ON GENERALIZATIONS OF THE HILBERT NULLSTELLENSATZ FOR INFINITY DIMENSIONS (A SURWAY)

V.V. Kravtsiv

Abstract

The paper contains a proof of Hilbert Nullstellensatz for the polynomials on infinite-dimensional complex spaces and for a symmetric and a block-symmetric polynomials.

Keywords: polynomials, symmetric polynomials, block-symmetric polynomials, algebra of polynomials, Hilbert Nullstellensatz, algebraic basis.

1. Introduction

The Hilbert Nullstellensatz is a classical princip in Algebraic Geometry and actually its starting point. It provides a bijective correspondence between affine varieties, which are geometric objects and radical ideals in a polynomials ring, wich are algebraic objects. For the proof and applications of the Hilbert Nullstellensatz we refer the reader to [6].

The question whether a bounded polynomial functionalon a complex Banach space X is determined by its kernel the set of zeros under te assumption that all the factors of its decomposition into irreducible factors are simple was posed by Mazur and Orlich (see also Problem 27 in [10]). A positive answer to this question it follows from Theorem 2 of the present paper. Moreover, this result remains valid even when the ring of bounded polynomial functionals is replaced by any ring of polynomials for which there exists a decomposition into ireducible factors satisfying the following condition along with each polynomial $P(x)$ that it contains the ring also contains the polynomial $P_{\lambda ; x_{0}}(x)=P\left(x_{0}+\lambda x\right)$, where $x \in X$ and $\lambda \in \mathbb{C}$.

Let X and Y be vector spaces over the field \mathbb{C} of complex numbers. A mapping $\bar{P}_{k}\left(x_{1}, \ldots, x_{k}\right)$ from the Cartesian product X^{k} into Y is k - linear if it is linear in each component. The restriction P_{k} of the k-linear operator \bar{P}_{k} to the diagonal $\Delta=\left\{\left(x_{1}, \ldots, x_{k}\right) \in X^{k}: x_{1}=\ldots=x_{k}\right\}$,
which can be naturally identified with X, is a homogeneous polynomial of degree k (briefly, a k monomial). A finite sum of k-monomials, $0 \leq k \leq n, P(x)=P_{0}(x)+P_{1}(x)+\ldots+P_{n}(x), P_{n} \neq 0$ is a polynomial of degree n. For general properties of polynomials on abstract linear spaces we refer the reader to [4].

This paper is devoted to generalizations of the Hilbert Nullstellensatz of infinite dimensional spaces. In Section 2 we consider the case of abstract infinite dimension complex linear spaces. Section 3 is devoted to continuous polynomials on complex Banach spaces. In Section 4 we examin symmetric polynomials on ℓ_{p} and Section 5 contains some new results about Nullstellensatz for block-symmetric polynomials.

2. The Nullstellensatz on Infinite-Dimensional Complex Spaces

All results of this section are proved in [15].
Let us denote by X a complex vector space, by $\mathcal{P}(X)$ the algebra of all complex-valued polynomials on X. Let $\mathcal{P}_{0}(X)$ be a subalgebra of $\mathcal{P}(X)$ satisfying the following conditions:
(1) If $P(x) \in \mathcal{P}_{0}(X)$, then $P_{x_{0} ; \lambda}(x)=P\left(\lambda x+x_{0}\right) \in \mathcal{P}_{0}(X)$ for any $x_{0} \in X$ and $\lambda \in \mathbb{C}$.
(2) If $P \in \mathcal{P}_{0}(X), P=P_{1} P_{2} ; P_{1} \neq 0, P_{2} \neq 0$, then $P_{1} \in \mathcal{P}_{0}(X)$ and $P_{2} \in \mathcal{P}_{0}(X)$.

That is, the algebra $\mathcal{P}_{0}(X)$ is factorial and closed under translation. We shall agree to call such algebras of polynomials FT-algebra.

It is obvious that $\mathcal{P}(X)$ is an FT-algebra. A typical example of an FT-algebra is algebra of bounded polynomials (on bounded subset) on a locally convex space X. We shall denote this algebra by $\mathcal{P}_{b}(X)$. Anothe example of an FT-algebra is provided by the polynomials formed by finite sums of finite products of continuous linear functionals on X (polynomials of finite type). If Y is subspace of X, we take $\mathcal{P}_{0}(Y)$ to mean the restrictions of the polynomials of $\mathcal{P}_{0}(X)$ to Y. It easy to see that $\mathcal{P}_{b}(Y)$ coincides with the algebra of bounded polynomials on Y.

Let $P_{\gamma}(x) \in \mathcal{P}_{0}(X)$ be a family of polynomials, where γ belongs to an index set Γ. We recall that an ideal $\left(P_{\gamma}\right)$ in $\mathcal{P}_{0}(X)$ is a set $J=\left\{P \in \mathcal{P}_{0}(X): P=\sum_{\gamma \in \Gamma} Q_{\gamma}(x) P_{\gamma}(x), Q_{\gamma} \in \mathcal{P}_{0}(X)\right\}$, where the sum $\sum_{\gamma \in \Gamma} Q_{\gamma}(x) P_{\gamma}(x)$ contains only a finite number of terms that are not identifically zero. A linearly independent subset $\left\{P_{\gamma_{\beta}}\right\}$ of the set $\left\{P_{\gamma}\right\}$ such that $\left(P_{\gamma}\right)=\left(P_{\gamma_{\beta}}\right)$ is a linear basis of the ideal J. For an ideal $J \in \mathcal{P}_{0}(X), V(J)$ denotes the zero of J, that is, the common set of zeros of all polynomials in J. Let G be a subset of X. Then $I(G)$ denotes the hull of G, that is, a set of all polynomials in $\mathcal{P}_{0}(X)$ which vanish on G. The set radJ is called the radical of J if $P^{k} \in J$ for some positive integer k implies $P \in \operatorname{radJ} . P$ is called a radical polynomial if it can be represented by a product of mutually different irreducible polynomials. In the case $(P)=\operatorname{rad}(P)$.

It is easy to see that $I(G)$ is an ideal in $\mathcal{P}_{0}(X)$. The main problem that we shall solve consists of establising conditions under wich the equality

$$
I(V(J))=J
$$

holds for the ideal $J \in \mathcal{P}_{0}(X)$ that is, an ideal in $\mathcal{P}_{0}(X)$ is uniquely determined by its set of zeros.

In the finite-dimensional case the answer to this question is provided by the Hilbert Nullstellensatz, which asserts that a necessary and sufficient condition for this to happen is that the
ideal J be equal to its radical (which we shall define below). We remark that for the infinitedimensional case this condition is not sufficient. (A counterexample will be given).
Lemma 2.1. Let P_{1}, \ldots, P_{n} be polynomials on X and $\operatorname{deg} P_{1} \geq \operatorname{deg} P_{2} \geq \ldots \geq \operatorname{deg} P_{n}>0$. Then there exists an element $h \in X$ such that for any $x \in X$ the degree of the scalar-valued polynomial $P_{1}(x+$ th $)$ in t is $\operatorname{deg} P_{1}$, and the polynomials P_{2}, \ldots, P_{n} depend on h, that is, for each $P_{i}, i=2, \ldots, n$, there exists x_{i} such that the scalar-valued polynomial $P_{i}\left(x_{i}+t h\right)$ in t is of positive degree.
Proof. For $n=1$ the assertion of the lemma is obvious. Assume it is true for $n-1$. Let h_{1} be the required element for P_{1}, \ldots, P_{n-1}. Assume that P_{n} is independent of h_{1}, that is, $P_{n}\left(x+t h_{1}\right)=$ $P_{n}(x) \forall x \in X$. Let h_{2} be an elementof X such that P_{n} depends on h_{2}. We make the definition $h(\lambda):=h_{1}+\lambda h_{2}, \lambda \in \mathbb{C}$. Consider the family of scalar-valued polynomials $P_{1}(x+t h(\lambda))$ in t with parameters λ, x. For any x there is only a finite set of λ, at which the polynomial $P_{1}(x+$ $t h(\lambda))$ is of degree less than $\operatorname{deg} P_{1}$ in t.

Indeed, let $\operatorname{deg} P_{1}=m$, and let $P_{1}=\sum_{i=0}^{m} f_{i}$ be an expansion in monomials. Then $P_{1}(x+\operatorname{th}(\lambda))$ can be given in the following form:

$$
\begin{aligned}
P_{1}(x+\operatorname{th}(\lambda)) & =\sum_{i=1}^{m} f_{i}(x+\operatorname{th}(\lambda))=\sum_{i=1}^{m} t^{j} \bar{f}_{i}(x, \ldots, x, \overbrace{h(\lambda), \ldots, h(\lambda)}^{j}) \\
& =t^{m} f_{m}(h(\lambda))+\sum_{k<m} \sum_{j \leq k} t^{j} q_{j}(x+h(\lambda))
\end{aligned}
$$

where \bar{f}_{i} are i linear forms corresponding to the monomials f_{i};

$$
q_{j}=\sum_{i} \bar{f}_{i}(x, \ldots, x, \overbrace{h(\lambda), \ldots, h(\lambda)}^{j}) .
$$

If $\operatorname{deg} P_{1}\left(x+\operatorname{th}\left(\lambda^{\prime}\right)\right)<m$ for some value λ^{\prime} of the parameter λ, then $f_{m}\left(h\left(\lambda^{\prime}\right)\right)=f_{m}\left(h_{1}+\right.$ $\left.\lambda^{\prime} h_{2}\right)=0$. But, since $f_{m}\left(h_{1}+\lambda h_{2}\right)$ is polynomial in the variable λ (for fixed h_{1} and h_{2}), it can have only a finite number of zeros without being identically zero. Assume that $f_{m}\left(h_{1}+\lambda h_{2}\right) \equiv$ 0 . Then this relation also holds for $\lambda=0$. Hence $\operatorname{deg} P_{1}(x+t h(0))=\operatorname{deg} P_{1}\left(x+t h_{1}\right)<m$, which contradicts the choice of h_{1}.

Similarly, for each $i=2, \ldots, n-1$ there exists a finite set of values of the parameter λ at which the polynomials $P_{i}(x+\operatorname{th}(\lambda))$ have smaller degree in t than $\operatorname{deg} P_{i}$, in particular, degree 0 . Hence there exists a number $\lambda_{0} \neq 0$ such that $\operatorname{deg} P_{1}\left(x+t h\left(\lambda_{0}\right)\right)=m$ with respect to t, and the polynomials P_{i} depend on $h\left(\lambda_{0}\right)$ for $1<i<n$. Moreover, P_{n} also depends on $h\left(\lambda_{0}\right)$, since $P_{n}\left(x+t h\left(\lambda_{0}\right)\right)=P_{n}\left(x+t \lambda_{0} h_{2}\right)$. Therefore, $h:=h\left(\lambda_{0}\right)$ is the required element for n. The lemma is now proved.
Theorem 2.2. Let X be a complex vector space of arbitrary (possibly infinite) dimension, and let $P_{1}(x), \ldots, P_{n}(x) \in \mathcal{P}_{0}(X)$, where $\mathcal{P}_{0}(X)$ is an FT-algebra. Then there exists an element $h \in X, a$ subspace Z complementary to $\mathbb{C} h$ in X, and polynomial functionals $G_{1}, \ldots, G_{n-1} \in \mathcal{P}_{0}(X)$ such that:
(1) $g_{k}(z+t h)=g_{k}(z) \forall z \in Z, t \in \mathbb{C}, k=1, \ldots, n-1$.
(2) All G_{k} belong to the ideal $\left(P_{1}, \ldots, P_{n}\right)$ in the algebra $\mathcal{P}_{0}(X)$.
(3) The set of zeros of the ideal $\left(g_{1}, \ldots, g_{n-1}\right)$ in the algebra $\mathcal{P}_{0}(Z)$ is the projection of the zeros of the ideal $\left(P_{1}, \ldots, P_{n}\right)$ in $\mathcal{P}_{0}(X)$ onto the subspace Z along h.
(4) If $g_{k} \equiv 0, k=1, \ldots, n-1$, then P_{1}, \ldots, P_{n} have a common divisor.

Proof. Let $\operatorname{deg} P_{1}=\max _{i} \operatorname{deg} P_{i}$ and let $h \in X$ be an element such that the degree of the polynomial $P_{1}(x+t h)$ in the variable $t \in \mathbb{C}$ equals $\operatorname{deg} P_{1}$ for all $x \in X$ and the polynomials P_{1}, \ldots, P_{n} depend on h. Such an element exists in accordance with Lemma 2.1. Concider the polynomials P_{1}, \ldots, P_{n} as elements of the algebra $\left(\mathcal{P}_{0}(Z)\right)[t]$, where Z is a closed subspace complementary to $\mathbb{C} h$ in X. That is, the elements of the algebra $\left(\mathcal{P}_{0}(Z)\right)[t]$ are polynomials of t with coefficients in the fieldof quotients of elements of $\mathcal{P}_{0}(Z)$. We shall denote them by $\tilde{P}_{1}(t), \ldots, \tilde{P}_{n}(t)$ respectively. We may assume that $\operatorname{deg} \tilde{P}_{1}(t) \geq \tilde{P}_{2}(t) \geq \ldots \geq \tilde{P}_{n}(t)$. Division with remainder holds in the algebra $\left(\mathcal{P}_{0}(Z)\right)[t]$. Therefore for $\tilde{P}_{1}(t)$ and $\tilde{P}_{2}(t)$ there exist $P_{2}^{1}(t)$ and $P_{2}^{1}(t)$ in $\left(\mathcal{P}_{0}(Z)\right)[t]$ such that

$$
\begin{equation*}
\tilde{P}_{1}-Q_{2}^{1} \tilde{P}_{2}=P_{2}^{1} \tag{2.1}
\end{equation*}
$$

If $\operatorname{deg} P_{2}^{1} \geq \operatorname{deg} \tilde{P}_{3}$, there exist Q_{3}^{1} and P_{3}^{1} in $\left(\mathcal{P}_{0}(Z)\right)[t]$ such that

$$
\begin{equation*}
P_{2}^{1}-Q_{3}^{1} \tilde{P}_{3}=P_{3}^{1} \tag{2.2}
\end{equation*}
$$

When $\operatorname{deg} P_{2}^{1}<\operatorname{deg} \tilde{P}_{3}$, we set $Q_{3}^{1}=0, P_{3}^{1}=P_{2}^{1}$. Continuing this process, we obtain the following relations:

$$
\begin{gather*}
P_{3}^{1}-Q_{4}^{1} \tilde{P}_{4}=P_{4}^{1}, \tag{2.3}\\
\cdots \cdots \cdots \cdots \cdots \cdots \tag{2.4}\\
P_{n-1}^{1}-Q_{n}^{1} \tilde{P}_{n}=\tilde{P}_{n+1},
\end{gather*}
$$

where $\operatorname{deg} \tilde{P}_{n+1}<\operatorname{deg} \tilde{P}_{n}$. From relations (2.1)-(2.4), we have:

$$
\tilde{P}_{1}-\sum_{i=2}^{n} Q_{i}^{1} \tilde{P}_{i}=\tilde{P}_{n+1}
$$

For the elements $\tilde{P}_{2}, \ldots, \tilde{P}_{n+1} \in\left(\mathcal{P}_{0}(Z)\right)[t]$ we obtain similarly the relations

$$
\tilde{P}_{2}-\sum_{i=3}^{n+1} Q_{i}^{2} \tilde{P}_{i}=\tilde{P}_{n+2}
$$

$\operatorname{deg} \tilde{P}_{n+2}<\operatorname{deg} \tilde{P}_{n+1} ;$ for $\tilde{P}_{3}, \ldots, \tilde{P}_{n+2}$:

$$
\tilde{P}_{3}-\sum_{i=4}^{n+2} Q_{i}^{3} \tilde{P}_{i}=\tilde{P}_{n+3}
$$

$\operatorname{deg} \tilde{P}_{n+3}<\operatorname{deg} \tilde{P}_{n+2}$, and so on.
Since the sequence $\operatorname{deg} \tilde{P}_{n+1}, \operatorname{deg} \tilde{P}_{n+2}, \ldots$ is strictly decreasing, by continuing this process we obtain for a coefficient k_{1} :

$$
\tilde{P}_{k_{1}-1}-\sum_{i=k_{1}}^{n+k_{1}-2} Q_{i}^{k_{1}} \tilde{P}_{i}=\tilde{P}_{n+k_{1}-1}
$$

Moreover, $\operatorname{deg} \tilde{P}_{n+k_{1}-1}=0$, that is, $\tilde{P}_{n+k_{1}-1} \in \mathcal{P}_{0}(Z)$. We introduce the notation $G_{1}=\tilde{P}_{n+k_{1}-1}$. Consider the elements $\tilde{P}_{k_{1}}(t), \ldots, \tilde{P}_{n+k_{1}-2}(t) \in\left(\mathcal{P}_{0}(Z)\right)[t]$. There are $n-1$ of them, all depending on t. Applying the preceding reasoning to them, we obtain for some $k_{2}>k_{1}$:

$$
\tilde{P}_{k_{2}-1}-\sum_{i=k_{2}}^{n+k_{2}-3} Q_{i}^{k_{2}} \tilde{P}_{i}=\tilde{P}_{n+k_{2}-2}
$$

where $\tilde{P}_{n+k_{2}-2} \in \mathcal{P}_{0}(Z)$, $\operatorname{deg} \tilde{P}_{n+k_{2}-2}<\operatorname{deg} \tilde{P}_{n+k_{2}-3}<\ldots$. We introduce the notation $G_{2}=$ $\tilde{P}_{n+k_{2}-2}$. Consider the polynomials $\tilde{P}_{k_{2}}(t), \ldots, \tilde{P}_{n+k_{2}-3}(t) \in\left(\mathcal{P}_{0}(Z)\right)[t]$. There are $n-2$ of them, all dependent on t, and the preceding reasoning is applicable to them.

Thus at step r we obtain, for some $k_{r}>k_{r-1>\ldots>k_{1}}$:

$$
\tilde{P}_{k_{r}-1}-\sum_{i=k_{r}}^{n+k_{r}-r-2} Q_{i}^{k_{r}} \tilde{P}_{i}=\tilde{P}_{n+k_{r}-r-1}
$$

where $\tilde{P}_{n+k_{r}-r-1} \in \mathcal{P}_{0}(Z)$. We introduce the notation $G_{r}=\tilde{P}_{n+k_{r}-r-1}$. At step $r=n-1$ our algorithm coincides with the Euclidean algorithm for the polynomials $\tilde{P}_{k_{n-1}}(t), \tilde{P}_{k_{n-1}+1}(t)$. That is, for some $k_{n-1}>\ldots>k_{1}$ we find:

$$
\begin{gather*}
\tilde{P}_{k_{n-1}}-Q_{k_{n-1}+1}^{k_{n-1}} \tilde{P}_{k_{n-1}+1}=\tilde{P}_{k_{n-1}+2} \\
\ldots \tag{2.5}\\
\tilde{P}_{k_{n}-4}-Q_{k_{n}-3}^{k_{n}-4} \tilde{P}_{k_{n}-3}=\tilde{P}_{k_{n}-2} \tag{2.6}\\
\tilde{P}_{k_{n}-3}-Q_{k_{n}-2}^{k_{n}-3} \tilde{P}_{k_{n}-2}
\end{gather*}=\tilde{P}_{k_{n}-1}, ~ \$
$$

where $\tilde{P}_{k_{n}-1} \in \mathcal{P}_{0}(Z)$. We introduce the notation $G_{n-1}=\tilde{P}_{k_{n}-1}$.
It is clear from the algorithm that all the polynomials $\tilde{P}_{i} \in\left(\mathcal{P}_{0}(Z)\right)[t]$ belong to the ideal $\left(\tilde{P}_{1}, \tilde{P}_{2}, \ldots, \tilde{P}_{n}\right)$ in the algebra $\left(\mathcal{P}_{0}(Z)\right)[t]$. In particular, this is true also for $G_{r}=\tilde{P}_{n+k_{r}-1}$. That is, there exist polynomials $V_{i}^{k}, k=1, \ldots, n-1, i=1, \ldots, n$, in the algebra $\left(\mathcal{P}_{0}(Z)\right)[t]$ such that

$$
\sum_{i=1}^{n} \tilde{P}_{i} V_{i}^{k}=G_{k}
$$

for $k=1, \ldots, n-1$. Multiplying each of these equalities by the common denominator $a_{k} \in$ $\mathcal{P}_{0}(Z)$ of the coefficients of the terms of degree t in $\mathcal{P}_{0}(Z)$ and passing to the algebra $\mathcal{P}_{0}(X)$, we find that there exist polynomials $v_{i}^{k} \in \mathcal{P}_{0}(X)$, such that

$$
\begin{equation*}
\sum_{i=1}^{n} P_{i} v_{i}^{k}=g_{k} \tag{2.7}
\end{equation*}
$$

where $g_{k}=G_{k} a_{k}$.
Thus we have found a sequence of polynomials g_{1}, \ldots, g_{n-1}, that actually belong to $\mathcal{P}_{0}(Z)$, more precisely: $g_{k}(z+t h)=g_{k}(z) \forall z \in Z$. In addition, all g_{k} belong to the ideal $\left(P_{1}, \ldots, P_{n}\right)$. Let $z_{0} \in Z$ be a common zero of the polynomials g_{k}. Then $z_{0}+t h$ is a common zero of g_{k}, $k=1, \ldots, n-1$, for any $t \in \mathbb{C}$. We multiply Eq. (2.6) by the common denominator $b_{1} \in \mathcal{P}_{0}(Z)$ of the coefficients of the powers of t and pass to the algebra $\mathcal{P}_{0}(Z)$. Then,

$$
P_{k_{n}-3}-q_{k_{n}-2}^{k_{n}-3} P_{k_{n}-2}=g_{n-1}
$$

where $P_{i}=\tilde{P}_{i} b_{1}, q_{i}=Q_{i} b_{1}$. Therefore $P_{k_{n}-3}\left(z_{0}+t h\right)$ is divisible by $P_{k_{n}-2}\left(z_{0}+t h\right)$ (since $g_{n-1}\left(z_{0}+t h\right)=0$). Let us multiply Eq. (2.5) by b_{2}, the common denominator of the powers of t in (2.5), and substitute the value of $P_{k_{n}-3}$ in place of $P_{k_{n}-3}$ itself:

$$
P_{k_{n}-4}-q_{k_{n}-3}^{k_{n}-4}\left(g_{n-1}+q_{k_{n}-2}^{k_{n}-3} P_{k_{n}-2}\right)-P_{k_{n}-2}=0
$$

Taking account of the relation $g_{n-1}\left(z_{0}+t h\right)=0$, we find that $P_{k_{n}-4}\left(z_{0}+t h\right)$ is divisible by $P_{k_{n}-2}\left(z_{0}+t h\right)$. Working from bottom to top, we find that the polynomials $b\left(z_{0}+t h\right) P_{1}\left(z_{0}+\right.$ $t h), \ldots, b\left(z_{0}+t h\right) P_{n}\left(z_{0}+t h\right)$ are divisible by $P_{k_{n}-2}\left(z_{0}+t h\right)$, where b is polynomial in $\mathcal{P}_{0}(Z)$.

Assume that $P_{k_{n}-2}\left(z_{0}+t h\right) \equiv$ const (with respect t). This means that the degree of the polynomial $P_{k_{n}-2}\left(z_{0}+t h\right)$ is less than the degree of the polynomial $\tilde{P}_{k_{n}-2}(t) \in\left(\mathcal{P}_{0}(Z)\right)[t]$, since by construction $\operatorname{deg} \tilde{P}_{k_{n}-2}>0$. Then we also have $\operatorname{deg} P_{k_{n}-3}\left(z_{0}+t h\right)<\operatorname{deg} \tilde{P}_{k_{n}-3}(t)$. Working from the bottom upward, we find that $\operatorname{deg} P_{1}\left(z_{0}+t h\right)$, as a polynomial in t, is less than $\operatorname{deg} \tilde{P}_{1}=\operatorname{deg} P_{1}$. But the equality $\operatorname{deg} \tilde{P}_{1}=\operatorname{deg} P_{1}$ (which holds by the choice of h) means that the monomial of highest degree in t in the polynomial $P_{1}\left(z_{0}+t h\right)$ is independent of $z \in Z$, so that this is impossible. Hence $P_{k_{n}-2}\left(z_{0}+t h\right) \neq$ const, and therefore, first of all, the fact that $b\left(z_{0}+t h\right) P_{i}\left(z_{0}+t h\right)$ is divisible by $P_{k_{n}-2}\left(z_{0}+t h\right)$ for $1 \leq i \leq n$ implies that $P_{i}\left(z_{0}+\right.$ th $)$ is divisible by $P_{k_{n}-2}\left(z_{0}+\right.$ th $), 1 \leq i \leq n$, since b is independent of h and $P_{k_{n}-2}\left(z_{0}+\right.$ th $)$ depends on h; second there exists $t_{0} \in \mathbb{C}$ such that $P_{k_{n}-2}\left(z_{0}+t h\right)=0$. Thus $x_{0}=z_{0}+t_{0} h$ is a common zero of the polynomials P_{1}, \ldots, P_{n}.

As a result we have the following: if z_{0} is a zero of the ideal $\left(g_{1}, \ldots, g_{n-1}\right)$, then for some t_{0} we find that $x_{0}=z_{0}+t_{0}$ is a zero of the ideal $\left(P_{1}, \ldots, P_{n}\right)$. It follows from Eqs. (2.7) that the converse is also true: every zero of the ideal $\left(P_{1}, \ldots, P_{n}\right)$ is a zero of the ideal $\left(g_{1}, \ldots, g_{n-1}\right)$, and hence its projection of the zeros of the ideal $\left(P_{1}, \ldots, P_{n}\right)$ on the subspace Z along h. In the case when $g_{k} \equiv 0$ for all k we find that all $P_{i}, i=1, \ldots, n$, are divisible by $P_{k_{n}-2}(z+t h)$ for every $z \in Z$, that is, $\left(P_{1}(x), \ldots, P_{n}(x)\right)$ have the common divisor $P_{k_{n}-2}(x)$. The theorem is now proved.

Remark 1. In the case $\operatorname{dim} X=1$ the proposed algorithm becomes the general Euclidean algorithm for finding a common divisor for n polynomials in one variable
Corollary 2.3. Let $J=\left(P_{1}, \ldots, P_{n}\right)$ be an ideal of polynomials in $\mathcal{P}_{0}(X)$ and $\operatorname{dim} X \geq n$. Then there exist elements $h_{1}, \ldots, h_{m} \in X$, a subspace $W \subset X$ of codimension $m \leq n-1$, and a polynomial $f \in \mathcal{P}_{0}(X)$ such that:
(1) $f \in J$.
(2) f is independent of h_{1}, \ldots, h_{m}, that is, for any $w \in W f\left(w+t_{1} h_{1}+\ldots+t_{m} h_{m}\right)=f(w)$, where t_{1}, \ldots, t_{n} are arbitrary elements of \mathbb{C}.
(3) The kernel of f is the projection of the set $V(J)$ on W along the subspace $H_{m}=\operatorname{lin}\left(h_{1}, \ldots, h_{m}\right)$.

Proof. We apply Theorem 2.2 to the ideal $J=\left(P_{1}, \ldots, P_{n}\right)$. Let g_{1}, \ldots, g_{n-1} be polynomials, h an element of X, Z is the subspace of X whose existence is guaranteed by the theorem. We revise the notation for $g_{i}^{1}:=g_{i}, i=1, \ldots, n-1, h_{1}:=h, Z_{1}=Z$. Applying Theorem 2.2 to the polynomials $g_{1}^{1}, \ldots, g_{n-1}^{1}$, we obtain polynomials $g_{1}^{2}, \ldots, g_{n-2}^{2}$, element $h_{2} \in X$, and a subspace $Z_{2} \subset X$. Here h_{2} can be chosen from the subspace Z_{1} and $Z_{2} \subset Z_{1}$. Applying Theorem 2.2 several times at step $m \leq n-1$, we obtain a polynomial $g_{1}^{m}=: f \in \mathcal{P}_{0}(X)$ such that $f \in J$. Indeed

$$
\begin{equation*}
J=\left(P_{1}, \ldots, P_{n}\right) \supset\left(g_{1}^{1}, \ldots, g_{n-1}^{1}\right) \supset \ldots \supset\left(g_{1}^{m}\right)=(f), \quad f \in(f) \tag{2.8}
\end{equation*}
$$

Let $w_{0} \in \operatorname{ker} f$. Then by Theorem 2.2 we have $w_{0}+t_{m}^{0} \in V\left(\left(g_{1}^{m-1}, g_{2}^{m-1}\right)\right)$ for some t_{m}^{0}. Then $w_{0}+t_{m}^{0}+t_{m-1}^{0} \in V\left(\left(g_{1}^{m-1}, g_{2}^{m-1}, g_{3}^{m-1}\right)\right)$ for some t_{m-1}^{0}. Continuing, we find that $w_{0}+t_{1}^{0}+$ $\ldots+t_{m}^{0} \in V(J)$ for some $t_{1}^{0}, \ldots, t_{m}^{0}$ in the other hand, if $x_{0} \in V(J)$, then $x_{0} \in \operatorname{ker} f$. Moreover, it follows from the inclusions (2.8) and Theorem 2.2 the independent of h_{1}, \ldots, h_{m}, so that the projection of x_{0} on $W:=Z_{m}$ belongs to the kernel of f. The corollary proved.

We now recall some definitions from ideal theory.
Definition 2.4. The ideal radJ is the radical of the ideal J, if for any positive integer k the relation $P^{k} \in J$ implies $P \in \operatorname{rad} J$. If $J=\operatorname{rad} J$, then J is a radical ideal.

Definition 2.5. An ideal J is prime if $\mathcal{P}_{0}(X) / J$ is integral domain, that is the algebra $\mathcal{P}_{0}(X) / J$ has no zero divisor ideal is maximal if $\mathcal{P}_{0}(X) / J$ is a field.
Theorem 2.6 (The Hilbert Nullstellensatz.). Let J be an ideal the FT-algebra $\mathcal{P}_{0}(X), J=\left(P_{1}, \ldots, P_{n}\right)$. Then:
(1) If $V(J)=\varnothing$, then $J=(2.1)$.
(2) $I(V(J))=\operatorname{rad} J$.

Proof. Since this theorem is well known for the case $\operatorname{dim} X<\infty$, we can assume that $\operatorname{dim} X=\infty$ (hence $>n$). I follows immediately from Corollary 2.3. Therefore only Point 2 requires proof.

We apply reasoning that is well known for the finite-dimensional case [12]. Let f be an arbitrary polynomial algebra $\mathcal{P}_{0}(X)$. Assume that $f(x)=0 \forall x \in V(J)$. Let $y \in \mathbb{C}$ be an additional independent variable. Consider $\mathcal{P}_{0}(X+y)$ of polynomials on the space $X \oplus \mathbb{C} y$, that are polynomials in $\mathcal{P}_{0}(X)$ for each fixed $y \in \mathbb{C}$ and polynomials in $\mathbb{C}[y]$, the algebra of all polynomials in y, for each fixed $x \in X$. The algebra $\mathcal{P}_{0}(X+y)$ is obviously an FT-algebra. Theorem 2.2 holds in it. The polynomials P_{1}, \ldots, P_{n} and $f y-1$ have no common zeros. By Point 1 of the there exist polynomials $g_{1}, \ldots, g_{n+1} \in \mathcal{P}_{0}(X+y)$, such that

$$
\sum_{i=1}^{n} P_{i} q_{i}+(f y-1) q_{n+1} \equiv 1
$$

and g_{1}, \ldots, g_{n+1} depend on $x \in X$ and y. Since this is an identity, it remains valid also for rational functionals the substitute $y=\frac{1}{f}$. Hence,

$$
\sum P_{i} q_{i}\left(x, \frac{1}{f}\right)=1
$$

Reducing these to a common denominator, we find that for some N

$$
\sum P_{i} q_{i}^{\prime}(x) f^{-N}=1
$$

or

$$
\sum P_{i} q_{i}^{\prime}(x)=f^{N}
$$

where $q_{i}^{\prime}(x)=q_{i}\left(x, f^{-1}\right) f^{N} \in \mathcal{P}_{0}(X)$. But this means that f^{N} belongs to the ideal J. Hence $f \in$ rad J theorem is now proved.

We now give an example of an ideal generated by an infinite number of polynomials for which the Nullstellensatz does not hold.

Example 2.7. Let H be a separable Hilbert space. Consider the ideal J generated by finite sums of polynomials $f_{i}(x)=\left(x, e_{i}\right)+a_{i}$, where $($,$) is the inner product, \left(e_{i}\right)$ is an orthonormal basis in H, and $a_{i} \in \mathbb{C}$. The only zero that this ideal can have is an element $\sum_{i} a_{i} e_{i}$. But if $\left(a_{i}\right)$ are chosen so that this sum diverges in H, the ideal J has no zeros. But it is obvious that the ideal J contains no units.

In the case $n=2$ the next corollary gives a positive answer to Problem 27 of [10] (see also [13]).
Corollary 2.8. Let P_{1}, \ldots, P_{n} be continuous polynomials on the Banach space X. Assume that there exists a sequence of elements $\left(x_{i}\right)_{i=1}^{\infty},\left\|x_{i}\right\|=1$, such that $P_{k}\left(x_{i}\right) \rightarrow 0$ as $i \rightarrow \infty, 1 \leq k \leq n$. Then the polynomials P_{1}, \ldots, P_{n} have a common zero.

Proof. Suppose such is not the case. Since the algebra $\mathcal{P}_{b}(X)$ is an FT-algebra, according to Theorem 2.2 there exist continuous polynomials q_{1}, \ldots, q_{n} such that

$$
P_{1} q_{1}+\ldots+P_{n} q_{n} \equiv 1
$$

and this contradicts the fact that $P_{k}\left(x_{i}\right) \rightarrow \infty, 1 \leq k \leq n$. The corollary is now proved.
Now consider the topology σ on X whose closed sets are the kernels of polynomials in $\mathcal{P}_{0}(X)$, along with finite unions and arbitrary intersections of them. It is easy to see that this is indeed a topology. By analogy with the finite-dimensional case we call this topology the Zariski topology. We remark that for different FT-algebras we obtain different Zariski topologies. In the case of the algebra of continuous polynomials on X the Zariski topology is strictly weaker than the topology on X. In this connection the following question arises.

3. The Nullstellensatz for Algebras of Polynomials on Banach Spaces

All results of this section are proved in [14].
Let X be a Banach space, and let $\mathcal{P}(X)$ be the algebra of all continuous polynomials defined on X. Let $\mathcal{P}_{0}(X)$ be a subalgebra of $\mathcal{P}(X)$.

Theorem 3.1. [2] Let Y be a complex vector space. Let A be an algebra of functions on Y such that the restriction of each $f \in A$ to any finite dimensional subspace of Y is an analytic polynomial. Let I be a proper ideal in A. Then there is a net $\left(y_{\alpha}\right)$ in Y such that $f\left(y_{\alpha}\right) \rightarrow 0$ for all $f \in I$.

Here we need a technical lemma.
Lemma 3.2. [2] Let Y be a complex vector space. Let $F=\left(f_{1}, \ldots, f_{n}\right)$ be a map from Y to \mathbb{C}^{n} such that the restriction of each f_{i} to any finite dimensional space of Y is a polynomial. Then the closure of the range of $F, F(X)^{-}$is an algebraic variety. Moreover there exists a finite dimensional subspace $Y_{0} \subset X$ such that $F\left(Y_{0}\right)^{-}=F(X)^{-}$.

Theorem 3.3. Let $\mathcal{P}_{0}(X)$ be a subalgebra of $\mathcal{P}(X)$ with unity which contains all finite type polynomials. Let J be an ideal in $\mathcal{P}_{0}(X)$ which is generated by a finite number of polynomials $P_{1}, \ldots, P_{n} \in \mathcal{P}_{0}(X)$. If the polynomials P_{1}, \ldots, P_{n} have no common zeros, then J is not proper.
Proof. According to Lemma 3.2 there exists a finite dimensional subspace $Y_{0}=\mathbb{C}^{m} \subset X$ such that $F\left(Y_{0}\right)^{-}=F(X)^{-}$where $F(x)=\left(P_{1}(x), \ldots, P_{n}(x)\right)$. Let e_{1}, \ldots, e_{m} be a basis in Y_{0} and $e_{1}^{*}, \ldots, e_{m}^{*}$ be the coordinate functionals. Denote by $P_{k} \mid Y_{0}$ the restriction of P_{k} to Y_{0}. Since dim $Y_{0}=$ $m<\infty$, there exists a continuous projection $T: X \rightarrow Y_{0}$. So any polynomial $Q \in \mathcal{P}\left(Y_{0}\right)$ can be exended to a polynomial $\hat{Q} \in \mathcal{P}_{0}(X)$ by formula $\hat{Q}=Q(T(x))$. \hat{Q} belongs to $\mathcal{P}_{0}(X)$ becouse it is a finite type polynomial. Let us consider the map

$$
G(x)=\left(P_{1}(x), \ldots, P_{n}(x), \hat{e}_{1}^{*}(x), \ldots, \hat{e}_{m}^{*}(x)\right): X \rightarrow \mathbb{C}^{m+n}
$$

By definition of $G, G(X)^{-}=G\left(Y_{0}\right)^{-}$.
Suppose that J is a proper ideal in $\mathcal{P}_{0}(X)$ and so J is contained in a maximal ideal J_{M}. Let ϕ be a complex homomorphism such that $J_{M}=\operatorname{ker} \phi$. By Theorem 3.1 there exists a \mathcal{P}_{0} - convergent net $\left(x_{\alpha}\right)$ such that $\phi(P)=\lim _{\alpha} P\left(x_{\alpha}\right)$ for every $\mathcal{P}_{0}(X)$. Since $G(X)^{-}=G\left(Y_{0}\right)^{-}$, there is a net $\left(z_{\beta} \subset Y_{0}\right)$ such that $\lim _{\alpha} G\left(x_{\alpha}\right)=\lim _{\beta} G\left(z_{\beta}\right)$. Note that each polynomial $Q \in \mathcal{P}\left(Y_{0}\right)$ is generated by the coordinate functionals. Thus $\lim _{\beta} Q\left(z_{\beta}\right)=\lim _{\alpha} \hat{Q}\left(x_{\alpha}\right)=\phi(Q)$. Also $\lim _{\beta} P_{k} \mid \gamma_{0}\left(z_{\beta}\right)=\lim _{\alpha} P_{k}\left(x_{\alpha}\right)=\phi\left(P_{k}\right), k=1, \ldots, n$. On the other hand, every \mathcal{P}_{0}-convergent
net on a finite dimensional subspace is weakly convergent and so it converges to a point $x_{0} \in Y_{0} \subset X$. Thus $P_{k}\left(x_{0}\right)=0$ for $1 \leq k \leq n$ that contradicts the assumption that P_{1}, \ldots, P_{n} have no common zeros.

A subalgebra A_{0} of an algebra A is called factorial if for every $f \in A_{0}$ the equality $f=f_{1} f_{2}$ implies that $f_{1} \in A_{0}$ and $f_{2} \in A_{0}$.

Theorem 3.4 (Hilbert Nullstellensatz Theorem). Let $\mathcal{P}_{0}(X)$ be a factorial subalgebra in $\mathcal{P}(X)$ which contains all polynomials of finite type and let J be an ideal of $\mathcal{P}_{0}(X)$ which is generated by a finite sequence of polynomials P_{1}, \ldots, P_{n}. Then radJ $\subset \mathcal{P}_{0}(X)$ and

$$
I[V(J)]=\operatorname{rad} J
$$

in $\mathcal{P}_{0}(X)$.
Proof. Since $\mathcal{P}_{0}(X)$ is factorial, rad $J \subset \mathcal{P}_{0}(X)$ for every ideal $J \in \mathcal{P}_{0}(X)$. Evidently, $I[V(J)] \supset$ radJ. Let $P \in \mathcal{P}_{0}(X)$ and $P(x)=0$ for every $x \in V(J)$. Let $y \in \mathbb{C}$ be an additional "independent variable" which is associated with a basis vector e of an extra dimension. Consider a Banach space $X \oplus \mathbb{C} e=\{x+y e: x \in X, y \in \mathbb{C}\}$. We denote by $\mathcal{P}_{0}(X) \otimes \mathcal{P}(\mathbb{C})$ the algebra of polynomials on $X \oplus \mathbb{C} e$ such that every polynomial in $\mathcal{P}_{0}(X) \otimes \mathcal{P}(\mathbb{C})$ belongs to $\mathcal{P}_{0}(X)$ for arbitrary $y \in \mathbb{C}$. The polynomials $P_{1}, \ldots, P_{n}, P y-1$ have no common zeros. By Theorem 3.3 there are polynomials $Q_{1}, \ldots, Q_{n+1} \in \mathcal{P}_{0}(X) \otimes \mathcal{P}(\mathbb{C})$ such that

$$
\sum_{i=1}^{n} P_{i} Q_{i}+(P y-1) Q_{n+1} \equiv 1
$$

Since it is an identity it will be still true for all vectors x such that $P(x) \neq 0$ if we substitute $y=1 / P(x)$. Thus

$$
\sum_{i=1}^{n} P_{i}(x) Q_{i}(x, 1 / P(x))=1
$$

Taking a common denominator, we find that for some positive integer N,

$$
\sum_{i=1}^{n} P_{i}(x) Q_{i}^{\prime}(x) P^{-N}(x)=1
$$

or

$$
\begin{equation*}
\sum_{i=1}^{n} P_{i}(x) Q_{i}^{\prime}(x)=P^{N}(x) \tag{3.1}
\end{equation*}
$$

where $Q^{\prime}(x)=Q\left(x, P^{-1}\right) P^{N}(x) \in \mathcal{P}_{0}(X)$. The equality (3.1) holds on an open subset X ker P, so it holds for every $x \in X$. But it means that P^{N} belongs to J. So $P \in \operatorname{rad} J$.

4. The Nullstellensatz for Algebras of Symmetric Polynomials on ℓ_{p}

Let X be a Banach space, and let $\mathcal{P}(X)$ be the algebra of all continuous polynomials defined on X. Let $\mathcal{P}_{0}(X)$ be a subalgebra of $\mathcal{P}(X)$. A sequence $\left(G_{i}\right)_{i}$ of polynomials is called an algebraic basis of $\mathcal{P}_{0}(X)$ if for every $P \in \mathcal{P}_{0}(X)$ there is $q \in \mathcal{P}(\mathbb{C})$ for some n such that $P(x)=$ $q\left(G_{1}(x), \ldots, G_{n}(x)\right)$; in other words, if G is the mapping $x \in X \rightsquigarrow G(x):=\left(G_{1}(x), \ldots, G_{n}(x)\right) \in$ \mathbb{C}^{n}, then $P=q \circ G$.

Let $\mathcal{P}_{s}(X)$ be the algebra of all symmetric polynomials. Let $\langle p\rangle$ be the smallest integer that is greater than or equal to p. In [5], it is proved that the polynomials $F_{k}\left(\sum a_{i} e_{i}\right)=\sum a_{i}^{k}$ for $k=\langle p\rangle,\langle p\rangle+1, \ldots$ form an algebraic basis in $\mathcal{P}_{s}\left(\ell_{p}\right)$. So there are no symmetric polynomials of degree less than $\langle p\rangle$ in $\mathcal{P}_{s}\left(\ell_{p}\right)$ and if $\left\langle p_{1}\right\rangle=\left\langle p_{2}\right\rangle$, then $\mathcal{P}_{s}\left(\ell_{p_{1}}\right)=\mathcal{P}_{s}\left(\ell_{p_{2}}\right)$. Thus, without loss of generality we can consider $\mathcal{P}_{s}\left(\ell_{p}\right)$ only for integer values of p. Throughout, we shall assume that p is an integer, $1 \leq p<\infty$.

It is well known [8] that for $n<\infty$ any polynomial in $\mathcal{P}_{s}\left(\mathbb{C}^{n}\right)$ is uniquely representable as a polynomial in the elementary symmetric polynomials $\left(R_{i}\right)_{i=1}^{n}, R_{i}(x)=\sum_{k_{1}<\ldots<k_{i}} x_{k_{1}} \ldots x_{k_{i}}$.

In paper [1] was proof next results.
Lemma 4.1. Let $\left\{G_{1}, \ldots, G_{n}\right\}$ be an algebraic basis of $\mathcal{P}_{s}\left(\mathbb{C}^{n}\right)$. For any $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{C}^{n}$, there is $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$ such that $G_{i}(x)=\xi_{i}, i=1, \ldots, n$. If for some $y=\left(y_{1}, \ldots, y_{n}\right), G_{i}(y)=\xi_{i}$ $i=1, \ldots, n$, then $x=y$ up to a permutation.

Proof. First, we suppose that $G_{i}=R_{i}$. Then, according to the Vieta formulae [8], the solutions of the equation

$$
x^{n}-\xi_{1} x^{n-1}+\ldots+(-1)^{n} \xi_{n}=0
$$

satisfy the conditions $R_{i}(x)=\xi_{i}$, and so $x=\left(x_{1}, \ldots, x_{n}\right)$ as required. Now let G_{i} be an arbitrary algebraic basis of $\mathcal{P}_{s}\left(\mathbb{C}^{n}\right)$. Then $R_{i}(x)=v_{i}\left(G_{1}(x), \ldots, G_{n}(x)\right)$ for some polynomials v_{i} on \mathbb{C}^{n}. Setting v as the polynomial mapping $x \in \mathbb{C}^{n} \rightsquigarrow v(x):=\left(v_{1}(x), \ldots, v_{n}(x)\right) \in \mathbb{C}^{n}$, we have $R=v \circ G$.

As the elementary symmetric polynomials also form a basis, there is a polynomial mapping $w: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ such that $G=w \circ R$; hence $R=(v \circ w) \circ R$ so $v \circ w=\mathrm{id}$. Then v and w are inverse to each other, since $w \circ v$ coincides with the identity on the open set, $\operatorname{Im}(w)$. In particular, v is one-to-one.

Now, the solutions x_{1}, \ldots, x_{n} of the equation

$$
x^{n}-v_{1}\left(\xi_{1}, \ldots, \xi_{n}\right) x^{n-1}+\ldots+(-1)^{n} v_{n}\left(\xi_{1}, \ldots, \xi_{n}\right)=0
$$

satisfy the conditions $R_{i}(x)=v_{i}(\xi), i=1, \ldots, n$. That is, $v(\xi)=R(x)=v(G(x))$, and hence $\xi=G(x)$.

Corollary 4.2. Given $\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{C}^{n}$, there is $x \in \ell_{p}^{n+p-1}$ such that

$$
F_{p}(x)=\xi_{1}, \ldots F_{p+n-1}(x)=\xi_{n} .
$$

Proposition 4.3 (Nullstellensatz). Let $P_{1}, \ldots, P_{m} \in \mathcal{P}_{s}\left(\ell_{p}\right)$ be such that $\operatorname{ker} P_{1} \cap \ldots \cap \operatorname{ker} P_{m}=\varnothing$. Then there are $Q_{1}, \ldots, Q_{m} \in \mathcal{P}_{s}\left(\ell_{p}\right)$ such that $\sum_{i=1}^{m} P_{i} Q_{i} \equiv 1$.

Proof. Let $n=\max _{i}\left(\operatorname{deg} P_{i}\right)$. We may assume that $P_{i}(x)=q_{i}\left(F_{p}(x), \ldots, F_{n}(x)\right)$ for some $g_{i} \in$ $\mathcal{P}\left(\mathbb{C}^{n-p+1}\right)$. Let us suppose that at some point $\xi \in \mathbb{C}^{n-p+1}, \xi=\left(\xi_{1}, \ldots, \xi_{n-p+1}\right)$ and $g_{i}(\xi)=0$. Then by Corollary 4.2 there is $x_{0} \in \ell_{p}$ such that $F_{i}\left(x_{0}\right)=\xi_{i}$. So the common set of zeros of all q_{i} is empty. Thus by the Hilbert Nullstellensatz there are polynomials q_{1}, \ldots, q_{m} such that $\sum_{i} g_{i} q_{i} \equiv 1$. Put $Q_{i}(x)=q_{i}\left(F_{p}(x), \ldots, F_{n}(x)\right)$.

5. The Nullstellensatz for Algebras of Block-Symmetric Polynomials

Let

$$
\mathcal{X}^{2}=\oplus_{\ell_{1}} \mathbb{C}^{2}
$$

be an infinite ℓ_{1}-sum of copies of Banach space \mathbb{C}^{2}. So any element $\bar{x} \in \mathcal{X}^{2}$ can be represented as a sequence $\bar{x}=\left(x_{1}, \ldots, x_{n}, \ldots\right)$, where $x_{n} \in \mathbb{C}^{2}$, with the norm $\|\bar{x}\|=\sum_{k=1}^{\infty}\left\|x_{k}\right\|$.

A polynomial P on the space \mathcal{X}^{2} is called block-symmetric (or vector-symmetric) if:

$$
P\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}, \ldots\right)=P\left(x_{1}, \ldots, x_{n}, \ldots\right),
$$

where $x_{i} \in \mathbb{C}^{2}$ for every permutation σ on the set \mathbb{N}. Let us denote by $\mathcal{P}_{v s}\left(\mathcal{X}^{2}\right)$ the algebra of block-symmetric polynomials on \mathcal{X}^{2}.

In paper [7] it was shown that the algebraic basis of algebra $\mathcal{P}_{v s}\left(\mathcal{X}^{2}\right)$ is form by polynomials

$$
H^{p, n-p}(x, y)=\sum_{i=1}^{\infty} x_{i}^{p} y_{i}^{n-p},
$$

where $0 \leq p \leq n,\left(x_{i}, y_{i}\right) \in \mathbb{C}^{2}$.
Let us denote by $\mathcal{P}_{v s}^{m}\left(\mathcal{X}^{2}\right)$ the subalgebra of $\mathcal{P}_{v s}\left(\mathcal{X}^{2}\right)$ which is generated by polynomials

$$
H^{1,0}(x, y), \ldots, H^{p, n-p}(x, y)
$$

The number of these elements is equal to m and we denote by $\tau_{v s}^{m}$ the system of generators of algebra $\mathcal{P}_{v S}^{m}\left(\mathcal{X}^{2}\right)$.

Let $(x, y),(z, t) \in \mathcal{X}^{2}$,

$$
(x, y)=\left(\binom{x_{1}}{y_{1}}, \ldots,\binom{x_{m}}{y_{m}}, \ldots\right)
$$

and

$$
(z, t)=\left(\binom{z_{1}}{t_{1}}, \ldots,\binom{z_{m}}{t_{m}}, \ldots\right)
$$

where $\left(x_{i}, y_{i}\right),\left(z_{i}, t_{i}\right) \in \mathbb{C}^{2}$. We put

$$
(x, y) \bullet(z, t)=\left(\binom{x_{1}}{y_{1}},\binom{z_{1}}{t_{1}}, \ldots,\binom{x_{m}}{y_{m}},\binom{z_{m}}{t_{m}}, \ldots\right)
$$

and define

$$
\begin{equation*}
\mathcal{T}_{(z, t)}(f)(x, y):=f((x, y) \bullet(z, t)) . \tag{5.1}
\end{equation*}
$$

We will say that $(x, y) \rightarrow(x, y) \bullet(z, t)$ is the block symmetric translation and the operator $\mathcal{T}_{(z, t)}$ is the symmetric translation operator. Evidently, we have that

$$
H^{k_{1}, k_{2}}((x, y) \bullet(z, t))=H^{k_{1}, k_{2}}(x, y)+H^{k_{1}, k_{2}}(z, t)
$$

for all k_{1}, k_{2}.
For some positive number k denote by $\alpha_{0, k}, \alpha_{1, k}, \ldots, \alpha_{k-1, k}$ complex $k^{\text {th }}$ roots of the unity, namely $\alpha_{m, k}=e^{2 m i \pi / k}$. The following lemma is well known.

Lemma 5.1. For some positive integer number n

$$
\sum_{m=0}^{k-1} \alpha_{m, k}^{n}=h \begin{cases}k & \text { if } n=0 \quad \bmod k \\ 0 & \text { otherwise }\end{cases}
$$

Lemma 5.2. For any $H^{p, n-p} \in \tau_{v s}^{m}$ on \mathcal{X}^{2} and for any $\xi_{p, n-p}$ there exist a vector

$$
(x, y)_{p, n-p}=\left(\binom{x_{1}}{y_{1}},\binom{x_{2}}{y_{2}}, \ldots,\binom{x_{N_{p, n-p}}}{y_{N_{p, n-p}}},\binom{0}{0}, \ldots\right)
$$

in \mathcal{X}^{2} such that $H^{p, n-p}=\xi_{p, n-p}, H^{l_{1}, l_{2}}=0$ for all $l_{1} \neq p, l_{2} \neq n-p$.
Proof. Let us consider two cases:
(1) $p=0$ or $n=p$;
(2) $p \neq 0, n \neq p$.

1. If $p=0$ or $n=p$, then the polynomials $H^{0, n}(x, y)=F_{p}(y)$ and $H^{p, 0}(x, y)=F_{p}(x)$ are symmetric relatively vectors $y=\left(y_{1}, \ldots, y_{n}, \ldots\right), x=\left(x_{1}, \ldots, x_{n}, \ldots\right)$ respectively. In the paper [1, p. 57] is proof that for symmetric polynomial $F_{k}(x)=\sum_{i=1}^{\infty} x_{i}^{k}$ exist the vector $x_{0}=$ $\left(x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{n}, \ldots\right) \in \ell_{1}$ such that $F_{k}\left(x_{0}\right)=\xi_{k 0}, F_{j}\left(x_{0}\right)=0$. Then for the polynomial $H^{p, 0}(x, y)$ there exists vector $\left(x_{0}, 0\right)_{p, 0}$ such that $H^{p, 0}\left(\left(x_{0}, 0\right)_{p, 0}\right)=\xi_{p, 0}$ and $H^{l_{1}, l_{2}}\left(\left(x_{0}, 0\right)_{p, 0}\right)=0$ for all $l_{1} \neq p, l_{2} \neq 0$. If we have $p=0$ then there exists vector $\left(0, y_{0}\right)_{0, n}$ such that $H^{0, n}\left(\left(0, y_{0}\right)_{0, n}\right)=\xi_{0, n}$ and $H^{l_{1}, l_{2}}\left(\left(0, y_{0}\right)_{0, n}\right)=0$ for all $l_{1} \neq 0, l_{2} \neq n$.
2. For the second case we consider polynomials

$$
H^{p, k-p}(x, y)=\sum_{i=1}^{\infty} x_{i}^{p} y_{i}^{k-p} \in \tau_{v s}^{m}
$$

of degree k, where $1 \leq p<k$. First we assume that $p \geq k-p, p \geq \frac{k}{2}$ and consider the vector

$$
\begin{aligned}
(\bar{x}, \bar{y})= & \left(\binom{a\left(\alpha_{0, p(n+1)}\right)^{n+1-(k-p)}}{b\left(\alpha_{0, p(n+1)}\right)^{p}},\binom{a\left(\alpha_{1, p(n+1)}\right)^{n+1-(k-p)}}{b\left(\alpha_{1, p(n+1)}\right)^{p}}, \ldots,\right. \\
& \left.\binom{a\left(\alpha_{p(n+1)-1, p(n+1)}\right)^{n+1-(k-p)}}{b\left(\alpha_{p(n+1)-1, p(n+1)}\right)^{p}},\binom{0}{0}, \ldots\right),
\end{aligned}
$$

where $\alpha_{i, p(n+1)}$ is the $i^{\text {th }}$ roots of complex $p(n+1)$ roots of the unity.
According to Lemma 5.1 we have $H^{p, k-p}(\bar{x}, \bar{y})=p(n+1) a^{p} b^{k-p}$. On the system of generating $\tau_{v s}^{m}$ there exists a polynomial which is not equal to zero at (\bar{x}, \bar{y}). Let us denote by $H^{p_{1}, k_{1}-p_{1}}, \ldots, H^{p_{l}, k_{l}-p_{l}}, k_{l} \leq n$ the polynomials such that

$$
p_{i}(n+1-(k-p))+p\left(k_{i}-p_{i}\right)=0 \quad \bmod p(n+1), \quad i=1, \ldots, l
$$

For this polynomials we have $H^{p_{i}, k_{i}-p_{i}}(\bar{x}, \bar{y})=p_{i}(n+1) a^{p_{i}} b^{k_{i}-p_{i}}, i=1, \ldots, l$. All other polynomials of the system $\tau_{v s}^{m}$ are equal of zero at (\bar{x}, \bar{y}).

We note that for all $i=1, \ldots, l k_{i} \neq k$. Indeed let $k_{1}=k$. In the case $p_{1}<p$ we obtain

$$
p_{1}(n+1-(k-p))+p\left(k_{1}-p_{1}\right)=(n+1) p_{1}+k\left(p-p_{1}\right)=(n+1-k) p_{1}+k p<p(n+1) .
$$

From this inequality it follows

$$
p_{1}(n+1-(k-p))+p\left(k_{1}-p_{1}\right) \neq 0 \quad \bmod p(n+1)
$$

that contradicts above hypothesis.
In the case $p_{1}>p$ we obtain

$$
p_{1}(n+1-(k-p))+p\left(k_{1}-p_{1}\right)=(n+1) p_{1}+k\left(p-p_{1}\right)=(n+1-k) p_{1}+k p<p_{1}(n+1)
$$

From this inequality it follows that for the condition $p_{1}(n+1)=0 \bmod p(n+1)$ necessary $p_{1}=s p, s>1, s \in \mathbb{N}$.

Since $p>\frac{k}{2}$, then $p_{1}>s \frac{k}{2}$. Since $s>1$ and $s \in \mathbb{N}$, then if $s_{\min }=2$ we obtain that $p_{1}>k$, wich is impossible. Therefore, $k_{i} \neq k$.

Now we show that $k<k_{i}$ for all $i=1, \ldots, l$. Indeed let $i=1 k_{1}<k$. For the polynomial $H^{p_{1}, k_{1}-p_{1}}$ we have $p_{1}(n+1-(k-p))+p\left(k_{1}-p_{1}\right)=0 \bmod p(n+1)$. From inequality $k_{1}<k$ it follows that

$$
\begin{equation*}
p_{1}(n+1-(k-p))+p\left(k_{1}-p_{1}\right)=p_{1}(n+1-k)+p k . \tag{5.2}
\end{equation*}
$$

If $p_{1}<p$ we obtain:

$$
p_{1}(n+1-k)+p k<p(n+1) .
$$

Therefore $p_{1}(n+1-(k-p))+p\left(k_{1}-p_{1}\right) \neq 0 \bmod p(n+1)$.
If $p_{1} \geq p$, then

$$
p_{1}(n+1-k)+p k \leq p_{1}(n+1)
$$

In order to last expression of inequality will evenly divided on $p(n+1)$ necessary that $p_{1}=s p$. Since $p>\frac{k}{2}$, then $p>\frac{k_{1}}{2}$, then $p_{1}>s \frac{k_{1}}{2}$. If $s=1$ we obtain that $p_{1}(n+1-(k-p))+p\left(k_{1}-\right.$ $\left.p_{1}\right)=p(n+1-(k-p))+p\left(k_{1}-p\right)=p(n+1)-p\left(k-k_{1}\right)<p(n+1)$. Therefore on this case $p_{1}(n+1-(k-p))+p\left(k_{1}-p_{1}\right) \neq 0 \bmod p(n+1)$. If $s \geq 2$ we obtain $p_{1}>k_{1}$, wich is impossible. Therefore $k<k_{i}$ for all $i=1, \ldots, l$.

We will show that $p_{i}=s p, k_{i}=s k$ for all $i=1, \ldots, l$. Indeed from

$$
p(n+1-(k-p))+p(k-p)=0 \quad \bmod p(n+1)
$$

it follows that

$$
m p(n+1-(k-p))+p m(k-p)=0 \quad \bmod p(n+1)
$$

where $m>1$ (the case $m<1$ is impossible because $m k<k$). Therefore we obtain the polynomials $H^{m p, m(k-p)}$, which will be among the polynomials $H^{p_{1}, k_{1}-p_{1}}, \ldots, H^{p_{l}, k_{l}-p_{l}}$. We suppose that there exist polynomials $H^{p+s_{1}, k-p+s_{2}}$, where $s_{1}<p, s_{2}<k-p$.

Then

$$
\begin{aligned}
\left(p+s_{1}\right)(n+1-(k-p))+p\left(k-p+s_{2}\right) & =p(n+1-(k-p))+p(k-p) \\
& +s_{1}(n+1-(k-p)) p s_{2} .
\end{aligned}
$$

Since $p(n+1-(k-p))+p(k-p)=0 \bmod p(n+1)$, then should performed the codition

$$
s_{1}(n+1-(k-p))+p s_{2}=0 \quad \bmod p(n+1)
$$

wich is impossible because $s_{1}(n+1-(k-p))+p s_{2}<p(n+1-(k-p))+p(k-p)=p(n+$ 1). Therefore all polynomials $H^{p_{1}, k_{1}-p_{1}}, \ldots, H^{p_{l}, k_{l}-p_{l}}$ are of the form $H^{m p, m(k-p)}, m=2, \ldots, w$ where $w k<n+1$. Therefore the polynomials $H^{p_{1}, k_{1}-p_{1}}, \ldots, H^{p_{l}, k_{l}-p_{l}}$ we can mark as

$$
H^{p_{1}, k_{1}-q_{1}}=H^{2 p, 2(k-p)}, H^{p_{2}, k_{2}-p_{2}}=H^{3 p, 3(k-p)}, \ldots, H^{p_{l}, k_{l}-p_{l}}=H^{(l+1) p,(l+1)(k-p)}
$$

where $(l+1) k<n+1$.

Next we concider the vector

$$
\begin{aligned}
& (\overline{\bar{x}}, \overline{\bar{y}})=\left(\binom{a \sqrt[2 k]{-1}\left(\alpha_{0, p(n+1)}\right)^{n+1-(k-p)}}{b \sqrt[2 k]{-1}\left(\alpha_{0, p(n+1)}\right)^{p}}, \ldots,\binom{a \sqrt[2 k]{-1}\left(\alpha_{p(n+1)-1, p(n+1)}\right)^{n+1-(k-p)}}{b \sqrt[2 k]{-1}\left(\alpha_{p(n+1)-1, p(n+1)}\right)^{p}}, \ldots,\right. \\
& \binom{a \sqrt[(l+1) k]{-1}\left(\alpha_{0, p(n+1)}\right)^{n+1-(k-p)}}{b \sqrt[(l+1) k]{-1}\left(\alpha_{0, p(n+1)}\right)^{p}}, \ldots,\binom{a \sqrt[(l+1) k]{-1}\left(\alpha_{p(n+1)-1, p(n+1)}\right)^{n+1-(k-p)}}{b \sqrt[(l+1) k]{-1}\left(\alpha_{p(n+1)-1, p(n+1)}\right)^{p}}, \\
& \binom{a \sqrt[2 k]{-1} \sqrt[3 k]{-1}\left(\alpha_{0, p(n+1)}\right)^{n+1-(k-p)}}{b \sqrt[2 k]{-1} \sqrt[3 k]{-1}\left(\alpha_{0, p(n+1)}\right)^{p}}, \ldots,\binom{a \sqrt[2 k]{-1} \sqrt[3 k]{-1}\left(\alpha_{p(n+1)-1, p(n+1)}\right)^{n+1-(k-p)}}{b \sqrt[2 k]{-1} \sqrt[3 k]{-1}\left(\alpha_{p(n+1)-1, p(n+1)}\right)^{p}}, \ldots, \\
& \binom{a \sqrt[(i+1) k]{-1} \sqrt[(j+1) k]{-1}\left(\alpha_{0, p(n+1)}\right)^{n+1-(k-p)}}{b \sqrt[(i+1) k]{-1}(\sqrt[j+1) k]{-1}\left(\alpha_{0, p(n+1)}\right)^{p}}, \ldots, \\
& \binom{a \sqrt[(i+1) k]{-1} \sqrt[(j+1) k]{-1}\left(\alpha_{p(n+1)-1, p(n+1)}\right)^{n+1-(k-p)}}{b \sqrt[(i+1) k]{-1} \sqrt[k(j+1)]{-1}\left(\alpha_{p(n+1)-1, p(n+1)}\right)^{p}}, \ldots, \\
& \binom{a \sqrt[l k]{-1} \sqrt[(l+1) k]{-1}\left(\alpha_{0, p(n+1)}\right)^{n+1-(k-p)}}{b \sqrt[l k]{-1} \sqrt[(l+1) k]{-1}\left(\alpha_{0, p(n+1)}\right)^{p}}, \ldots, \\
& \binom{a \sqrt[l k]{-1} \sqrt[(l+1) k]{-1}\left(\alpha_{p(n+1)-1, p(n+1)}\right)^{n+1-(k-p)}}{b \sqrt[l k]{-1} \sqrt[(l+1) k]{-1}\left(\alpha_{p(n+1)-1, p(n+1)}\right)^{p}}, \ldots, \\
& \binom{a \sqrt[i i_{k} k]{-1} \cdots \sqrt[i, k]{-1}\left(\alpha_{0, p(n+1)}\right)^{n+1-(k-p)}}{b \sqrt[i_{1} k]{-1} \ldots \sqrt[i_{l-k} k]{-1}\left(\alpha_{0, p(n+1)}\right)^{p}}, \ldots, \\
& \binom{a \sqrt[i_{1} k]{-1} \ldots \sqrt[i_{l-1} k]{-1}\left(\alpha_{p(n+1)-1, p(n+1)}\right)^{n+1-(k-p)}}{b \sqrt[i_{1} k]{-1} \ldots \sqrt[i_{l-1} k]{-1}\left(\alpha_{p(n+1)-1, p(n+1)}\right)^{p}}, \ldots, \\
& \binom{a \sqrt[2 k]{-1} \ldots \sqrt[l k]{-1} \sqrt[(l+1) k]{-1}\left(\alpha_{0, p(n+1)}\right)^{n+1-(k-p)}}{b \sqrt[2 k]{-1} \ldots \sqrt[l k]{-1} \sqrt[(l+1) k]{-1}\left(\alpha_{0, p(n+1)}\right)^{p}}, \ldots, \\
& \left.\binom{a \sqrt[2 k]{-1} \ldots \sqrt[l k]{-1} \sqrt[(l+1) k]{-1}\left(\alpha_{p(n+1)-1, p(n+1)}\right)^{n+1-(k-p)}}{b \sqrt[2 k]{-1} \ldots \sqrt[l k]{-1} \sqrt[(l+1) k]{-1}\left(\alpha_{p(n+1)-1, p(n+1)}\right)^{p}},\binom{0}{0}, \ldots\right) .
\end{aligned}
$$

Then we obtain that

$$
\begin{aligned}
H^{i p, i(k-p)}((\bar{x}, \bar{y}) \bullet(\overline{\bar{x}}, \overline{\bar{y}})) & =a^{i p} b^{i(k-p)}\left(p(n+1)-p(n+1)+p(n+1) \sum_{\substack{j=1 \\
j \neq i}}^{l}(\sqrt[i k]{-1})^{i k}\right. \\
& -p(n+1) \sum_{\substack{j=1 \\
j \neq i}}^{l}(\sqrt[i k]{-1})^{i k}+\ldots \\
& +p(n+1) \sum_{\substack{j_{1}<\ldots<j_{l}-1 \\
j_{m} \neq i}}^{l}(\sqrt[j_{1} k]{-1} \ldots \sqrt[j_{l-1}]{-1})^{i k} \\
& -p(n+1) \sum_{\substack{j_{1}<\ldots<j_{l-1} \\
j_{m} \neq i}}^{l}(\sqrt[j_{1} k]{-1} \ldots \sqrt[{\left.\left.j_{l-1}, \sqrt{k}^{-1}\right)^{i k}\right)=0} .]{ }
\end{aligned}
$$

For $H^{p, k-p}$ we obtain

$$
\begin{align*}
H^{p, k-p}((\bar{x}, \bar{y}) \bullet(\overline{\bar{x}}, \overline{\bar{y}})) & =p(n+1) a^{p} b^{k-p}\left(1+\sum_{j=1}^{l} \sqrt[j+1]{-1}+\ldots\right. \\
& \left.+\sum_{j_{1}<\ldots<j_{l-1}}^{l} \sqrt[j_{1}]{-1} \ldots \sqrt[j_{l-1}]{-1}+\sqrt[2]{-1} \ldots \sqrt[l]{-1} \sqrt[l+1]{-1}\right) \tag{5.3}
\end{align*}
$$

We denote by M the next condition

$$
M=1+\sum_{j=1}^{l} \sqrt[j+1]{-1}+\ldots+\sum_{j_{1}<\ldots<j_{l-1}}^{l} \sqrt[j_{1}]{-1} \ldots \sqrt[j_{l-1}]{-1}+\sqrt[2]{-1} \ldots \sqrt[l]{-1} \sqrt[l+1]{-1}
$$

If we choice $(j+1)^{\text {th }}$ a complex root of $-1, j=1, \ldots ł$ such that $M \neq 0$ to zero, we obtain $H^{p, k-p}((\bar{x}, \bar{y}) \bullet(\bar{x}, \overline{\bar{y}})) \neq 0$.

If we substitute to (5.3)

$$
a=\frac{1}{\sqrt[p]{(k-p)(n+1) M}} \sqrt[p]{\xi_{p, k-p}}, \quad b=1
$$

we obtain

$$
H^{p, k-p}((\bar{x}, \bar{y}) \bullet(\overline{\bar{x}}, \overline{\bar{y}}))=H^{p, k-p}\left((x, y)_{p, k-p}\right)=\xi_{p, k-p} .
$$

In the case $p<k-p$ we consider the vector

$$
\begin{aligned}
(\bar{x}, \bar{y})= & \left(\binom{a\left(\alpha_{0,(k-p)(n+1)}\right)^{k-p}}{b\left(\alpha_{0,(k-p)(n+1)}\right)^{n+1-p}},\binom{a\left(\alpha_{1,(k-p)(n+1)}\right)^{k-p}}{b\left(\alpha_{1,(k-p)(n+1)}\right)^{n+1-p}}, \ldots,\right. \\
& \left.\binom{a\left(\alpha_{(k-p)(n+1)-1,(k-p)(n+1)}\right)^{k-p}}{b\left(\alpha_{(k-p)(n+1)-1,(k-p)(n+1)}\right)^{n+1-p}},\binom{0}{0}, \ldots\right),
\end{aligned}
$$

where $\alpha_{i,(k-p)(n+1)}$ is $i^{\text {th }}$ root of $(k-p)(n+1)$ complex root of the unity. For this case the proof is the same like in the case $p \geq k-p$.

Corollary 5.3. Let $\tau_{v s}^{m}=\left\{H^{\widetilde{p}, j-\widetilde{p}}(x, y), 0 \leq \widetilde{p} \leq j, j=1, \ldots, n\right\}, j \leq m$. Then for each $\xi=$ $\left(\xi_{1,0}, \ldots, \xi_{p, k-p}, \ldots, \xi_{p^{\prime}, k^{\prime}-p^{\prime}}\right) \in \mathbb{C}^{m}$ there is $(x, y)_{p, k-p} \in \mathcal{X}^{2}$ such that $H^{p, k-p}\left((x, y)_{p q}\right)=\xi_{p, k-p}$.

Proposition 5.4. Let $P_{1}, \ldots, P_{m} \in \mathcal{P}_{v s}\left(\mathcal{X}^{2}\right)$ such that $\operatorname{ker} P_{1} \cap \ldots \cap \operatorname{ker} P_{m}=\varnothing$. Then there are $Q_{1}, \ldots, Q_{m} \in \mathcal{P}_{v S}\left(\mathcal{X}^{2}\right)$ such that

$$
\sum_{i=1}^{m} P_{i} Q_{i}=1
$$

Proof. For the proof we use the same method as in [1, p. 58]. Let $n=\max _{i}\left(\operatorname{deg} P_{i}\right)$. We may assume that $P_{i}(x, y)=q_{i}\left(H^{1,0}, \ldots, H^{l_{1}, k-l_{1}}\right)$ for some $q_{i} \in \mathcal{P}\left(\mathbb{C}^{n}\right)$, where $0 \leq l_{1} \leq k, n$ is number of polynomials $H^{l_{1}, k-l_{1}}$. Let us suppose that at some point $\xi \in \mathbb{C}^{n}, \xi=\left(\xi_{1,0}, \ldots, \xi_{p, k-p}, \ldots, \xi_{p^{\prime}, k^{\prime}-p^{\prime}}\right)$ and $g_{i}(\xi)=0$. Then by Corollary 5.3 there is $(x, y)_{p, k-p} \in \mathcal{X}^{2}$ such that $H^{p, k-p}\left((x, y)_{p, k-p}\right)=$ $\xi_{p, k-p}$. So the common set of zeros of all q_{i} is empty. Thus by the Hilbert Nullstellensatz there are polynomials g_{1}, \ldots, g_{m} such that $\sum_{i} q_{i} g_{i} \equiv 1$. Put $Q_{i}(x, y)=g_{i}\left(H^{1,0}, \ldots, H^{l_{1}, k-l_{1}}\right)$.

References

[1] Alencar R., Aron R., Galindo P., Zagorodnyuk A. Algebras of symmetric holomorphic functions on ℓ_{p}. Bull. London Math. Soc., 35 (2003), 55-64.
[2] Aron R.M., Cole B.J., Gamelin T.W. Spectra of algebras of analytic functions on a Banach space. J. Reine Angew. Math., 415 (1991), 51-93.
[3] Bodnarchuk P.I., Skorobagat'ko V.Ya. Branched Continued Fractions and their Applications. Naukova Dumka, Kiev, 1974. (in Russian)
[4] Dineen S. Complex Analysis on Infinite Dimensional Spaces. Springer, London, 1999.
[5] Gonzalez M., Gonzalo R., Jaramillo J.A. Symmetric polynomials on rearrangement invariant function spaces. J. London Math. Soc., 59 (2) (1999), 681-697.
[6] Kemper G. A Course in Commutative Algebra. Springer, Berlin, 2011.
[7] Kravtsiv V.V., Zagorodnyuk A.V. On algebraic bases of algebras of block-symmetric polynomials on Banach spaces. Matematychni Studii, 37 (1) (2012), 109-112.
[8] Kurosh A.G. Higher algebra. Mir Publisher, Moscow, 1980.
[9] Mazet P. Une démonstration géométrique du Nullstellensatz analytique complex. Bull. Soc. Math. France, 101 (1982), 287-301.
[10] Mauldin R.D. (Ed.) The Scottish Book. Birkhäuser', Boston, 1981.
[11] Ramis J.P. Sous-ensembles analytiques d'une variété banachique complexe. Springer. Berlin, 1970.
[12] Van der Waerden B.L. Algebra. Springer, New York, 1966.
[13] Zagorodnyuk A.V. On two propositions of the Scottish Book that apply to the rings of bounded polynomial functionals on Banach spaces. Ukr. Mat. Zh., 48 (10) (1996), 1329-1336.
[14] Zagorodnyuk A.V. Spectra of Algebra of Analytic Functions and Polynomials on Banach Spaces. In: Contemporary Mathematics, 435. AMS, 2007, 381-393.
[15] Zagorodnyuk A.V. The Nullstellensatz on infinite-dimensional complex spaces. Jornal of Mathematical Sciences, 92 (2) (1999), 2951-2956.

Address: V.V. Kravtsiv, Vasyl Stefanyk Precarpathian National University, 57, Shevchenka Str., IvanoFrankivsk, 76000, Ukraine.
E-mail: maksymivvika@gmail.com.
Received: 05.06.2015; revised: 12.10.2015.

Кравців В.В. Теорема Гільберта про нулі. Журнал Прикарпатського університету імені Василя Стефаника, 2 (4) (2015), 58-74.

У роботі доведено теореми Гільберта про нулі для поліномів на нескінченно вимірному комплексному просторі, для симетричних та блочно-симетричних поліномів.

Ключові слова: поліноми, симетричні поліноми, блочно-симетричні поліноми, алгебра поліномів, теорема Гільберта про нулі, алгебраїчний базис.

