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Metric and topology on the poset of compact
pseudoultrametrics

Nykorovych S.1, Nykyforchyn O.1,2

In two ways we introduce metrics on the set of all pseudoultrametrics, not exceeding a given

compact pseudoultrametric on a fixed set, and prove that the obtained metrics are compact and

topologically equivalent. To achieve this, we give a characterization of the sets being the hypographs

of the mentioned pseudoultrametrics, and apply Hausdorff metric to their family. It is proved that

the uniform convergence metric is a limit case of metrics defined via hypographs. It is shown that

the set of all pseudoultrametrics, not exceeding a given compact pseudoultrametric, with the in-

duced topology is a Lawson compact Hausdorff upper semilattice.

Key words and phrases: pseudoultrametric, metrization, сompactum, hypograph.

1 Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
2 Casimir the Great University in Bydgoszcz, 30 J.K. Chodkiewicza str., 85064, Bydgoszcz, Poland

E-mail: sviatoslav.nykorovych@pnu.edu.ua (Nykorovych S.), oleh.nyk@gmail.com (Nykyforchyn O.)

Introduction

The goal of this paper is to introduce metrics (and hence topologies) on the set of all com-

pact pseudoultrametrics on a fixed set, to compare them and to study their properties. Ultra-

metrics (or non-Archimedean metrics [2]) are studied since the beginning of XX century, cf. a

review in [3]. They found numerous applications, e.g., in computer science.

The set of all pseudoultrametrics (i.e., of the pseudometrics that satisfy the stronger triangle

inequality required for ultrametrics) on a fixed set carries a natural (i.e., pointwise) partial

order, and is a lattice. Lattice operations on it were extensively studied in [5], and it was shown

that their properties are unsatisfactory if all pseudoultrametrics on a set (or even all locally

compact pseudoultrametrics only) are considered. To obtain reasonably good (i.e., continuous

in the sense of order theory [1]) posets, one should restrict to compact pseudoultrametrics.

Two main approaches are proposed via uniform convergence metrics and via subgraphs

(hypographs) of functions. The first approach is classical, and the second one proved to be

useful in the study of non-additive measures [7]. For the both it appears to be necessary to

consider not all compact pseudoultrametrics on a set but pseudoultrametrics not exceeding

a fixed one only. In this case both approaches are successful and induce the same topology.
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Moreover, the uniform convergence distance between compact pseudoultrametrics is, under

reasonable assumptions, the limit of the “subgraph-style” distances between these pseudoul-

trametrics determined with a non-decreasing net of compact pseudoultrametrics. Thus, the

two methods are in fact equivalent and interchangeable. Recall that families of (pseudo-)ultra-

metrics were studied in [4], so a link to a previous research naturally arise.

This paper relies heavily on [5] and [6], and is, in particular, a preparatory work for a

continuation of the mentioned studies.

1 Preliminaries

Recall that a poset (D,≤) is directed (resp. filtered) [1] if for all d1, d2 ∈ D there is d ∈ D

such that d1, d2 ≤ d (resp. d1, d2 ≥ d).

For an element d of a poset (D,≤) we denote d↓ = {d′ ∈ D | d′ ≤ d}.

The following notion is a natural mixture of ones of ultrametric and pseudometric. Let X

be a nonempty set.

Definition 1. A mapping d : X × X → R that satisfies the conditions:

• d(x, y) ≥ 0 for all x, y ∈ X (nonnegativeness),

• d(x, x) = 0 for all x ∈ X (identity),

• d(x, y) = d(y, x) for all x, y ∈ X (symmetry),

• d(x, y) ≤ max{d(y, z), d(z, x)} for all x, y, z ∈ X (triangle inequality),

is called a pseudoultrametric on the set X.

It is just a pseudometric such that the usual triangle inequality d(x, y) ≤ d(y, z) + d(z, x)

holds in a stronger form. Let CPsU(X) be set of all compact pseudoultrametrics on X. The

partial order on CPsU(X) is defined pointwise: a pseudoultrametric d1 precedes a pseudoul-

trametric d2 (written d1 ≤ d2) if d1(x, y) ≤ d2(x, y) holds for all points x, y ∈ X. The trivial

pseudometric d ≡ 0 is the least element of CPsU(X).

The least upper bound of pseudoultrametrics d1, d2 is the pointwise maximum d∗(x, y) =

max
{

d1(x, y), d2(x, y)
}

for all x, y ∈ X.

2 Subgraphs of compact pseudoultrametrics

Definition 2. The subgraph (or the hypograph) of a compact pseudoutrametric d on a set X is

the set

sub d =
{

(x, y, a) : x, y ∈ X, a ∈ [0; d(x, y)]
}

.

Then sub d ⊂ X × X × [0,+∞), and, taking into account that any compact pseudoul-

trametric is bounded from above and attains its least upper bound, we can state sub d ⊂

X × X × [0, M] for all M ≥ max d. Obviously, for all d1, d2 ∈ CPsU(X), the inequality d1 ≤ d2

is equivalent to sub d1 ⊂ sub d2.

Assume that a compact pseudoultrametric d̂ is fixed on X, and let all compact pseudoultra-

metrics d from now on in this section be in d̂↓, i.e., d ≤ d̂ (hence sub d ⊂ sub d̂).

Define a pseudometric ρ on the set X × X × [0, M] by the formula

ρ
(

(x1, y1, a1), (x2, y2, a2)
)

= max
{

d̂(x1, x2), d̂(y1, y2), |a1 − a2|
}

.
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Lemma 1. The set sub d is closed in X × X × [0, M] for all M ≥ max d̂.

Proof. Consider the complement of sub d in X × X × [0, M]. Show that it is an open set. Let

(x0, y0, a0) ∈ X × X × [0, M] \ sub d, i.e., a0 > d(x0, y0). Then ε = a0−d(x0,y0)
2 > 0.

Verify that the ball with respect to ρ with the center (x0, y0, a0) and the radius ε is contained

in X × X × [0, M] \ sub d. If ρ
(

(x0, y0, a0), (x, y, a)
)

< ε, then d(x0, x) ≤ d̂(x0, x) < ε, d(y0, y) ≤

d̂(y0, y) < ε, hence d(x, y) < d(x0, y0) + ε, a > a0 − ε. Taking into account d(x0, y0) + ε =

a0 − ε, we obtain d(x, y) < a, i.e., (x, y, a) /∈ sub d, which completes the proof.

Lemma 2. For a compact pseudoultrametric d ∈ d̂↓ the following conditions hold:

1) X × X × {0} ⊂ sub d;

2) for all (x, y, b) ∈ sub d and a ∈ [0, b] we have (x, y, a) ∈ sub d;

3) if (x, y, a) ∈ sub d, then (y, x, a) ∈ sub d;

4) if (x, x, a) ∈ sub d, then a = 0;

5) for all x, y, z ∈ X, if (x, z, c) ∈ sub d, then (x, y, a) ∈ sub d or (y, z, b) ∈ sub d.

Proof. 1) By the definition, d(x, y) ≥ 0 for all x, y ∈ X, therefore (x, y, 0) ∈ sub d.

2) If a ∈ [0, b] and (x, y, b) ∈ sub d, then 0 ≤ a ≤ b ≤ d(x, y) ∈ sub d, hence (x, y, a) ∈ sub d.

3) The equality d(x, y) = d(y, x) implies a ≤ d(x, y) ⇐⇒ a ≤ d(y, x), therefore (x, y, a) ∈

sub d is equivalent to (y, x, a) ∈ sub d.

4) By the definition, (x, x, a) ∈ sub d ⇐⇒ 0 ≤ a ≤ d(x, x) = 0, i.e., a = 0.

5) Let (x, y, c) /∈ sub d and (y, z, c) /∈ sub d, then d(x, y) < c, d(y, z) < c, and, by triangle

inequality, d(x, z) ≤ max
{

d(x, y), d(y, z)
}

< max{c, c} = c, which contradicts to the assump-

tion (x, z, c) ∈ sub c, i.e., c ≤ d(x, z).

Observe that 1)–5) are valid for the subgraph of d̂ itself, and recall sub d ⊂ sub d̂ for all

d ∈ d̂↓. Now we describe the subsets that are subgraphs of compact pseudoultrametric.

Proposition 1. Let F ⊂ X × X × [0, M]. The set F satisfies:

1) F is contained in sub d̂ and closed in X × X × [0, M] with respect to ρ;

2) X × X × {0} ⊂ F;

3) if (x, x, a) ∈ F, then a = 0;

4) if (x, y, b) ∈ F, then (x, y, a) ∈ F for all a ∈ [0, b];

5) if (x, y, a) ∈ F, then (y, x, a) ∈ F;

6) for all x, y, z ∈ X, if (x, z, c) ∈ F, then (x, y, a) ∈ F or (y, z, b) ∈ F;

if and only if there is a compact pseudoultrametric d ≤ d̂ such that F = sub d.
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Proof. Necessity of 1)–6) has been proved above. Now show sufficiency. Given a subgraph

sub d, the pseudoultrametric can be recovered as follows: d(x, y) = max
{

a ∈ [0;+∞) :

(x, y, a) ∈ sub d
}

. Hence the unique d with the subgraph F (if it exists) should be equal to

d(x, y) = sup
{

a ∈ [0; M] : (x, y, a) ∈ F
}

.

Show that such d is a pseudoultrametric. Verify the definition.

The existence and non-negativity of the supremum is guaranteed by X × X × {0} ⊂ F,

hence
{

a ∈ [0; M] : (x, y, a) ∈ F
}

⊃ {0}, and the set is non-empty and bounded from above

by M.

The closedness of F implies that (x, y, b) ∈ F for b = sup
{

a ∈ [0; M] : (x, y, a) ∈ F
}

, i.e., the

least upper bound is attained here, so we can write d(x, y) = max
{

a ∈ [0; M] : (x, y, a) ∈ F
}

.

Calculate d(x, x) = sup
{

a ∈ [0; M] : (x, x, a) ∈ F
}

. By 3) the only a here is a = 0, hence

d(x, x) = 0.

To verify symmetry, observe that 5) implies

d(x, y) = sup
{

a ∈ [0; M] : (x, y, a) ∈ F
}

=
{

a ∈ [0; M] : (y, x, a) ∈ F
}

= d(y, x).

To show triangle inequality, let a = d(x, y), b = d(y, z), c = d(x, z). By 6), (x, z, c) ∈ F

implies (x, y, c) ∈ F or (y, z, c) ∈ F, then c ≤ a or c ≤ b. Thus c ≤ max{a, b}, which completes

the proof that d is a pseudoultrametric.

By the assumption of the lemma, d(x, y) ≤ d̂(x, y) for all x, y ∈ X. Therefore d is continuous

with respect to the compact pseudoultrametric d̂, hence it is a compact pseudoultrametric as

well.

By the construction,
(

x, y, d(x, y)
)

∈ F for all x, y ∈ X, and 4) impies (x, y, a) ∈ F for all

a ∈
[

0, d(x, y)
]

. Therefore sub d ⊆ F.

On the other hand, the definition d(x, y) = sup
{

a ∈ [0; M] : (x, y, a) ∈ F
}

and 4) imply

F ⊆ sub d. This completes the proof that, under the assumptions 1–6) we have F = sub d.

Remark 1. The item 3) above is a corollary of F ⊂ sub d̂ in 1) and of 3) for sub d̂, therefore its

verification can be omitted.

3 Metrization via subgraphs

Recall that the set of all non-empty closed subsets of a (pseudo-)metric space (X, d) is called

the hyperspace of this space and denoted with exp X. It can be metrizable with Hausdorff

metric

dH(A, B) = max
{

sup
{

d(a, B) : a ∈ A
}

, sup
{

d(b, A) : b ∈ B
}

}

, A, B ∈ exp X.

It is known that, for a compact (pseudo-)metric d, the metric space (exp X, dH) is compact as

well. Hence, for any d̂ ∈ CPsU(X) and M ≥ max d̂, compactness of the product X × X × [0, M]

with respect to the pseudometric

ρ
(

(x1, y1, a1), (x2, y2, a2)
)

= max
{

d̂(x1, x2), d̂(y1, y2), |a1 − a2|
}

implies that the set exp
(

X × X × [0, M]
)

of non-empty closed subsets of X × X × [0, M] with

the metric ρH is compact.
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For it has been shown that there is a one-to-one correspondence between compact pseu-

doultrametrics and their subgraphs, we can define a distance (a metric) between d1, d2 ∈ d̂↓ as

the Hausdorff distance between their subgraphs: Dd̂
H(d1, d2) = ρH(sub d1, sub d2), i.e.,

Dd̂
H(d1, d2) = max

{

sup
u∈sub d1

ρ(u, sub d2), sup
v∈sub d2

ρ(v, sub d1)
}

where ρ(u, sub d2) = inf
v∈sub d2

ρ(u, v), and similarly for ρ(v, sub d1).

Lemma 3. The set S =
{

sub d : d ≤ d̂, d is a compact pseudoultrametric on X
}

is closed in the

hyperspace exp
(

X × X × [0, M]
)

.

Proof. We are going to prove that the set of all F ∈ exp
(

X × X × [0, M]
)

, that satisfy the

conditions of the latter Proposition, is closed.

If F 6⊂ sub d̂, then there is a point (x0, y0, a0) ∈
(

X × X × [0, M]
)

\ sub d̂, and due

to the closedness of sub d̂ there is a ball Bδ

(

(x0, y0, a0)
)

that has an empty intersection

with sub d̂. Therefore for any G ∈ exp
(

X × X × [0, M]
)

such that ρH(G, F) < δ, we have

G ∩ Bδ

(

(x0, y0, a0)
)

6= ∅, hence G 6⊂ sub d̂. Thus the set of all F ∈ exp
(

X × X × [0, M]
)

such

that F ⊂ sub d̂, i.e., 1) holds, is closed. Recall that 3) is valid as well for all these F.

Similarly, if X × X × {0} 6⊂ F, then there is (x0, y0, 0) ∈
(

X × X × [0, M]
)

\ F, and therefore

a ball Bδ

(

(x0, y0, a0)
)

that has an empty intersection with F. Then for G ∈ exp
(

X × X × [0, M]
)

the inequality ρH(G, F) < δ implies (x0, y0, 0) /∈ G, hence G fails to satisfy 2) as well. Thus 2)

selects a closed subset in exp
(

X × X × [0, M]
)

.

If 4) does not hold for F ∈ exp
(

X × X × [0, M]
)

, then there are 0 ≤ a0 < b0 ≤ M and

x0, y0 ∈ X such that (x0, y0, b0) ∈ F but (x0, y0, a0) /∈ F. Choose δ > 0 such that Bδ

(

(x0, y0, a0)
)

that has an empty intersection with F. If G ∈ exp
(

X × X × [0, M]
)

and ρH(G, F) < δ/2, then

there is (x, y, b) ∈ G such that ρ
(

(x, y, b), (x0, y0, b0)
)

< δ/2.

Denote a = max
{

0, a0 +(b− b0)
}

, and observe that 0 ≤ a ≤ b and ρ
(

(x, y, a0), (x0, y0, a)
)

≤

ρ
(

(x, y, b), (x0, y0, b0)
)

, hence ρ
(

(x, y, a), (x0, y0, a0)
)

< δ/2. Then

ρ
(

(x, y, a), F
)

≥ ρ
(

(x, y, a),
(

X × X × [0, M]
)

\ Bδ

(

(x0, y0, a0)
)

)

> δ/2,

hence (x, y, a) /∈ G. Taking into account (x, y, b) ∈ G, we see that all G ∈ exp
(

X × X × [0, M]
)

such that ρH(G, F) < δ/2 fails to satisfy 4).

Assume F does not satisfy 5), i.e., (x0, y0, a0) ∈ F but (y0, x0, a0) /∈ F. The closedness of

F implies that there exists δ > 0 such that Bδ

(

(y0, x0, a0)
)

⋂

F = ∅. Let G ∈ exp
(

X × X ×

[0, M]
)

be such that ρH(G, F) < δ/2. Then, on the one hand, there is (x, y, a) ∈ G such that

ρ
(

(x, y, a), (x0, y0, a0)
)

< δ/2. On the other hand, ρ
(

(y, x, a), (y0, x0, a0)
)

< δ/2 implies

ρ
(

(y, x, a), F
)

≥ ρ
(

(y, x, a),
(

X × X × [0, M]
)

\ Bδ

(

(y0, x0, a0)
)

)

> δ/2,

hence (y, x, a) /∈ G. Thus 5) fails for all G such that ρH(G, F) < δ/2, and the set of all

F ∈ exp
(

X × X × [0, M]
)

such that 5) is valid, is closed.

Let 6) fails for F ∈ exp
(

X × X × [0, M]
)

, i.e., there are x0, y0, z0 ∈ X and c0 ∈ [0, M]

such that (x0, z0, c0) ∈ F but (x0, y0, c0) /∈ F, (y0, z0, c0) /∈ F. Choose δ > 0 such that

Bδ(x0, y0, c0))
⋂

F = Bδ(y0, z0, c0))
⋂

F = ∅. If G ∈ exp(X × X × [0, M]), ρH(G, F) < δ/2,

then there is (x, z, c) ∈ G such that ρ
(

(x, z, c), (x0, z0, c0)
)

< δ/2. This implies

ρ
(

(x, y0, c), (x0, y0, c0)
)

< δ/2, ρ
(

(y0, z, c), (y0, z0, c0)
)

< δ/2,
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therefore

ρ
(

(x, y0, c), G
)

> δ/2, ρ
(

(y0, z, c), G
)

> δ/2,

hence (x, y0, c) /∈ G, (y0, z, c) /∈ G. Thus such G does not satisfy 6), which completes the proof

that S is a closed set in exp
(

X × X × [0, M]
)

.

A closed subset of a metric compactum is a metric compactum as well, therefore we imme-

diately obtain the following assertion.

Corollary 1. The set d̂↓ ⊂ CPsU(X) with the metric Dd̂
H is a compact metric space.

Thus we have obtained a compact metric on the subset d̂↓. Show that least upper bounds

in the lattice d̂↓ are continuous with respect to this metric.

It is straightforward to observe that sub sup{d1, d2} = sub d1 ∪ sub d2 for any d1, d2 ∈ d̂↓.

Moreover, the following lemma is true.

Lemma 4. If {dα : α ∈ A} ⊂ d̂↓ is non-empty, then sup{dα : α ∈ A} exists, and the equality

sub sup{dα : α ∈ A} = Cl
⋃

α∈A sub dα is valid for its subgraph.

Proof. By the above observation, we can assume without loss of generality that the set

{dα : α ∈ A} is directed, then the set {sub dα : α ∈ A} ⊂ exp
(

X × X × [0, M]
)

of sub-

graphs is directed as well, and all its elements Fα = sub dα satisfy conditions 1)–6) above. It

is straightforward to verify that the set F = Cl(
⋃

α∈A Fα) satisfies 1)–6) as well, hence is the

subgraph of a unique compact pseudoultrametric d ∈ d̂↓. Obviously, for any d′ ∈ d̂↓ we have

d′ ≥ dα for all α ∈ A ⇐⇒ sub d′ ⊃ sub dα for all α ∈ A

⇐⇒ sub d′ ⊃ Cl
⋃

α∈A

sub dα = sub d

⇐⇒ d′ ≥ d,

i.e., d is the least upper bound of all dα.

Remark 2. If a set {dα : α ∈ A} is non-empty and closed in d̂↓ with respect to Dd̂
H, i.e., the set

of subgraphs is closed with respect to the Hausdorff distance, then the union
⋃

α∈A sub dα is

closed and is the subgraph of the supremum d in question.

So we obtain the mapping sup : exp(d̂↓) → d̂↓, which, when passing to subgraphs, acts

simply as the union of a closed family of closed sets. It is well known and easy to verify that

such union operation is continuous with respect to the Hausdorff metric. Recall that a compact

Hausdorff (hence complete) topological upper semilattice S such that the mapping exp S → S

is continuous with respect to the Vietoris topology on the hyperspace exp S, is called a Lawson

compact Hausdorff upper semilattice [1]. As the Vietoris topology on the hyperspace of a

metric compactum is induced with the Hausdorff metric, we arrive at a conclusion.

Corollary 2. The semilattice d̂↓ with the topology induced by Dd̂
H is a Lawson compact Haus-

dorff upper semilattice.

The proposed method of metrization has a substantial drawback: it depends on the choice

of a pseudoultrametric d̂ “above” the considered pseudoultrametrics. Later we will show that

for any d̂, d̄ ∈ CPsU(X) the distances Dd̂
H and Dd̄

H induce the same topology d̂↓ ∩ d̄↓.
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4 Uniform convergence metric

All d1, d2 ∈ d̂↓ ⊂ CPsU(X) are bounded functions on X, hence we can use the uniform

convergence metric

Du(d1, d2) = sup
{

∣

∣d1(x, y)− d2(x, y)
∣

∣ : x, y ∈ X
}

.

Moreover, due to compactness the least upper bound is attained here, so we can write max

instead of sup. This metric appears to be very close to the previously defined “Hausdorff-like”

metric.

Proposition 2. Let d, d1, d2 be compact pseudoultrametrics on a set X, and d1 ≤ d, d2 ≤ d.

Then

Dd
H(d1, d2) ≤ Du(d1, d2) ≤ 2 · Dd

H(d1, d2).

Proof. For any ε > 0 the inequality Dd
H(d1, d2) ≤ ε is equivalent to the following: for all

(x, y, α) ∈ sub d1 there is (x′, y′, α′) ∈ sub d2 such that d(x, x′) ≤ ε, d(y, y′) ≤ ε, |α − α′| ≤ ε,

and vice versa for all (x′, y′, α′) ∈ sub d2.

The first condition can then be formulated equivalently as A1(ε): for all x, y ∈ X there are

x′, y′ ∈ X such that
{

d(x, x′) ≤ ε, d(y, y′) ≤ ε,

d2(x′, y′) ≥ d1(x, y)− ε,

and similarly A2(ε) for the second one: for all x′, y′ ∈ X there are x, y ∈ X such that

{

d(x, x′) ≤ ε, d(y, y′) ≤ ε,

d1(x, y) ≥ d2(x′, y′)− ε.

What is required is to show that, for any fixed ε ≥ 0, the inequality Du(d1, d2) ≤ ε holds,

i.e.,
∣

∣d1(x, y)− d2(x, y)
∣

∣ ≤ ε for all x, y ∈ X, which we denote with B(ε), implies the above pair

of conditions A1(ε), A2(ε), which, in turn, imply B(2ε).

If B(ε) is valid, then for all x, y ∈ X we can put x′ = x, y′ = y, and obviously A1(ε)
(

and similarlyA2(ε)
)

holds.

Assume A1(ε)+A2(ε) but the existence of x, y ∈ X such that d2(x, y) < d1(x, y)− 2ε, hence

d1(x, y) > 2ε. Using A1(ε), choose x′, y′ ∈ X such that

{

d(x, x′) ≤ ε, d(y, y′) ≤ ε,

d2(x′, y′) ≥ d1(x, y)− ε > ε.

Taking into account d2(x, x′) ≤ ε, d2(y, y′) ≤ ε, by the triangle inequality for pseudoultramet-

rics we obtain

d2(x′, y′) = d2(x′, y) = d2(x, y) =⇒ d2(x, y) ≥ d1(x, y)− ε,

which contradicts to d2(x, y) < d1(x, y) − 2ε. Hence the latter inequality is impossible for all

x, y ∈ X, and d2(x, y) ≥ d1(x, y)− 2ε.

Analogously deduce d1(x, y) ≥ d2(x, y)− 2ε from A2(ε), and obtain
∣

∣d1(x, y)− d2(x, y)
∣

∣ ≤

2ε, i.e., B(2ε).
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Remark 3. The factor 2 in the above inequality cannot be reduced, which is shown by the

following example: consider X = {a1, a2, b1, b2}, and, for all x, y ∈ X,

d1(x, y) =















0, x = y,

1, {x, y} = {a1, a2} or {x, y} = {b1, b2},

2 otherwise,

d2(x, y) =

{

0, x = y or {x, y} = {a1, b1},

1 otherwise.

Clearly d2 ≤ d1, Du(d1, d2) = d1(a1, b1)− d2(a1, b1) = 2 − 0 = 2, but it is straightforward to

verify that Dd
H(d1, d2) = 1.

This proposition implies that the metrics Du and Dd
H induce the same topology on the

subset d↓ ⊂ CPsU(X). Moreover, we easily obtain the following result.

Corollary 3. If d̂ ≤ d̄ holds for compact pseudoultrametrics on X, then the inclusion of

(d̂↓, Dd̂
H) into (d̄↓, Dd̄

H) is a topological embedding.

Therefore for all d̂, d̄ ∈ CPsU(X) the topologies induced by Dd̂
H and Dd̄

H on d̂↓ ∩ d̄↓ agree,

and all (d̂↓, Dd̂
H)

∼= (d̂↓, Du) are topological subspaces of (CPsU(X), Du).

Consider the space (d̂↓, Du) for a particular d̂ ∈ CPsU(X).

Lemma 5. Any element d ∈ d̂↓ is a non-expanding function X × X → R with respect to the

pseudoultrametric d̂× on X × X defined by the formula

d̂×
(

(x, y), (x′, y′)
)

= max
{

d̂(x, x′), d̂(y, y′)
}

.

Proof. Let d̂×
(

(x, y), (x′, y′)
)

≤ ε, then d̂(x, x′) ≤ ε, d̂(y, y′) ≤ ε. Taking into account d(x, x′) ≤

d̂(x, x′), d(y, y′) ≤ d̂(y, y′), we obtain d(x, x′) ≤ ε, d(y, y′) ≤ ε. Then by the triangle inequality

d(x′, y′) ≤ max
{

d(x′, x), d(x, y), d(y, y′)
}

≤ max
{

d(x, y), ε
}

≤ d(x, y) + ε,

and, analogously, d(x, y) ≤ d(x′, y′) + ε, which yields
∣

∣d(x, y) − d(x′, y′)
∣

∣ ≤ ε. This completes

the proof.

Recall that, by Arzelà-Ascoli theorem, a set F of continuous functions on a compact

(pseudo-)metric space is relatively compact with respect to the uniform convergence met-

ric (i.e., its closure is compact) if and only if F is uniformly equicontinuous and pointwise

bounded. The elements of d̂↓ are non-expanding functions on (X × X, d̂×), hence d̂↓ is uni-

formly equicontinuous. It is bounded with any M ≥ max d̂, and it is straightforward to verify

that the limit of a uniformly convergent sequence dn in d̂↓ is a pseudoultrametric in d̂↓. Thus

d̂↓ is closed, and we obtain is an alternative proof that (d̂↓, Dd̂
H)

∼= (d̂↓, Du) is compact.

Let d̂ ≤ d̄, then on X × X × [0, M], with M ≥ sup d̄ ≥ sup d̂, we have pseudometrics:

ρ̂
(

(x1, y1, a1), (x2, y2, a2)
)

= max
{

d̂(x1, x2), d̂(y1, y2), |a1 − a2|
}

and

ρ̄
(

(x1, y1, a1), (x2, y2, a2)
)

= max
{

d̄(x1, x2), d̄(y1, y2), |a1 − a2|
}

.
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Obviously ρ̂ ≤ ρ̄, hence ρ̂H ≤ ρ̄H, which for all d1, d2 ∈ d̂↓ ⊂ d̄↓ implies

Dd̂
H(d1, d2) = ρ̂H(sub d1, sub d2) ≤ ρ̄H(sub d1, sub d2) = Dd̄

H(d1, d2),

hence the more is d̂, the more is the metric Dd̂
H.

Recall that a net is a collection (xα)α∈(A,�) of elements xα indexed with a directed poset

(A,�). If all xα are elements of a poset itself, we call the net (xα)α∈(A,�) non-decreasing if

α � β in A implies xα ≤ xβ.

Definition 3. We say that a non-decreasing net (dα)α∈(A,�) in CPsU(X) grinds a compact pseu-

doultrametric d on X if for all x0 ∈ X and r > 0 the diameters with respect to d of the balls

Bα
r (x0) =

{

x ∈ X : dα(x, x0) < r
}

converge to 0.

It is equivalent to the statement that for all x0 ∈ X, r > 0, ε > 0 there is α ∈ A such

that d(x, x0) < ε for all x ∈ X such that dα(x, x0) < r. It is easy to observe that this implies

limα∈(A,�) sup dα = +∞.

Proposition 3. Let (dα)α∈(A,�) be a non-decreasing net in CPsU(X) that grinds both d, d′ ∈

CPsU(X), and assume that β ∈ A exists such that d ≤ dβ, d′ ≤ dβ. Then

lim
α∈(A,�)

Ddα
H (d, d′) = Du(d, d′).

Here we ignore the “missing” elements of the net for α 6≥ β when taking the latter limit.

Proof. Without loss of generality we can assume that d ≤ dα, d′ ≤ dα for all α ∈ A. The

net
(

Ddα
H (d, d′)

)

α∈(A,�)
in R is non-decreasing and bounded from above by Du(d, d′), hence

has a limit, which we denote by C. Clearly C ≤ Du(d, d′), and what is left to show is that

C < Du(d, d′) is impossible.

Assuming the contrary, we obtain the existence of x, y ∈ X such that

∣

∣d(x, y)− d′(x, y)
∣

∣ > C ≥ Ddα
H (d, d′)

for all α ∈ A. Let, e.g., d(x, y) = a, d′(x, y) = b, b − a > C. Then (x, y, b) ∈ sub d2 \ sub d,

and, for the pseudometric ρα on X × X × [0, sup dα] determined with dα in the way described

above, ρα((x, y, b), sub d) ≤ C for all α ∈ A. This implies the existence of (xα, yα, aα) ∈ sub d

such that

max
{

dα(xα, x), dα(yα, y), |aα − b|
}

≤ C,

hence dα(xα, x) ≤ C, dα(yα, y) ≤ C, aα ≥ b − C, therefore d(xα, yα) ≥ d′(x, y)− C = b − C.

On the other hand, there is α ∈ A such that for all x′, y′ ∈ X the inequalities dα(x, x′) < C,

dα(y, y′) <C imply d(x, x′) < b−C, d(y, y′) < b−C. Hence, d(xα, x) ≤ b−C, d(yα, y) ≤ b−C,

and, taking into account d(xα, yα) ≥ b − C and the triangle inequality, we obtain d(x, y) = a ≥

b − C, which contradicts to the assumption b − a > C. This completes the proof.

Remark 4. Probably the easiest way to obtain a net that satisfy the above requirements for

given d, d′ is to choose an arbitrary d̂ ≥ d, d̂ ≥ d′
(

e.g., sup{d̂, d′}
)

, and to put A = N,

dn(x, y) = n · d̂(x, y).
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5 Conclusions and future work

We have shown that, for a fixed compact pseudoultrametric d̂ on a set X, the set d̂↓ of all

compact pseudoultrametric on X less or equal to d̂ can be metrized in two distinct but topo-

logically equivalent ways, and with the induced topology it is a Lawson compact Hausdorff

upper semilattice. By Fundamental Theorem on Compact Semilattices [1] this topology is

uniquely determined with the partial order on d̂↓, namely with the “way above” relation. We

have already described the dual “way below” relation in [6], and in our upcoming publication

a similar characterization of “way above” will be presented. Then it will be shown that d̂↓ is

a (rather rare) example of a bicontinuous lattice [1], and its properties will be further investi-

gated. We are also going to consider subspaces of compact pseudoultrametrics with the values

in a closed subset of [0,+∞).
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Никорович С., Никифорчин О. Метрика i топологiя на частково упорядкованiй множинi компа-

ктних псевдоультраметрик // Карпатськi матем. публ. — 2023. — Т.15, №2. — C. 321–330.

Двома способами ми впроваджуємо метрики на множинi всiх псевдоультраметрик, що не

перевищують даної компактної псевдоультраметрики на деякiй фiксованiй множинi, i дово-

димо, що отриманi метрики компактнi i топологiчно еквiвалентнi. Для цього ми характеризу-

ємо множини, якi є пiдграфiками вказаних псевдоультраметрик, i до їх сукупностi застосову-

ємо метрику Гаусдорфа. Доведено, що метрика рiвномiрної збiжностi є граничним випадком

метрик, означених через пiдграфiки. Показано, що множина всiх псевдоультраметрик, що не

перевищують даної компактної псевдоультраметрики, з iндукованою топологiєю є лоусоно-

вою компактною гаусдорфовою верхньою напiвґраткою.

Ключовi слова i фрази: псевдоультраметрика, метризацiя, компакт, пiдграфiк.


