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A truncation error bound for branched continued fractions of
the special form on subsets of angular domains

Bodnar D.1.}, Bodnar O.S.2, Bilanyk 1.B.2X

Truncation error bounds for branched continued fractions of the special form are established.
These fractions can be obtained by fixing the values of variables in branched continued fractions
with independent variables, which is an effective tool for approximating complex functions of two
variables. The main result is a two-dimensional analog of the theorem considered in [SCIAM ]J.
Numer. Anal. 1983, 20 (3), 1187-1197] for van Vleck’s continued fractions. For its proving, the C-fi-
gure convergence and estimates of the difference between approximants of fractions in an angular
domain are significantly used. In comparison with the previously established results, the elements
of a branched continued fraction of the special form can tend to zero at a certain rate. An example
of the effectiveness of using a two-dimensional analog of van Vleck’s theorem is considered.

Key words and phrases: branched continued fraction with independent variables, branched con-
tinued fraction of the special form, truncation error bound, approximation.
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Introduction

Different types of functional continued fractions are used to approximate analytical func-
tions. Often, these fractions converge in wider regions than the corresponding power series,
and their approximants give better approximations than partial sums of series [26,29,33].

Multidimensional generalizations of continued fractions in terms of a function of many
variables are branched continued fractions (BCFs), and their approximants give multidimen-
sional rational approximations. One such generalization is BCFs with independent variables.
In particular, the tools of BCFs with independent variables is effective in the approximation of
complex functions of two variables. Numerical experiments confirm the effectiveness of the
existing expansion algorithms [8,22,23]. However, the question of strict proof of their conver-
gence remains open. At fixed values of the variables, they are called BCFs of the special form.
So, the results obtained for BCFs of the special form can be used to study functional BCFs.

Let

k=1 ix=1

i(k) =1 it ai(2)
bi(l) + 1‘2;1 b i a;(3)
1(2) 13 1 bl(?’) + ..
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be a BCF of the special form, where by, a;(), bjx) € C,i(k) € Z,
1= {Z(k) = (il,iz,...,ik)Z 1 Slk Sik—l S Sio; kz 1,' ZOZN}

is the set of multiindices, N is a fixed positive integer, it is the dimension of the BCF when its
elements are functions of N variables.

Analyzing the one-dimensional results for continued fractions, we can see that many effec-
tive theorems on the convergence of continued fractions are formulated using the element and
value regions when the belonging of the fraction elements in a certain region guarantees their
convergence. In particular, it is considered angular, parabolic, and circular sets of convergence.
This paper is concerned with the study of convergence on angular sets.

J. Jensen and E.B. van Vleck first studied the angular regions of convergence of continued
fractions. Various proofs of the main result (van Vleck’s theorem) are known [26,29,32,33]. Not
all proof methods gave an estimate of the rate of convergence, for example, the one proposed
in [33]. Quite common in the study of convergence of numerical and functional fractions is
the use of the Stieltjes-Vitali theorem on the convergence of a sequence of analytic functions,
which does not give an estimate of the rate of convergence of these fractions. In particular, such
a proof was proposed in the book by W.J. Thron and W.B. Jones [26]. However, Jensen’s work
proposes a proof method that uses an estimate of the convergence rate, but this estimate is not
stated in the formulation of the theorem. In the paper by D.D. Warner and W.B. Gragg [24], it
is proved the van Vlack-Jensen theorem in the following formulation.

Theorem 1 (van Vleck-Jensen, 1901, 1909). Let the elements of the continued fraction
D.
n=1 bn
satisfy the conditions
by #0, |argby| <0, 6<m/2, k=1,2,....

Then

1) there exist the finite limits of even and odd approximants;

2) the sequence of approximants { f } converges iff the series Y _ |by| diverges;
n=1

3) the bound
1
‘fm —fn—lf < d_' m>n,
n
holds with

d >Mcosf)ln <1+(Re(b ))Zmin{l L}cos@iﬂ? |> nzl
"= 2+ Re(h) ' "By ? k=1 )T

The authors of this formulation refer to the monograph of O. Perron [29], who adapted the
proof proposed by J. Jensen [25].

Theorem 1, where only items 1) and 2) are considered, is often called van Vleck’s theorem
[26,33].
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1 Multidimensional analogs of van Vleck’s theorem

Convergence sets have been studied for different types and various structures of BCFs
(BCFs with N branches of branching [15,20,30], two-dimensional continued fractions [27,28],
BCFs of the special form [3,6,10,14]). The obtained results can be used to study different types
and various structures of functional BCFs with independent variables [4,5,7-9,13,18,19,21-23].

The angular sets of convergence were studied in [2,11,12,15,17,31]. The proof of the analog
of van Vleck’s theorem for different types of BCFs was carried out only with the help of the
Stieltjes-Vitali theorem. Therefore, the problem of estimating the rate of convergence of BCFs in
angular regions remains relevant. In the works [11,12], estimates of the rate of convergence of
BCFs of the special form on some subsets of angular domains were established. Additionally,
the conditions were imposed that the elements of BCFs are located at a positive distance from
zero [12]. Also, they were allowed to converge to zero with a certain speed [11].

Using a multidimensional generalization of the Seidel criterion [16], a multidimensional
analog of the van Vleck theorem was established [12]. Let us show the effectiveness of this
result for BCFs of the special form with N = 2. We apply the formulation of this result to BCFs
of the special form with N = 2 when studying the convergence of a certain expansion of a
function of two variables into a two-dimensional J-fraction with independent variables.

In the following, we will use the abbreviated multiindex notation

Theorem 2. Let the partial denominators of the two-dimensional BCF of the special form

S DEA

2
Z (1)

belong to the domain
G(e):{zeC:Z#O,\argz]<g—e}, (2)

where ¢ is an arbitrary positive number, 0 < ¢ < 71/2.
Then

1) every nth approximation f, of the two-dimensional BCF (1) belongs to the domain (2);

2) there exist finite limits of even and odd approximants;
3) the BCF (1) converges if the series Z |b1jm)| and Z by | diverge, as well as for each
m=1 m=1

r, r € N, the series Y | b2y, (m| diverge.
m=1

In the paper [22], R. Dmytryshyn used the asymptotic expansion of the function

00 te—le 00 S 00 te—tzl
Y1(z1,20) = ; 1_e_tdt+/0 1_e_sexp{—szz—s . T—e dt}ds
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in a formal double Laurent series [1] to construct the corresponding two-dimensional J-frac-
tion with independent variables

2 Pe;) dl Pe;(5) i2 Peis3)

— , 3)
i1 Jeiqy T 20 T 52 ey T 2ip + 17 Jeyy) T 2 1 - -

where ¢;) = e + e, + -+ +ej, k>1,e = (6,1,0r2),r =12, d; j is a Kronecker symbol,

p€1+r€2 - Pez = 1/ r 2 O/

Pmei+re; = Pme, = 4(271’1(— 3)(21’11 — 1), m>2,r>0,

1
Amei+ren = me, = _51 m>1,r>0.

Using a two-dimensional generalization of van Vleck’s theorem (Theorem 2), we will prove
the convergence of this expansion. To do this, we rewrite the fraction (3) using the notation of
element indices mentioned in Theorem 2. That is, the BCF (3) obtain the form

0 ik .
Pi(k) .
——,ip =2, 4
DY - o 4)
where

Pr="paj1=pr2=1 1=0,

(m—1)
P2[r)1[m] = P2[m] = 22m —3)2m —1)’ m=2,r2=>0,

1
D) ifm) = G2fm) = —5, M >1,r>0.

After making the equivalent transformations of the fraction (4) into a fraction with partial
denominators equal to 1, we get the fraction

DY,
——, =2 ()
1 i b (21,22)
where . .
k+r 1 k+r 1
bk (21, 22) = (qix) + 23,) H = <Zik )HP (r)
r=1 r=
For the elements b;(x)(z1,22), i(k) € Z, the estimates are true
1 1
b1(z1,22)| = b2 (21, 22) | = ’Zl —5| bz 2)| = ‘Zz -5
1 1 1 2m —1
b1 (21, 22)| > 3o 2) 2)7)2, D2,1(m) (21, 22)| = @‘ 1 2‘f1)2/ m2=2,
1 1 2r—1
by (21, 22)| = 87‘ 2‘7)2 b2y 1(21,22) 2 o 2) 2)7) r=2,
1 2r—3 2m—1
|b27]1[m](21122)|2644‘ E‘(r—l)z(m—l)z’ m>2,r>2.
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Therefore, in the domain

1 T

G:{(zl,zz)ECZ: ‘arg(zm—i)’ <§—e,m:1,2}

the series ) |1} (21,22)| and ) b2} (21, 22)| diverge, as well as for each r, r € N, the

series ) |b2j),1jm) (21, 22) | diverge. As a result, the conditions of Theorem 2 are fulfilled, and

m=1
therefore, the BCF (5) converges, and the equivalent BCF (4) converges as well.

2 Estimation of the rate of convergence of a BCF of the special form

In this section, using the estimates of the rate of convergence of continued fractions in the
angular domain, we establish an estimate of the rate of convergence of the BCFs of the special
form under certain restrictions on the rate of tending to zero of fractions elements.

Theorem 3. Let the elements of the BCF of the special form

2 1 00
bo +
’ z‘lz::1 bi(1)+]<:_)z

by

Zkl

(6)

ix—1

1
bik)
satisfy the conditions

52 1+ﬁ

1
= — i 7.
2’ ” 2B cos26’ ik) €

Re(bi(k))Z— \argbi(k)] <40, 9<%, 0<ﬁ§

Then BCF (6) converges to a value f, and the following truncation error bound holds
M
(n+1)1-F 1))

|f_fs(n)|< o
1n(1+1_[3

where s(n) = (n+1)"{/(n+ )% +1, if (n+1) H(n+ 1)%6 +1 is integer, otherwise

s(n) = [(n+1) 1’{/ (n+1)2 +1] +1, M and « are some positive constants independent of
n ands(n).

Remark. In the case B = 0, the statement of the theorem holds without additional restrictions
ond, and s(n) = 2n (see [12]).

Proof. The BCF (6) converges because its elements satisfy the conditions of Theorem 2. Let us
estimate from above the modulus of the difference between the approximations of the BCF (6).
To do this, we write them in the form

a0, Ty L
fr - b() + ]:)119(1,7,_,()/ r Z 1;
=1 72[K]

where

—k
I—

r r
. 1 - 1 —
b =bo+ D, B = by, BT = by + D , k=Tr—1
0 b1 2[r] [ P20k [K]  boji,
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Let us consider the C-figured approximant of BCF (6) [14]
7y )L
f?‘ - b() + Db(—l)/ r Z 1/
k=121

(1) B0

where b, 2k are values of infinite continued fractions

which converge according to Theorem 1.
There is an obvious inequality

= fel < fn—Fl+1fi =], m>r.

Let us establish an estimate for each of the terms on the right hand side of the above inequality.
To do this, use the following triangle inequality

‘fp_fr’ < ‘fp_gp,n""‘ﬁ_gp,n‘r p=t, (7)
where
o, 1 1 1 1 B
8pn =Dy’ + By 4t D 4 p =) 4 4 L0 nsp-1
2[1] 2(n] 2[n+1] 2[p]

Using the method of proving the formula for the difference between approximants through
the tails of fractions approximants, it is easy to show that

4 (8)

where @g’[ﬂs)}, Qéfs)] are sth tails of the continued fractions g, and f,, respectively, 1 < s < n,

QU =ty s=12..,p-1, QY =Y

2[s] 2[s] (p) 2[p]
QZI[gerl]
1
bV s=1,2,...,n )
. 2[5] N(p) 4 4 4 4 4
nys)] = Qajs1]

Q) s—ntlnt2..p

Let us apply Theorem 1 to evaluate the numerators of the right-hand side of the inequal-
ity (8) since these expressions are the modules of the difference between the values of the con-
(1) 3@

tinued fractions b ’, 2[K] and their approximants. Thus, taking into account the conditions of
the theorem, we have



A truncation error bound for branched continued fractions of the special form 443

i = iyl < Iie—zbf;(lb)z [c]i)l)f) : ) =
In <1 + (Re (bz[k},l))z min{ \bz[k 1’2}(:059 Z ’bz [k],1[s] ’)
2+ ﬁ ,
% In <1+min{ﬁ,co§9} COSQg(k—%W)
2(k+1)P +4 1

& cos B =k !
In <1+rxk+1 Z k+s)l3>

where a1 = min{ (6% cos8)/(k + 1)?#, 6 cos® 8}. Taking into account the estimation

sz‘ 1 i l>/P+1d_x_ (p+1D)1F—(k+1)-F S (p+ )P —(n+1)-F
Sk+s)f FisP T S xf 1-B - 1-p ’
withp > (n+1) "{/(n+ 1) + 1and 1 < k < n, we obtain
|b1p by 20k +1)F+6 1
2[k] 2[k]1 = bcosf + DB (n4+1)1-P
n<1+an+1(p ) 1_[(3 ) )
2(k+1)f +4 1 0
b cosB Kn+1 1+B
ln<1+1_ﬁ(n+1) )
2(k+1)f +4 1
dcosb 1-B _ ’
ln<1+1_ﬁ((n+1) 1))

since w41 (n 4+ 1)1 = min{s% cos b, (n 4+ 1)%P5cos® 0} (n + 1)1 =P > min{s® cos b, 6 cos® 0} -
(n +1)'"F = a(n + 1)'7P. Similarly, for the first term of the right-hand side of the inequal-
ity (8), the following estimate holds

249 1
(SCOSQIH (1 + ﬁ((” _}_1)1,5 o 1))/

b — iV < (11)

withp > (n+1) 1*{/ (n+1)% +1.
Consider the products in the denominators of the right-hand side of the inequality (8). If
k=2I,1>1,then

2L D) AD) L TTAE AE) AP AP
Ij[l |Q2[s] Q2[5]| - IjluQZ[Zs—l] QZ[ZS] ||Q2[25—1] QZ[ZS] |)
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Let us estimate separately each factor of the product, taking into account the conditions of
the theorem, then for each s, 1 < s <[, we obtain

(1 1
|Q2[25 19 ‘Qz[zs] <b2[2)s gt 50 )' = Re( 1]Q2[25] +1)
2[2s]

1
= Re (b([z)s 1 (b(%) 2] + =0 >> +1> Re(bZ[Zs—l]bZ[Zs]) +1
QZ[ZS—H]

A

SICTE )

where A = 62 cos 26.
Similarly, it can be proved that |Q§’[72)571] Qé’{z)sﬂ >A/(25(2s—1))P+1,s=1,1
Therefore,

!
s=1

2] 2
AP) ~(P)
111039 Q591 2 IT( (25 25_1»/3 +1)"

Let k be an odd number. Taking into account the conditions of the theorem and the equa-
tion (9), we obtain that if k = 1, then @ép)Qép)’ > 52,
Letk=2l+1,1 > 1, then

21+1 _ _ 1 _ _
1 QLI =103 QY| Hfi@é& Q3118 QD)
S= s=

: l A 2
2 25 52
= SI]l(Re(bz[zs]bz[st]) +1)2 > 6] ] (m +1) _

s=1
Hence,
ko , [k/2] A 2
511 e 2] 51:[1 <(2S(25+ (—1)k1))F )
Thus, continuing the estimation of (8), (10), and (11) with the inequalities (12), we have
1
fp— 8ol <
- 1-p _
scosfln (1+ 1_ﬁ((n—|—1) )
246 2x2P44 2-30+6 2-4P +6
N tTe T A VLA Y
((2 1)/37L ) ((2 3)/5Jr )
22l +1)f +6 2021 +2)f +4
4+ 2+ 1P + + (2 +2)7 + —|—>

l A 2 l A 2
(g I ga o)

q

Let us investigate the convergence of the series

o0 p o0 p
Z 22l +1)P 406 ’ Z 221 +2)P+6 (13)

= 1 2 I 2
Mag-rt) " Uazror Y

q:
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Using the basic comparison test and the limit comparison test for series with non-negative
terms, the last series will converge if the following series converges

o p

Z 2(21F + 6 . (14)
oty A 2

1:[ (g 2 " Y

For the convergence of this series, it is necessary the product H;:1(A/ (29)% + 1)? tends to

infinity, that is 2221 (A/(29)%) = co. For B < 1/2 this condition is satisfied. Let us estimate
the denominator of the term of this series

/ !
g(wﬁ—l—l)z:exp <221n<(2;§2ﬁ+1>). (15)

g=1

Since the function f(x) = In(A/(2x)%} + 1) is monotonically decreasing at x € [1;0), then
the following estimate is true

(g 1) 2 [ (g + 1) e

To simplify the calculation of the last integral, let us estimate the subintegral function from
below. The following inequality holds

ln<(2;25+1)21n<%+1>2ﬁ, 0<p<1/2, g>1. (17)

It is easy to see that the equality holds for = 1/2. If 0 < B < 1/2, g4 > 1, then we consider
the difference

1= () AL
(29)% 2 (29)%

Let us investigate the function g(x) = A + x*f — (A + x)? with x € [1/2; +c0]. Since g(x)
is monotonically increasing on the interval, and the inequality g(1/2) > 0 holds at x = 1/2,
the inequality g(1/2) > 0 holds for all points in the considered interval. Therefore, we have
proved the inequality (17).

Let us apply it to the continuation of the evaluation of (16). Calculating the resulting inte-
gral, we get

/11+1 In <(2$25 +1>dq > /11 In (% + 1)25dq

:2,3<ln <2l;A)l+gln(2H—A) +1In

>1n (20 + A)Aﬁ<m)ﬁ).

Using the result, we estimate the value of (15). As a result, we obtain

: A 2 2AB
E<W+l) > (21 + A)246C,

)
(2+A)1+A/2
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where C = (4/(2+ A)?>T4)2,0 < B < 1/2,1 > 1. Thus, we can estimate from above the
general term of the series (14) as follows
2(20)f + 6 - 2(20)F +4
! A )2 (21 + A)2ABC

[ (g 1

=1

Using the basic comparison test and the limit comparison test for series with non-negative
terms, we study the series with the terms (2(21)f + &)/ ((2] + A)?4PC) by comparing it with
the generalized harmonic series Y0 (1/n24P~F). The last one converges, since 8 > 1/2A — 1
by the condition of the theorem.

So, to estimate the first summand of the inequality (7), we have the result

°° p
‘fP _gp,n’ S (XK I 2l ;(ﬁs
53 cosflIn <1+q((n+1)1—5 ) o (21 4+ APAPC

(18)

where K is the sum of the series (13).

Let us evaluate the second term on the right-hand side of inequality (7). Let us use Theo-
rem 1 for the continued fraction obtained by replacing all the continued fractions in the two-
dimensional fraction (6) with their values. It is not difficult to show that the conditions of

Theorem 1 are fulfilled for them. We get [g,n — fr| < Vl, n>1,p>r, where
n
1 ()
,@TIZ} Cos@Sg1 b )-

Since Re (b%z]) >6/kP,k=1,2,..., then, following the same reasoning as in the proof of the
inequality (10), we obtain

Re (b5")

= ——*="—cosfln <1 + (Re (b(l)))2 min {1
2+ Re (b) ?

249 1
(SCOSQIH (1 +$((ﬂ+1)15 o 1))/

gpn — fr] < p>r. (19)

Taking into account the estimates of the summands of the right-hand side of inequality (7)
(namely (18) and (19)), we obtain

246 2K +1
’fp_fr‘<5c—ci)_59 [ - 1-B8 , p>(m+1) K (n+ 1P+, p>
This leads to the estimate formulated in the statement of Theorem 3. O

3 Conclusions and prospects

The tools of two-dimensional BCFs is effective in the approximation of complex functions
of two variables. Numerical experiments confirm the effectiveness of the existing expansion
algorithms [8,22,23]. However, the question of a strict justification of their convergence remains
open. The obtained results can be used to study existing different types and various structures
of BCF.

In the future, it is possible to obtain more general results for fractions whose partial numer-
ators can be arbitrary complex numbers that do not equal one to avoid equivalent transforma-
tions during the study. It may also be expedient to weaken the conditions set on the elements
or prove similar results for multidimensional generalizations of the continued fractions.
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BcraHOBAEHO OLIHKY MOXMOKM HaOAVDKEHHS TAASCTIX AQHITIOTOBMX APOOiB CrleriaAbHOTO BUTASI-
ay. LIi Apobu oTpumyIoTh Ipu pikcyBaHHI 3HaUEHDb 3MIHHIX y TIAASICTMX AQHIIOTOBUX Apobax 3 He-
PiBHO3HAUHMMM 3MiHHMMY, SIKi € epeKTVBHMM anapaToM AAsI HabAVDKeHHs (pyHKITii ABOX KOMIIAe-
KcHMX 3MiHHMX. OCHOBHUM pe3yAbTaTOM € ABOBMMIipHMIT aHaAOT TeopeMmuy, posrasiHyTol B [SCIAM
J. Numer. Anal. 1983, 20 (3), 1187-1197] arst HemepepBHUX ApobiB Bar daexa. ITpu 1toro AoBeaeHHI
3HAYHO BUKOPMCTOBYIOTHCS 36iXHicTh C-piryp Ta OLIHKM pi3HNIII allpOKCUMAaHTIB APObiB y KyTOBIl
obaacri. Y IOpiBHSIHHI 3 paHillle BCTAHOBACHVMU pe3yAbTaTaMI eAeMeHTH TIAASCTOTO AaHITFOTOBO-
ro Apoby CIleniaAbHOTO BUTASIAY MOXYTH IIPSIMyBaTI AO HYAS 3 ITeBHOIO IIBMAKicTIO. PosrastEyTO
IIpUKAaA epeKTUMBHOCTI BUKOPMCTaHHSI ABOBMMIiPHOTO aHaAOTY Teopemy Bar Daexa.

Kntouosi cnoea i ¢ppasu: TIAASCTVIE AQHITFOTOBUIL APi6 CIieiaABHOTO BUTASIAY, TiAASICTVIA AQHITO-
TOBUIL Apib 3 HepiBHOZHAYHMMM 3MiHHMMY, OIIiHKa TOXVMOKY HabAVDKEHHSI, HaOAVDKEHHST.



