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New U-Bernoulli, U-Euler and U-Genocchi polynomials and
their matrices

Ramirez W.!, Bedoya D.2, Urieles A.3, Cesarano C.*>¢, Ortega M.

In this paper, we introduce the U-Bernoulli, U-Euler, and U-Genocchi polynomials, their num-
bers, and their relationship with the Riemann zeta function. We also derive the Apostol-type gen-
eralizations to obtain some of their algebraic and differential properties. We introduce general-
ized U-Bernoulli, U-Euler and U-Genocchi polynomial Pascal-type matrix. We deduce some prod-
uct formulas related to this matrix. Furthermore, we establish some explicit expressions for the
U-Bernoulli, U-Euler, and U-Genocchi polynomial matrices, which involves the generalized Pascal
matrix.
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Introduction

The classical Bernoulli, Euler, and Genocchi polynomials, their respective numbers, and
their various extensions, play a role in number theory, special functions, combinatorics, and
classical analysis, see, for example, [5,7,9-11, 21, 25,26]. We will review some known results
that will suggest various generalizations. For arbitrary real or complex parameters &, A and

1% := 1, the generalized Apostol-Bernoulli polynomials B,(fx) (x; A), Apostol-Euler polynomi-

als 5,2“)(3(;}\) and Apostol-Genocchi polynomials Q,g’x)(x;)\) are defined using the following
generating functions (see [26]):

o b n
(=) & = L8 @A, (1)
n=0 :

|z| <27, when A = 1; |z| < |logA|, when A # 1;
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2 * o _ . () (... z"
Ger1) @=Ly @
|z| < 71, when A = 1; |z|] < |log(—A)|, when A # 1; and
22 \Y . o ), 4 2"
(o) & = ) G () (3)

|z| < 7r, when A =1; |z| < |log(—A)|, when A # 1.
Clearly if « = 1, the Apostol-Bernoulli numbers 53,(A), the Apostol-Euler numbers &£, (A)
and Apostol-Genocchi numbers G, () are given by

Bu(A) :=By(0;A), En(A) :=E,(0;A), and Gu(A) :=G,(0;A), n € No.

These classes of polynomials have been studied in [1, 14, 16, 20, 21, 23-25]. They provide
a generalization of the polynomials of Bernoulli, Euler, and Genocchi, and hence, they also
generalize the classical Bernoulli, Euler and Genocchi numbers.

The Pascal matrix has been used in different areas of pure and applied mathematics, for
instance, in probability problems, combinatorics, and others. Particularly interesting are those
contexts in which such a matrix representation is related to classes of polynomials, namely,
Bernoulli polynomials, Euler polynomials, Bell polynomials, Jacobi polynomials, Laguerre
polynomials, their generalizations, and g-analogs, and so on [19-21, 24, 30]. Understanding
these facts, we introduce and study the U-Bernoulli, U-Euler, U-Genocchi polynomials, their
numbers, and their Apostol-type generalizations. The focus of this paper is to obtain some
properties explicit for them. Also, we introduce the matrices of the three families of polynomi-
als (U-Bernoulli, U-Euler, and U-Genocchi) and study some of their properties, which connect
them with Pascal matrices.

Throughout this paper, we use the following standard notations: N = {1,2,...},
No = {0,1,2,...}. Theletters Z, R and C denote the set of integers, real numbers and complex
numbers, respectively. For the complex logarithm, we consider the principal branch, and by
w = z* we denote the single branch of the a multiplevalued function w = z* such that 1* = 1.
All matrices are in the set M, 1(R) of all (1 + 1) x (n + 1) matrices over the field R.

For k,n > 1 the binomial coefficients satisfy the following relation (see [26]):

n nin-—1 n—k+1/ n
<k>:?<k—1>: k <k—1>' @

Also, for i, j any nonnegative integers we adopt the following convention
<;> =0, whenever j>i.

Let n € INg and «, B, A are suitable (real or complex) parameters. By using (1) and (2), we
have (see [26, p. 94]):

n

n %
BY P (x +y4) = kZ%) <k> B]E ) (x; A)B,(ﬁ)k(y;)»),

" n
EP xryr) =Y <k> & (G MEP (i),
k=0
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In [28, p. 1324], it is shown the following relationship between B,(f‘) (x;A) and E,Slx) (x;A):

B (x+y;A) = 215];) (Z) (20 (i) ABY (y + m; A)) P (x; 1),

From (3), it also follows that (see [17, p. 5706]):

G Pty = 1 (’;) G (MG (i A),
(n— )G () =m0, (5.2) — 2G4 11,2).

Let x be any nonzero real number. The generalized Pascal matrix P[x] € M, ;1(R) of first
kind is a matrix whose entries are given by (see [8,29]):

()i, P>,
pi,j(x) = { /

0, otherwise.
Also, P[x] is an invertible matrix, and its inverse is given by P~1[x] := (P[x])~! = P[—x].
Let P[x] € M;+1(R) be the generalized Pascal matrix of first kind and if we adopt the
convention 0° = 1 it is possible to define P[0] := I, 1 = diag(1,1,...,1), where I, 1 denotes

the identity matrix of order n + 1. The following statements hold:
1) addition theorem of the argument (see [8, Theorem 2]): P[x + y| = P[x|Ply|;
2) the matrix P[x] can be factorized as follows (see [29, Theorem 1]):
Plx] = Gu[x]Gy_1]x] ... G1[x],
where Gi[x] is the (n 4+ 1) x (n 4+ 1) summation matrix given by
[%* 0], k=1,...,n—1,

0 Sglx]
Snlx], k=mn,

Gi[x] =

being Si[x] the (k + 1) x (k4 1) matrix whose entries S(x;1, j) are given by

i*]' i<
Sk(x;i,j):{g ’ ;;z 0<ij<k

Let s = p +ioc € C be such that as p > 1. We remind the definition of the Riemann zeta
function {(s) (see [3]):

Cs) =) (5)

Forn € Np and «, B > —1, the nth Jacobi polynomial P,SK’ﬁ ) (x) may be defined by means of
Rodrigues’ formula (see [4,22,27]):

p=1)" "

2p! dxn

PP (x) = (1= x) (1 +x)" {1=0"" 1+, xeC\{-11}.
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The connection between the nth monomial x" and the nth Jacobi polynomial PY(,K’ﬁ ) (x) may be
written as follows (see [22, equation (2), p. 262]):

oy (R (Lt BH2K) o) g oo
Z( )( D% PP (1 - 2x). (6)

= \n—k T+x+B+k)u1 *

For n € Ng and x € R, the Stirling numbers of second kind S(n, k) are defined by means
of the following expansion (see [12, Theorem B, p. 207]):

n
o kgo (i) kS(n, k), )
so that S(1,0) = 8,0, S(n,1) = S(n,n) =1and S(n,n — 1) = (3).

Proposition 1. Form € IN, let {B,Lm_l] (x) }n>0 and { G, (x) },>0 be the sequences of generalized

Bernoulli polynomials of level m and Genocchi polynomials, respectively. Then the following
identities are satisfied:

i ( > k—|—m)'B£’m kll(x) (see [18, equation (2.6)]), (8)
n+1

X' = 2(7114— 1) [ Y <n ;Ic_ 1) Gi(x) + Gpy1(x)|  (see [15, Remark 7]). 9)
k=0

1 New U-Bernoulli, U-Euler and U-Genocchi polynomials and their ma-
trices

In this section, we introduce new families of U-Bernoulli, U-Euler, and U-Genocchi polyno-
mials. We also explore some analytic properties concerned with these polynomials and other
associated results.

Definition 1. For n € Ny, we define the new family of U-Bernoulli polynomials M, (x) of
degree n in the variable x by the power series expansion at 0 of the following generating
function

f(x;z) = ( = )e’xz = i Mn(x)i |z| <27 (10)
’ ez—1 = n!’
The first U-Bernoulli polynomials are
1 ) 1 s 3, 1
Mo(x) = -1, Mi(x) =x— 5 My(x) = —x"+x— ¢ Ms3(x) = x° — X + 5%
My(x) = =t +2x3 — 2 + %, Ms(x) = x° — §x4 + §x3 - %x.

Note that, if x = 0 in (10), the U-Bernoulli numbers are defined by the generating function

, 2l <27 (11)

Some of these numbers are

My=-1, M;= _Er My=——, M3=0, My=, Ms5=0.
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Proposition 2. Ifn is an odd integer greater than or equal to 3, then M,, = 0. As a consequence,
(=1)"M,, = M, for all positive integers n except forn = 1.

Proof. Since

) k
z z z
o1 Tt Mg
we have
00 k Z
z z z zrl—+e
M= —1= == —[ ] 12
]<:X:2 “ki -1 2 2li-e 12
Note that (12) is an even function, therefore
0o k 00 k
z k Z
Y Migg =) (=1)" Mg
k=2 k=2
So, My = (—1)*My, if k > 3 is odd, we obtain My = —Mj and M; = 0. O
Proposition 3. Let M,, be the U-Bernoulli numbers defined in (11). Then, we have
00 ZZn
zootz=1— Y (=1)"2""May5—:, |z <, (13)
= (2n)!
= nn2n 2n ZZn T
ztanz = n;l(—l) 27" My, (1+2 )(Zn)!’ lz|] < > (14)
Proof. Let us prove (13). In Proposition 2, we noticed that
z 672/2 + ez/2 [=9) Zk
- [762/2 _672/2] =1 —i—k;)MkH. (15)
Now,
' e—iz 4 eiz
zcotz = —zz[m] (16)

Thus, from (15) and (16) we obtain (13). For the proof of (14), it is sufficient to consider (13) and
the identity ztanz = z cotz — 2z cot 2z. O

Theorem 1. For allk > 1, we have

C(Zk) — (_1>k22k1n2k%_

Proof. Consider the following function (cf. [2, p. 205]):

cotz = Z

(17)

By (5) and (17), we get

2k
zcotz:1—2<2%><2%>:1—22%2%. (18)

k>1

In view of (13) and (18), we have the result. O
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In light of the Definition 1 and the assertion (11), by using (4), the following proposition
can be obtained.

Proposition 4. Let {M,(x)},>0 be a U-Bernoulli sequence of polynomials defined as in (10).
Then, we obtain:

M, (x) = (-1 n+1xn n-—
@)= o (1
My(x+1) = My(x) =n(-1)""2"!, n>1;
M 1(%) = = (1 + 1) My (x);

x+1
Mn( )dt ( )n+1 n.

/y M, (t) dt = _Mn+1(yzl 1 iwn+1 (x)

Theorem 2. Forn,k > 1, the U-Bernoulli numbers satisfy the following recurrence relationship

" n+2—k/n+1
(n+1)_1—k;T<k_1>Mk.

n
ﬂ( " )(—1>"—kka"—k, Mo = —1;

Proof. By using (11) and (4), we have

oonloo (o) Z" OOMZn_z o n _OOZn
_n; nt & 10 ‘,§0<n+1>!,§0 T n;,{; k+1)'k' _n;ﬁ'
Thus,

(o) n 1 1 & n
S E ()l - B
==\ k) (n+1)! =in!

By equating coefficients of z"* we complete the proof. O
Now we define the new family of U-Euler polynomials and prove some of their properties.

Definition 2. Forn € Ny, we defined the new family of U-Euler polynomials A, (x) of degree
n in the variable x by the power series expansion at 0 of the following generating function

2
—xz/2 _
()™ ZA W <o (19)
The first U-Euler polynomials A, (x) are
_ _1_x _1 2_1 __13 iz_l
Ao(x) =1, Ai(x) = 7 -5, Ax) = 3x" — 7%, As(x) = —gx’ + 227 — o5,

1 1 1 5 5 1
Ag(x) = =x* — =3 + —x, A5(x):—§x +a xt— P 2+@

For x = 0 in (19) the U-Euler numbers are defined by the generating function

2 s n
Sy <o (20)
e 2+1 n=0 n!
Some of these numbers are
1 1 1
Ap=1, A= Ay =0, Az=— Ay =0, As=

ﬁ/
From (19), (20) by using (4), we get the following result.

64
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Proposition 5. Let { A, (x) },>0 be a U-Euler sequence of polynomials defined as in (19). Then
the following statements hold:

a0 = (=) B (1) (50 A s

An(x—{—lg—i—An(x) _ < 1)nx”;

A (3) = =5 1+ D A(2);

(n+1)

Theorem 3. For every n,k € IN, we have:

L n—k—i—l n Ak . 1 A
Z k—1)on—k —on 7

Proof. By virtue of (20) and (4), we get

o 1 [e¢]
2= Y AT+ Y e L Ay

2221;7 _ZA_+ZZan k — k)t

n= : n=0k=0
Therefore,

1-n%_ . z"
LR =T (A L (1) e
Comparing the coefficients, we get the result. O

Taking into account the ideas of Proposition 2, we obtain the following result for U-Euler
polynomials.

Proposition 6. If n is an even integer greater than or equal to 2, the A, = 0. Consequently,
A, = — A, for all positive integers n except forn = 0.

Next, we define the new U-Genocchi polynomials and give some of their properties.

Definition 3. For n € INy, we define the new family of U-Genocchi polynomials V,(x) of
degree n in the variable x by the power series expansion at 0 of the following generating
function

2z _
(m) x2/2 Z V —!, |Z| < 27 (21)
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Let us note that the first U-Genocchi polynomials V;,(x) are

1 3 3
VO(.X') = O, Vl(x) = 1, VZ(x) = —x+ E’ V3(.X') — sz . Zx/

1 3 1 5 5 5
Va(x) = —§x3 + sz g Vs(x) = Ex4 — gx?’ + 6~

For x = 0 in (21) the U-Genocchi numbers are defined by the generating function

,lz| < 2m.

1 3 1
= — V = —— V = — = V = .
2/ 3 4/ 4 8/ 5 0

Now, by using (21), (22) and (4), we can obtain the following result.

(22)

Proposition 7. Let {V,(x)},>0 be a U-Genocchi sequence of polynomials defined as in (21).

Then we have: ; )
n—k+1 n 1\ "~ _
Vi) =)~ (k— 1) (-3) vt

ACES) G J et

/

Viea(x) = 3 (0 + )Va();

/:+1 Vo(£) dt = —(n"‘Tl)(vnH(x) —(n+1)( - %)x)
/xy V() dt = _WH(@;E/;H(X)_

Theorem 4. For everyn > 2 and k > 1, we have

“n—k+1( n Vi 2
zcle(k—l)z"k G

Proof. By using generating functions (22) and by (4), we obtain

0 n
n!

Therefore,

Comparing the coefficients of z", the result follows.
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Proposition 8. For every n € INy, the following relations hold true:
1 o n+1
= M (1 —x), 23
(n+1) kg < k ) K(1-3) (23)
n— o1l A, (1 - (ML 24
x" = n( —x)‘i‘];) K)ok K(1—x)|, (24)
21171 n+1 n+1 1
xn — n+1 |:Vn+1(1—X)+k§) < k )WVk(l—X)] (25)
Proof. Let us prove (24). By virtue of (19), we get
—z/2 11\ & 1
T Cas S S PWNES
2 =0 n!
1 & Z" 1T & & Zhk zk
(1-x)z/2 : A ( )_ 4= A ( “
e X — ()=,
2 =" ! zng)kgzn k(n —k)! k!
AL z 13 & 2k zk
—— == A(1—x)—+ — Ar(1—x)—
o 2,1;0 ! 2,1;),(202” K(n—k)! k!
It follows the proof of (24). The proofs of (23) and (25) are similar. O

By using generating functions (20) and (22), we derive a relation between the U-Euler num-

bers and the U-Genocchi numbers as follows.
Proposition 9. Letn € INg. Then we have
Ve =nA,_1.
Let us finish this section by the following result.

Theorem 5. For all n > 1, we have the relationships:

(—1)"4"71(27'()2"
2021 — 1)1(1 — 4")
_ (cy e
62n) = o i — 4

¢(2n) = A1,

VZn .

Proof. By using Euler’s formula e'* = cos x + i sin x, we have

e ix
itan(x) =1— :
cos(x)
Now , ‘ , ,
eZJC _|_ e—zx . eZJC _ e—zx
cos(x) = — sin(x) = —
Then, if we apply (30) to (29), we get
2

itan(x) =1- m

(26)

(27)

(28)

(29)

(30)

(31)
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Also, using (30), we obtain

‘ ix _ efix 2 4
itan(x) = o 4 o—ix 1- o2ix _q + Pix _ 1"
So,
. 2ix 4ix
xtan(—x) = —ix + T R (32)
Then, if we apply (11) to (32) with z = ix, z = 4ix, by using the Proposition 2, we get
( . o0 n o0 2n
xtan(—x) = —ix + Z M, Z = Z 7)1 47i — 4")x?
n=0 n=0 n=1
Therefore,
d M
tan Z n+1 2n2_1|1_+22) 4n+1[1 _4n+1]x2n+1‘ (33)
Now, from (20) and (31) with z = 4ix, by using the Proposition 6, we get
y g p g
_ 2 2 d ( x"
n=
1 X" i +1 2n41 x2"+1
= — A4 ———— = )t A g+
lnglo n+1 ( +1) lnz 2n+1 (2n+1)'
Thus,
- 1)+l TN Sl
t Arpir14 — 34
an( n;) T 2n 1) (34
From (33) and (34), we obtain
M A
1 n+1 2n+-2 4}’l+1 1 _4i’l+1 — _1 n+1 2n+1 42n+1.
(=1) (2n 4 2)! [ =1 (2n+1)!
Therefore,
M A2n+14n (211 + 2)
2n+2 1 . 4i’l+1
So,
Asy 14" 1(2n
MZn 2n 11_ 4n( ) (35)
Taking into account the Theorem 1 and (35), we have
Ay 147712 2(2n)!1(=1)"
2n—1 ( 1’1) . ( Vl) ( ) C(Zn).

1—-4 (o)

From the above equation, the result (27) follows. Now combining (26) with (27) we get (28).
This completes the proof. O
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2 Generalized U-Apostol Bernoulli, U-Apostol Euler and U-Apostol
Genocchi polynomials

Definition 4. For arbitrary «,A € C and 1* := 1, the generalized U-Apostol Bernoulli,
U-Apostol Euler and U-Apostol Genocchi polynomials of degree n in the variable x and order
« are respectively defined by the power series expansion at 0 of the meromorphic generating

function
(e n

Z “ —Xz __ (@) .. Z_
(Ae*z — 1) ¢ - IEOM" (x'A)n!' (36)
|z| < 27, when A = 1; |z| < |logA|, when A # 1;
2 —xz/2
(rems) = LA @)
|z| <27, when A = 1; |z| < | —2log(—1/A)|, whenA #1;
2z —xz/2
<)\e_z/2 + 1) Z V (38)

|z| <2, when A =1; |z]| < | —2log(—1/A)|, When)\ # 1.

Furthermore, by M (0;A) := M{™ (1), A% (0;4) := A (1) and V¥ (0;1) := V¥ (A)
we denote the corresponding generalized of U-Apostol Bernoulli numbers, U-Apostol Euler
numbers and U-Apostol Genocchi numbers, respectively.

From (36)—(38) it is fairly straightforward to deduce the addition formulas:

o & n
M (e pyn) = ) <k> M G M i), (39)
k=0
o = (n
AP ryin) = Y- ()AL AL, i), (40)
k=0
n
VP ) = 1 (1)U v i), )
k=0
Making an adequate substitution in (39)—(41), we get
o n 19 n— n—
MY (x+y0) =Y <k> M (y; A) (=1)"Fxnk, (42)
k=0
() SN EAWRO LNk g
AP +yd) =Y (k)Ak wn(-5) (43)
k=0
" (n Iyn—k
V) = ¥ (U wa (- 5)" e (44)
k=0
Proposition 10. For every n € Ng and A € C, the following relations hold true
n_ e Ly (ntl oy
V= =DM (=) - gy (M ) (45)
_ To/n\ 1
X" = " 1 |:AAn(1 — X,'A) +I§ <k> WAk(l — X}A)}/ (46)

2n—1
n—+1

n _

n+1 n + 1 1
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Note that to prove (45)—(47), it is sufficient to use (36)—(38), respectively.

Theorem 6. The generalized U-Apostol Bernoulli polynomials MY (x; A) of order a satisfy the
following relation

MY (x + y:.A) 22” k( ) 1M (3 1) + MO (1 1y )] Ay (1 — ).

Proof. 1f we replace (24) in (42) we have,

MGy = 5 1 ()20 M ) At -
n— n—kpr(@) . N (n—k
+5 Z( )2 (=DM (%A)zn_k;< ]. >27A(1—x)

Reversing the order of summation, we have

o 1 ! n— n— o
MGy = 5 3 ()2 M ) Ayt -
k=0

1 (i @ o
— o
+5 <>2JA (1—x)z< L )(—1)” MY (y; ).
j=o0 \J k=0
On the other hand if in (42) x = 1, we get
M(‘x) 1 1) = - n -1 rl—kM(‘x) A 49
n(+y1)_zk() k(yl)r ()
k=0

replacing (49) in (48) and n —— n —j, 0 < j < n,n,j € INp, we obtain

o 1 ! n— n— o
MY (x + y; ) —5202 =) M (1) A (1= )

+z Z( )2]A (1- )M (1+y:1).
The following expression is equivalent to the previous one
(w) j =Ly n—k(Z1y1k ) (4 ) A, (1 —
M;, (x +y A 5 Z 2 ) Mk (]// ) nfk( x)

k=

0
1
30 < )2" KAk (1 =) M (14 ;7).

k=0

Factoring, we get the result. O
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3 Some relationships for the polynomials M(“(x;1), A% (x;1) and
Vi (1)

In this section, we deduce some relations by connecting the polynomials given in Section 2
and other families of polynomials such as Jacobi polynomials and generalized Bernoulli poly-
nomials of level m, Genocchi polynomials and Stirling numbers of the second kind.

Theorem 7. Forn € Ny, the generalized U-Apostol Bernoulli polynomials M,(f‘)(x;)\) are re-

(x,B8) (x)

lated with the Jacobi polynomials Py by means of the following identity

M (x i A)

_ 1)7+j1 JARN (1 THx+B4+2k @) B g (50)
ZZ (j_k><j>(1+K—}—IB—}—k)].+1Mn—j(y/A)Pk (1 —2x).

Proof. By substituting (6) into the right-hand side of (42), we have the following result.

MY (x +y; A)
" Ny -] ) (x,B)
n\ , (a) (n—j) ' k<n—]+x>(1+K+[3+2k)Pk (1—2x)
— )M s A : -1 .
]§<1> PN B k)T G B R
-Fy <n> M (y0) L <n -/ “) (Lt +p+ 20" (1 - 20)
SN/ ()R =~k L+ 5+ B+ E)nji1
ZEZchv<n_fﬂvwwkym Wﬁ#ﬂ(1+K+ﬁ+%ﬂf@@—2@
=0 /=0 ] n—j—k ] ! (—1)]*”*" (1—{—K—}—ﬁ+k)n,]'+1
shal k(] Lte+p+2k o () )
_ g_1n1+k<],+"><fl> MY ()PP (1~ 2x).
Therefore, the identity (50) holds. O

Theorem 8. For n € Ny, the generalized U-Apostol Euler polynomials A,(f‘)(x;)\) are related

with the generalized Bernoulli polynomials BLm_l](x) of level m by means of the following
identity

AW (x4 3 0) zz(_-) L) (DA was .

J
Proof. By substituting (8) into the right-hand side of (43), one gets the result. O

Theorem 9. For n € Ny, the generalized U-Apostol Genocchi polynomials Vn(“) (x;A) are re-
lated with the Genocchi polynomials G, (x) by means of the following identity

Vi (x +yiA)
=22 () e () s+ S () (e (-5) e
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Proof. By substituting (9) into the right-hand side of (44), we see that

n—j

N (F) (5 Gt

@ (=YL
Vi (y’)‘)<2> 2(n—j+1)k/¥6 k1 )Gn®)

+ Z <”> V]-(“)(y;/\) (%)n_jm@—mm
Then,

Vn("‘)(xw; A)
=32 () e [ () (ven (3) 7+ () vhesn]ca

Therefore, the identity (51) holds. O
Theorem 10. Forn € N, a, A € C, we have
M k()Y (7 M@ (0 (1) k
(xrpd) = L o) L ) M e TGk,

Proof. By substituting (7) into the right-hand side of (42) and using appropriate binomial coef-
ficient identities, we obtain the result. O

4 Generalized U-Bernoulli, U-Euler and U-Genocchi polynomials matrices

In this section, we define the generalized U-Bernoulli, U-Euler and U-Genocchi polynomi-
als matrices and show some of their properties (see [19,20, 24]).

Definition 5. The generalized (n + 1) x (n + 1) U-Bernoulli polynomial matrix M®)(x) =
ml(’;) [x] is defined by
1\ p(@) L
M5 (%), 12>,
o) = | (MEN 721
0, otherwise,

where M) (x) := M(x) and M(0) := M are called the U-Bernoulli polynomial matrix and
U-Bernoulli matrix, respectively.

Let us consider n = 3. It follows from the Definition 5 that

-1 0 0 0

—% -1 0 0

M= —— -1 -1 0
1 3

I

_O 2 2 J
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and
[ -1 0 0 0]
1
x—i -1 0 0
M(x) = ) 1 1

—X—x— =+ - 2x — 1 -1
X X 61+4 X 1 ; 0
3 .2+ P R Y _ 2
X 3x +2x 3x 3x > 3x > 1_

Theorem 11. The generalized U-Bernoulli polynomial matrix M(*)(x) satisfies the following
product formula

MOP) (4 y) = MO () MP) () = MO ()M () = MO MP (). (52)

Proof. Let fo}"ﬁ ) (x,y) be the (i, j)th entry of the matrix product M@ (x) M) (y). By the ad-
dition formula (39) and A = 1, we have

D(zx B (x,y) = i <;{> MY (x) <k> M,(f)j(y) = i <l> <Z:1]<>M

k=0 j =\
N (i—] N

- () ( k]>/\/l§f)j_k(x)/\/ll((5)(y) _ <) MEP (x4 y)
17 =0 j

which implies (52). )

M ()

Let 7 = f;; be the (n + 1) X (n + 1) matrix whose entries are defined by

_«4rﬁc> o
fi=4 i1y 7

0, otherwise.

Theorem 12. The inverse U-Bernoulli matrix M is given by M~ = F.

no(—1 k n
(k"—)]. <k> Ml’l—k - 5}’!,0/
where 6, o is the Kronecker delta

EE—G)lkk]+1() C)

Proof. Given

The proof is finished. O

Definition 6. Let x be any nonzero real number. We define the generalized type U-Pascal
matrix G[x] = g;i(x) of first kind as an (n + 1) x (n + 1) matrix whose entries are given by

(), 2
gi () = (1) i j

0, otherwise.
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Theorem 13. The U-Bernoulli polynomial matrix M(x) satisfies the following relations

M(x +y) = G[x]M(y) = Gly|M(x), (53)
M(x) = G[x| M.

Proof. The substitution f = 0 into (52) yields
MO (x +y) = MY ()M O (y) = MO () MY (y) = M@ () MO (x).
Since for x = 0 and A = 1 in (36), we have M) (x) = G[x], then
MO (x+y) = Gl MW (y). (54)
Next, the substitution « = 1 into (54) yields (53). O

Definition 7. Fora € C, the generalized (n + 1) x (n + 1) U-Euler polynomial matrix A(x) =
( . .
aij) [x] is defined by
i
AR
al®) (x) (;)

ij
0, otherwise,

where A (x) := A(x) and A(0) := A are called the U-Euler polynomial matrix and the
U-Euler matrix, respectively.

Let us consider n = 3. It follows from the Definition 7 that

[—1 0 0 0] [ 1 0 0 0]
41] 1 00 %—%x 1 0 0

A= 1 and A(x) = 1, 1 1
0 5 10 Zx —Zx E—x 1 0
1y 3 1 30 1 83, 3 3 3 4
L 32 4 L 8 16 32 4 4 4 2 .

Theorem 14. The generalized U-Euler polynomial matrix A% (x) satisfies the following prod-
uct formula

Al (x4 y) = AW (2 AP () = AP (W) AW (y) = AW AP ). 55)

Proof. Let Wl.(j’ﬁ ) (x,y) be the (i, j)th entry of the matrix product A® (x).A¥)(y). By the addi-
tion formula (40) and A = 1, we have

e = 52 (1) 4o ()40 = & () (D kA o
A

k=0

which implies (55). O
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Definition 8. Let x be any nonzero real number. We define the generalized U-Pascal-type
matrix P[x| = p; ;(x) of first kind as an (n + 1) x (n + 1) matrix whose entries are given by

T (Ve iz
pij(x) = 271\ B

0, otherwise.

Theorem 15. The U-Euler polynomial matrix A(x) satisfies the following relations
A(x+y) = PlxJAly) = PlylA(x), (56)
A(x) = Plx]A.
Proof. The substitution = 0 into (55) yields
AW (x +y) = A () A0 (y) = A () AW (y) = AW () A ().
Since for « = 0 and A = 1 in (37), we have A (x) = P[x], then
AW (x4 y) = P] AW (y). (57)
Next, the substitution a« = 1 into (57) yields (56). O

Definition 9. For « € C, the generalized (n + 1) x (n 4+ 1) U-Genocchi polynomial matrix
V@ (x) = ’01(5) [x] is defined by

i+1 («) . .
. V i 7 Z V4
0, otherwise,

where VV(x) := V(x) and V(0) := V are called U-Genocchi polynomial matrix and
U-Genocchi matrix, respectively.

Theorem 16. The generalized U-Genocchi polynomial matrix V(*)(x) satisfies the following
product formula

VEEB) (x + ) = VO () VB (1) = VE (x) V) () = V@ (1) VB (). (58)

Proof. Let Kz(‘;’g ) (x,y) be the (i, j)th entry of the matrix product V™ (x) V() (y). By the addition
formula (41) and A = 1, we have

£ o (ot - () (o

k=0 k=j \J
- () 2 () eomPo = (v
which implies (58). U
Theorem 17. The U-Genocchi polynomial matrix V(x) satisfies the following relations
V(x+y) = Plx]V(y) = PlyV(x), (59)
V(x) = Plx]V.

Proof. The substitution = 0 into (58) yields
VW (x4 y) = VO )V O (y) = VO )V (y) = v )V O ().
Since for « = 0 and A = 1 in (38), we have V(¥ (x) = P[x], then
VW (x +y) = PRIV (y). (60)
Next, the substitution &« = 1 into (60) yields (59). O
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5 Conclusion

Our research aimed to introduce novel families of U-Bernoulli, U-Euler, and U-Genocchi
polynomials, coupled with their unique properties. While it is important to note that the uti-
lization of the Cauchy product of power series underpins some of our formulations, it is not
a new method. Nonetheless, it has proven invaluable in generating fresh sets of special poly-
nomials, whether or not they adhere to Appell-type conditions. Even in recent times, this
approach has led to significant discoveries. For an in-depth exploration of the latest devel-
opments in this expansive field, we refer the interested reader to [6,11,13] and the references
therein. Finally, we unveiled novel properties of the generalized matrices associated with the
U-Bernoulli, U-Euler, and U-Genochhi polynomials. These discoveries shed light on their in-
herent properties and offer insightful factorizations.
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Y witi craTTi 03HaueHo noainomMu U-Bepryaai, U-Oiiaepa Ta U-AXeHOKK], ix uncaa Ta oKa3aHO
3B/S130K LIMX MOAIHOMIB i3 A3eTa-dyHKIiclo PiMaHa. AAsT BCTAHOBAEHHSI AesIKMX IXHIX aArebpalumHmx
i AMdpepeHITIiaAbHNMX BAACTMBOCTEN YBEAEHO y3araAbHeHHsI THITy ATiocToAa. BisHaueHo y3araabHeHi
U-bepryaai, U-Orirepa Ta U-AXeHOKKI moAiHOMiaAbHI MaTpuli Tumy [Tackaas Ta AOBEA€HO AesIKi
dopmMyAn A0b6yTKyY, OB s13aHi 3 My MaTpyisiMi. KpiM TOro, BCTAaHOBAEHO A€sIKi SIBHI BUpPasy AAST
noAiHomiaabHUX MaTpuub U-Bepryani, U-Oiirepa Ta U-AXEHOKKI, SIKi BKAIOUAIOTh y3araAbHEHY
MaTpyno Tackaast.

Kontouosi cnosa i ppasu: monaisom U-Bepryani, moainom U-Otirepa, y3araabHeHMI oaisom U-
Bepryaai, y3araabHermi noaisom U-Oiinepa, MaTpuist moaiHoMiB U-BepHyAni, MaTpuiist oaiHo-
miB U-Oriirepa, maTpuis [Tackans.



