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A truncation error bound for branched continued fractions of
the special form on subsets of angular domains

Bodnar D.I.1, Bodnar O.S.2, Bilanyk I.B.2,

Truncation error bounds for branched continued fractions of the special form are established.

These fractions can be obtained by fixing the values of variables in branched continued fractions

with independent variables, which is an effective tool for approximating complex functions of two

variables. The main result is a two-dimensional analog of the theorem considered in [SCIAM J.

Numer. Anal. 1983, 20 (3), 1187–1197] for van Vleck’s continued fractions. For its proving, the C-fi-

gure convergence and estimates of the difference between approximants of fractions in an angular

domain are significantly used. In comparison with the previously established results, the elements

of a branched continued fraction of the special form can tend to zero at a certain rate. An example

of the effectiveness of using a two-dimensional analog of van Vleck’s theorem is considered.
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Introduction

Different types of functional continued fractions are used to approximate analytical func-

tions. Often, these fractions converge in wider regions than the corresponding power series,

and their approximants give better approximations than partial sums of series [26, 29, 33].

Multidimensional generalizations of continued fractions in terms of a function of many

variables are branched continued fractions (BCFs), and their approximants give multidimen-

sional rational approximations. One such generalization is BCFs with independent variables.

In particular, the tools of BCFs with independent variables is effective in the approximation of

complex functions of two variables. Numerical experiments confirm the effectiveness of the

existing expansion algorithms [8, 22, 23]. However, the question of strict proof of their conver-

gence remains open. At fixed values of the variables, they are called BCFs of the special form.

So, the results obtained for BCFs of the special form can be used to study functional BCFs.

Let
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be a BCF of the special form, where b0, ai(k), bi(k) ∈ C, i(k) ∈ I ,

I = {i(k) = (i1, i2, . . . , ik) : 1 ≤ ik ≤ ik−1 ≤ . . . ≤ i0; k ≥ 1; i0 = N}

is the set of multiindices, N is a fixed positive integer, it is the dimension of the BCF when its

elements are functions of N variables.

Analyzing the one-dimensional results for continued fractions, we can see that many effec-

tive theorems on the convergence of continued fractions are formulated using the element and

value regions when the belonging of the fraction elements in a certain region guarantees their

convergence. In particular, it is considered angular, parabolic, and circular sets of convergence.

This paper is concerned with the study of convergence on angular sets.

J. Jensen and E.B. van Vleck first studied the angular regions of convergence of continued

fractions. Various proofs of the main result (van Vleck’s theorem) are known [26,29,32,33]. Not

all proof methods gave an estimate of the rate of convergence, for example, the one proposed

in [33]. Quite common in the study of convergence of numerical and functional fractions is

the use of the Stieltjes-Vitali theorem on the convergence of a sequence of analytic functions,

which does not give an estimate of the rate of convergence of these fractions. In particular, such

a proof was proposed in the book by W.J. Thron and W.B. Jones [26]. However, Jensen’s work

proposes a proof method that uses an estimate of the convergence rate, but this estimate is not

stated in the formulation of the theorem. In the paper by D.D. Warner and W.B. Gragg [24], it

is proved the van Vlack-Jensen theorem in the following formulation.

Theorem 1 (van Vleck-Jensen, 1901, 1909). Let the elements of the continued fraction

∞

D
n=1

1
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satisfy the conditions

bk 6= 0, | arg bk| < θ, θ < π/2, k = 1, 2, . . . .

Then

1) there exist the finite limits of even and odd approximants;

2) the sequence of approximants { fn} converges iff the series
∞

∑
n=1

|bn| diverges;

3) the bound

| fm − fn−1| ≤
1
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, m ≥ n,

holds with
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The authors of this formulation refer to the monograph of O. Perron [29], who adapted the

proof proposed by J. Jensen [25].

Theorem 1, where only items 1) and 2) are considered, is often called van Vleck’s theorem

[26, 33].
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1 Multidimensional analogs of van Vleck’s theorem

Convergence sets have been studied for different types and various structures of BCFs

(BCFs with N branches of branching [15, 20, 30], two-dimensional continued fractions [27, 28],

BCFs of the special form [3,6,10,14]). The obtained results can be used to study different types

and various structures of functional BCFs with independent variables [4,5,7–9,13,18,19,21–23].

The angular sets of convergence were studied in [2,11,12,15,17,31]. The proof of the analog

of van Vleck’s theorem for different types of BCFs was carried out only with the help of the

Stieltjes-Vitali theorem. Therefore, the problem of estimating the rate of convergence of BCFs in

angular regions remains relevant. In the works [11, 12], estimates of the rate of convergence of

BCFs of the special form on some subsets of angular domains were established. Additionally,

the conditions were imposed that the elements of BCFs are located at a positive distance from

zero [12]. Also, they were allowed to converge to zero with a certain speed [11].

Using a multidimensional generalization of the Seidel criterion [16], a multidimensional

analog of the van Vleck theorem was established [12]. Let us show the effectiveness of this

result for BCFs of the special form with N = 2. We apply the formulation of this result to BCFs

of the special form with N = 2 when studying the convergence of a certain expansion of a

function of two variables into a two-dimensional J-fraction with independent variables.

In the following, we will use the abbreviated multiindex notation

m[k] = (m, m, . . . , m︸ ︷︷ ︸
k

).

Theorem 2. Let the partial denominators of the two-dimensional BCF of the special form
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where ε is an arbitrary positive number, 0 < ε < π/2.

Then

1) every nth approximation fn of the two-dimensional BCF (1) belongs to the domain (2);

2) there exist finite limits of even and odd approximants;

3) the BCF (1) converges if the series
∞
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In the paper [22], R. Dmytryshyn used the asymptotic expansion of the function
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in a formal double Laurent series [1] to construct the corresponding two-dimensional J-frac-

tion with independent variables

2

∑
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where ei(k) = ei1 + ei2 + · · ·+ eik
, k ≥ 1, er = (δr,1, δr,2), r = 1, 2, δi,j is a Kronecker symbol,

pe1+re2 = pe2 = 1, r ≥ 0,
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(m − 1)4

4(2m − 3)(2m − 1)
, m ≥ 2, r ≥ 0,
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2
, m ≥ 1, r ≥ 0.

Using a two-dimensional generalization of van Vleck’s theorem (Theorem 2), we will prove

the convergence of this expansion. To do this, we rewrite the fraction (3) using the notation of

element indices mentioned in Theorem 2. That is, the BCF (3) obtain the form
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After making the equivalent transformations of the fraction (4) into a fraction with partial

denominators equal to 1, we get the fraction
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where
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For the elements bi(k)(z1, z2), i(k) ∈ I , the estimates are true
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Therefore, in the domain

G =
{
(z1, z2) ∈ C

2 :
∣∣∣ arg

(
zm −

1

2

)∣∣∣ <
π

2
− ε, m = 1, 2

}

the series
∞

∑
m=1

|b1[m](z1, z2)| and
∞

∑
m=1

|b2[m](z1, z2)| diverge, as well as for each r, r ∈ N, the

series
∞

∑
m=1

|b2[r],1[m](z1, z2)| diverge. As a result, the conditions of Theorem 2 are fulfilled, and

therefore, the BCF (5) converges, and the equivalent BCF (4) converges as well.

2 Estimation of the rate of convergence of a BCF of the special form

In this section, using the estimates of the rate of convergence of continued fractions in the

angular domain, we establish an estimate of the rate of convergence of the BCFs of the special

form under certain restrictions on the rate of tending to zero of fractions elements.

Theorem 3. Let the elements of the BCF of the special form

b0 +
2
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1
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satisfy the conditions
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, | arg bi(k)| ≤ θ, θ <

π

4
, 0 < β ≤

1

2
, δ2

>
1 + β

2β cos 2θ
, i(k) ∈ I .

Then BCF (6) converges to a value f , and the following truncation error bound holds

| f − fs(n)| <
M

ln
(

1 +
α

1 − β
((n + 1)1−β − 1)

) ,

where s(n) = (n + 1) 1−β

√
(n + 1)2β + 1, if (n + 1) 1−β

√
(n + 1)2β + 1 is integer, otherwise

s(n) = [(n + 1) 1−β

√
(n + 1)2β + 1] + 1, M and α are some positive constants independent of

n and s(n).

Remark. In the case β = 0, the statement of the theorem holds without additional restrictions

on δ, and s(n) = 2n (see [12]).

Proof. The BCF (6) converges because its elements satisfy the conditions of Theorem 2. Let us

estimate from above the modulus of the difference between the approximations of the BCF (6).

To do this, we write them in the form

fr = b
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r

D
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1

b
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, r ≥ 1,

where
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D
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Let us consider the C-figured approximant of BCF (6) [14]

f̃r = b
(1)
0 +

r

D
k=1

1

b
(1)
2[k]

, r ≥ 1,

where b
(1)
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are values of infinite continued fractions
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D
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1
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, k = 1, r,

which converge according to Theorem 1.

There is an obvious inequality

| fm − fr| ≤ | fm − f̃r|+ | f̃r − fr |, m ≥ r.

Let us establish an estimate for each of the terms on the right hand side of the above inequality.

To do this, use the following triangle inequality

| fp − f̃r | ≤ | fp − gp,n|+ | f̃r − gp,n|, p ≥ r, (7)

where
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1
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+ · · ·+
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+ · · ·+

1

b
(1,0)
2[p]

, n ≤ p − 1.

Using the method of proving the formula for the difference between approximants through

the tails of fractions approximants, it is easy to show that

| fp − gp,n| ≤ |b
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0 − b
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n
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∏
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|

, (8)

where Q̃
(p)
2[s]

, Q
(p)
2[s]

are sth tails of the continued fractions gp,n and fp, respectively, 1 ≤ s ≤ n,

Q
(p)
2[s]

= b
(1,p−s)
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+
1

Q
(p)
2[s+1]

, s = 1, 2, . . . , p − 1, Q
(p)
2[p]

= b
(1,0)
2[p]

,

Q̃
(p)
2[s]

=






b
(1)
2[s]

+
1
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(p)
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, s = 1, 2, . . . , n,

Q
(p)
2[s]

, s = n + 1, n + 2, . . . , p.

(9)

Let us apply Theorem 1 to evaluate the numerators of the right-hand side of the inequal-

ity (8) since these expressions are the modules of the difference between the values of the con-

tinued fractions b
(1)
0 , b

(1)
2[k]

and their approximants. Thus, taking into account the conditions of

the theorem, we have
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|b
(1,p−k)
2[k]
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| ≤
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δ cos θ

1
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(
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1
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) ,

where αk+1 = min{(δ3 cos θ)/(k + 1)2β, δ cos3 θ}. Taking into account the estimation
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∑
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1
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p

∑
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1
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,

with p ≥ (n + 1) 1−β

√
(n + 1)2β + 1 and 1 ≤ k ≤ n, we obtain

|b
(1,p−k)
2[k]

− b
(1)
2[k]

| ≤
2(k + 1)β + δ

δ cos θ

1

ln
(

1 + αn+1
(p + 1)1−β − (n + 1)1−β

1 − β

)

≤
2(k + 1)β + δ

δ cos θ

1

ln
(

1 +
αn+1

1 − β
(n + 1)1+β

)
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1

ln
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) ,

(10)

since αn+1(n + 1)1+β = min{δ3 cos θ, (n + 1)2βδ cos3 θ}(n + 1)1−β ≥ min{δ3 cos θ, δ cos3 θ} ·

(n + 1)1−β = α(n + 1)1−β. Similarly, for the first term of the right-hand side of the inequal-

ity (8), the following estimate holds

|b
(1,p)
0 − b

(1)
0 | <

2 + δ

δ cos θ

1

ln
(

1 +
α

1 − β
((n + 1)1−β − 1)

) , (11)

with p ≥ (n + 1) 1−β

√
(n + 1)2β + 1.

Consider the products in the denominators of the right-hand side of the inequality (8). If

k = 2l, l ≥ 1, then

2l

∏
s=1

|Q̃
(p)
2[s]

Q
(p)
2[s]

| =
l

∏
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(|Q̃
(p)
2[2s−1]
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(p)
2[2s]

||Q
(p)
2[2s−1]

Q
(p)
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|).
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Let us estimate separately each factor of the product, taking into account the conditions of

the theorem, then for each s, 1 ≤ s ≤ l, we obtain

|Q̃
(p)
2[2s−1]

Q̃
(p)
2[2s]

| =

∣∣∣∣Q̃
(p)
2[2s]

(
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(1)
2[2s−1]

+
1
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)∣∣∣∣ ≥ Re(b
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2[2s−1]
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(p)
2[2s]

+ 1)

= Re

(
b
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2[2s−1]

(
b
(1)
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+
1
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(p)
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))
+ 1 ≥ Re(b2[2s−1]b2[2s]) + 1

≥
A

(2s(2s − 1))β
+ 1,

where A = δ2 cos 2θ.

Similarly, it can be proved that |Q
(p)
2[2s−1]

Q
(p)
2[2s]

| ≥ A/(2s(2s − 1))β + 1, s = 1, l.

Therefore,
2l

∏
s=1

|Q̃
(p)
2[s]
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| ≥
l
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( A

(2s(2s − 1))β
+ 1
)2

.

Let k be an odd number. Taking into account the conditions of the theorem and the equa-

tion (9), we obtain that if k = 1, then |Q̃
(p)
2 Q

(p)
2 | ≥ δ2.

Let k = 2l + 1, l ≥ 1, then

2l+1

∏
s=1

|Q̃
(p)
2[s]

Q
(p)
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| = |Q̃
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2 |

l

∏
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(|Q̃
(p)
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(p)
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||Q
(p)
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Q
(p)
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|)

≥ δ2
l

∏
s=1

(Re(b2[2s]b2[2s+1]) + 1)2 ≥ δ2
l

∏
s=1

( A

(2s(2s + 1))β
+ 1
)2

.

Hence,
k

∏
s=1

|Q̃
(p)
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Q
(p)
2[s]

| ≥ δ1−(−1)k
[k/2]

∏
s=1

( A

(2s(2s + (−1)k+1))β
+ 1
)2

. (12)

Thus, continuing the estimation of (8), (10), and (11) with the inequalities (12), we have

| fp − gp,n| ≤
1

δ cos θ ln
(

1 +
α

1 − β
((n + 1)1−β − 1)

)

×

(
2 + δ

1
+

2 × 2β + δ

δ2
+

2 · 3β + δ
( A

(2 · 1)β
+ 1
)2

+
2 · 4β + δ

δ2
( A

(2 · 3)β
+ 1
)2

+ · · ·+
2(2l + 1)β + δ

l

∏
q=1

( A

(2q(2q − 1))β
+ 1
)2

+
2(2l + 2)β + δ

δ2
l

∏
q=1

( A

(2q(2q + 1))β
+ 1
)2

+ . . .

)
.

Let us investigate the convergence of the series

∞

∑
l=1

2(2l + 1)β + δ
l

∏
q=1

( A

(2q(2q − 1))β
+ 1
)2

,
∞

∑
l=1

2(2l + 2)β + δ

δ2
l

∏
q=1

( A

(2q(2q + 1))β
+ 1
)2

. (13)
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Using the basic comparison test and the limit comparison test for series with non-negative

terms, the last series will converge if the following series converges

∞

∑
l=1

2(2l)β + δ

δ2
l

∏
q=1

( A

(2q)2β
+ 1
)2

. (14)

For the convergence of this series, it is necessary the product ∏
l
q=1(A/(2q)2β + 1)2 tends to

infinity, that is ∑
l
q=1(A/(2q)2β) = ∞. For β ≤ 1/2 this condition is satisfied. Let us estimate

the denominator of the term of this series

l

∏
q=1

( A

(2q)2β
+ 1
)2

= exp

(
2

l

∑
q=1

ln
( A

(2q)2β
+ 1
))

. (15)

Since the function f (x) = ln(A/(2x)2β + 1) is monotonically decreasing at x ∈ [1; ∞), then

the following estimate is true

l

∑
q=1

ln
( A

(2q)2β
+ 1
)
≥
∫ l+1

1
ln
( A

(2q)2β
+ 1
)

dq. (16)

To simplify the calculation of the last integral, let us estimate the subintegral function from

below. The following inequality holds

ln
( A

(2q)2β
+ 1
)
≥ ln

( A

2q
+ 1
)2β

, 0 < β ≤ 1/2, q ≥ 1. (17)

It is easy to see that the equality holds for β = 1/2. If 0 < β < 1/2, q ≥ 1, then we consider

the difference
A

(2q)2β
+ 1 −

( A

2q
+ 1
)2β

=
A + (2q)2β − (A + 2q)2β

(2q)2β
.

Let us investigate the function g(x) = A + x2β − (A + x)2β with x ∈ [1/2;+∞]. Since g(x)

is monotonically increasing on the interval, and the inequality g(1/2) > 0 holds at x = 1/2,

the inequality g(1/2) > 0 holds for all points in the considered interval. Therefore, we have

proved the inequality (17).

Let us apply it to the continuation of the evaluation of (16). Calculating the resulting inte-

gral, we get

∫ l+1

1
ln
( A

(2q)2β
+ 1
)

dq ≥
∫ l

1
ln
( A

2q
+ 1
)2β

dq

= 2β
(

ln
(2l + A

2l

)l
+

A

2
ln(2l + A) + ln

2

(2 + A)1+A/2

)

≥ ln
(
(2l + A)Aβ

( 4

(2 + A)2+A

)β)
.

Using the result, we estimate the value of (15). As a result, we obtain

l

∏
q=1

( A

(2q)2β
+ 1
)2

≥ (2l + A)2AβC,
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where C = (4/(2 + A)2+A)2β, 0 < β ≤ 1/2, l ≥ 1. Thus, we can estimate from above the

general term of the series (14) as follows

2(2l)β + δ
l

∏
q=1

( A

(2q)2β
+ 1
)2

≤
2(2l)β + δ

(2l + A)2AβC
.

Using the basic comparison test and the limit comparison test for series with non-negative

terms, we study the series with the terms (2(2l)β + δ)/((2l + A)2AβC) by comparing it with

the generalized harmonic series ∑
∞
n=1(1/n2Aβ−β). The last one converges, since β > 1/2A − 1

by the condition of the theorem.

So, to estimate the first summand of the inequality (7), we have the result

| fp − gp,n| ≤
K

δ3 cos θ ln
(

1 +
α

1 − β
((n + 1)1−β − 1)

)
∞

∑
l=1

2(2l)β + δ

(2l + A)2AβC
, (18)

where K is the sum of the series (13).

Let us evaluate the second term on the right-hand side of inequality (7). Let us use Theo-

rem 1 for the continued fraction obtained by replacing all the continued fractions in the two-

dimensional fraction (6) with their values. It is not difficult to show that the conditions of

Theorem 1 are fulfilled for them. We get |gp,n − f̃r | ≤
1

νn
, n ≥ 1, p ≥ r, where

νn =
Re (b

(1)
2 )

2 + Re (b
(1)
2 )

cos θ ln

(
1 + (Re (b

(1)
2 ))2 min

{
1,

1

|b
(1)
2 |2

}
cos θ

n

∑
s=1

|b
(1)
2[s]

|

)
.

Since Re (b
(1)
2[k]

) ≥ δ/kβ, k = 1, 2, . . . , then, following the same reasoning as in the proof of the

inequality (10), we obtain

|gp,n − f̃r | <
2 + δ

δ cos θ

1

ln
(

1 +
α

1 − β
((n + 1)1−β − 1)

) , p ≥ r. (19)

Taking into account the estimates of the summands of the right-hand side of inequality (7)

(namely (18) and (19)), we obtain

| fp − f̃r | <
2 + δ

δ cos θ

2K + 1

ln
(

1 +
α

1 − β
((n + 1)1−β − 1)

) , p ≥ (n + 1) 1−β

√
(n + 1)2β + 1, p ≥ r.

This leads to the estimate formulated in the statement of Theorem 3.

3 Conclusions and prospects

The tools of two-dimensional BCFs is effective in the approximation of complex functions

of two variables. Numerical experiments confirm the effectiveness of the existing expansion

algorithms [8,22,23]. However, the question of a strict justification of their convergence remains

open. The obtained results can be used to study existing different types and various structures

of BCF.

In the future, it is possible to obtain more general results for fractions whose partial numer-

ators can be arbitrary complex numbers that do not equal one to avoid equivalent transforma-

tions during the study. It may also be expedient to weaken the conditions set on the elements

or prove similar results for multidimensional generalizations of the continued fractions.
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Боднар Д.I., Боднар О.С., Бiланик I.Б. Оцiнка швидкостi збiжностi гiллястих ланцюгових дробiв

спецiального вигляду на пiдмножинах кутових областей // Карпатськi матем. публ. — 2023. —

Т.15, №2. — C. 437–448.

Встановлено оцiнку похибки наближення гiллястих ланцюгових дробiв спецiального вигля-

ду. Цi дроби отримують при фiксуваннi значень змiнних у гiллястих ланцюгових дробах з не-

рiвнозначними змiнними, якi є ефективним апаратом для наближення функцiї двох компле-

ксних змiнних. Основним результатом є двовимiрний аналог теореми, розглянутої в [SCIAM

J. Numer. Anal. 1983, 20 (3), 1187–1197] для неперервних дробiв Ван Флека. При його доведеннi

значно використовуються збiжнiсть C-фiгур та оцiнки рiзницi апроксимантiв дробiв у кутовiй

областi. У порiвняннi з ранiше встановленими результатами елементи гiллястого ланцюгово-

го дробу спецiального вигляду можуть прямувати до нуля з певною швидкiстю. Розглянуто

приклад ефективностi використання двовимiрного аналогу теореми Ван Флека.

Ключовi слова i фрази: гiллястий ланцюговий дрiб спецiального вигляду, гiллястий ланцю-

говий дрiб з нерiвнозначними змiнними, оцiнка похибки наближення, наближення.


