AoxigHocTi ¢iHaHCOBUX
iHCTpyMeHTiB 403BOAsI€ 30iABIINTM TOYHICTH IIPOTHO3y Ta IIpMiIMaTH OOIPYHTOBaHi YHpaBAiHCHKi
CTpaTeTiuyHi pileHHs y9acHMKaMy (POHAOBOTO PUHKY.
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