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Spectra of algebras of analytic functions, generated by
sequences of polynomials on Banach spaces,
and operations on spectra

Vasylyshyn S.I.

We consider the subalgebra of the Fréchet algebra of entire functions of bounded type, generated
by a countable set of algebraically independent homogeneous polynomials on the complex Banach
space X. We investigate the spectrum of this subalgebra in the case X = ¢;. We also consider some
shift type operations that can be performed on the spectrum of this subalgebra in the case X = £,
withp > 1.
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Introduction

Algebras of analytic functions on a Banach space generated by a countable number of
polynomials naturally appear as algebras of invariants with respect to actions of groups of
symmetry on the Banach space. Typical examples of such algebras are algebras of symmet-
ric analytic functions on 5, 1 < p < oo, with respect to the group of permutations of the
basis vectors [1-3,10] or algebras of symmetric analytic functions of bounded type on L,(Q),
1 < p < oo, with respect to the group of automorphisms of a measure space () [5,6,14-17]. The
problem of the description of spectra of such kind of algebras is non-trivial ever in the finite
dimensional case. For example, the famous Hilbert’s fourteenth problem on invariant theory
has a negative solution due to the counterexample of Nagata.

Let X be a complex Banach space. Let us consider the sequence {P,}°_; of n-homogeneous
(see the definition below) continuous complex-valued polynomials on X, n € IN. Let us define
the multi-valued mapping B : X — C* by the formula

1 e}
B(x) = {Pnﬁ (x)} forevery x € X.

n=1

Note that {P,;l’ (x) }Oo

n—=

. C lo for every x € X. For every x € o and n € N let us define the

polynomials {I,Soo) }oo ) by the formula I,sw)(x) = x.
n=

It is easy to see that P,(x) = (o) (B(x)) for every x € X. Taking into account such the

representation of the polynomials {P,}?° ;, it was interesting to investigate (see [18,19]) the
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existence of analytic functions of unbounded type, generated by the polynomials {P,};> ,,
dependently on the image of the mapping .

In this paper, we consider the particular case of countable generated algebras, namely the
algebras generated by the polynomials {I,Sp ) }:;1 on the spaces £, 1 < p < co.

In Section 1, we recall some basic notions on the theory of analytic functions on a Banach
space which are necessary for a full comprehension of the paper. In Section 2, we investigate
the spectrum of the Fréchet algebra of entire functions of bounded type, generated by the se-
quence of polynomials on a complex Banach space /1. Spectra of algebras of analytic functions
of bounded type were studied in [8,9]. In Section 3, we consider some shift type operations that
can be performed on the spectra of the algebras of entire functions of bounded type, generated
by the sequences of polynomials on complex Banach spaces £,, p > 1.

1 Preliminaries

In this section, we introduce the necessary background and establish some notations.
Throughout the whole article, the letter X will always stand for a complex Banach space. The
set of all positive integers will be denoted by IN, whereas the set N U {0} will be denoted by
Np. We denote by Q* the set of all positive rationals. The set of complex numbers will be
denoted by C. We also denote by ﬂp, 1 < p < oo, the complex Banach space consisting of all
sequences of complex numbers x = {x, }_; satisfying the condition };” ; |x,|” < oo with the

1/p
norm ||x|| = (Zle |xn|V) .If p = oo, then /o is defined to be the space of all bounded

sequences of complex numbers endowed with the norm ||x|| = sup|xy|.
nelN

Definition 1. For eachn € IN a mapping P : X — C is said to be an n-homogeneous polyno-

mial if there exists some n-linear form Ap : X" — C such that

P(x) = Ap(x,...,x)

for every x € X.

Let P"(X) be the vector space of all n-homogeneous polynomials from X to C and P%(X)
be the vector space of all constant mappings from X to C. For each P € P"(X) we set

IP|ly = sup {[P(x)| : x € X, [|x]| < 1}.
It is known that a polynomial P € P"(X) is continuous if and only if || P|; < co.

Definition 2. A mapping P : X — C is said to be a polynomial of degree at mostn, n € INy, if
it can be represented as a sum P = Py + P 4 - - - + P, where P; € PIi(X) forj = 0,n.

Definition 3. Polynomials P, P,, ..., P; € P/(X), j € N, are called algebraically independent if
for every n € IN and every polynomial g : C" — C the equality q(P;(x), P2(x),...,Py(x)) =0
for every x € X impliesq = 0.

Definition 4. A polynomial P : X — C is called an algebraic combination of elements of
P = {P,P,,...} if there exist n € N and a polynomial q : C" — C such that P(x) =
q(Pi(x),...,Pu(x)) forevery x € X.
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Let us denote by B(a,r) and B(a,r) an open and a closed balls of a radius r and a center
a € X, respectively.

Definition 5 ([11, p. 33, Definition 5.1]). Let U be the open subset of X. A mapping f : U — C
is said to be holomorphic or analytic on U if for each a € U there exist an open ball B(a;r) C U
and a sequence of continuous polynomials {fo, f1,...}, where fo € Cand f; : X — Cisa
j-homogeneous polynomial for each j € IN, such that

f(x) = i)fn(x —a) uniformly for x € B(a;r).

Note that the power series ) ;- fu(x — a) is called the Taylor series of the function f at the
point a. If U = X, the function f is called an entire function.

Definition 6. The radius of uniform convergence R(f) of the function f(x) = Y, fu(x —a)
is the supremum of all r > 0 such that the series Y ;. fu(x — a) converges uniformly on the
ball B(a,r).

According to [11, p. 27, Theorem 4.3], the radius of convergence of the power series is given
by the Cauchy-Hadamard formula

R(f) = ———.

limsup || f, |

n—oo
Definition 7. Let Y be a Fréchet linear space. A continuous linear operator T : Y — Y is hyper-
cyclic if there is a vector yy € Y for which the orbit under T, Orb(T,vo) = {vo, Tyo, T*vo, - - -},
is dense in Y. Every such vector y is called a hypercyclic vector of T.

I

Let P = {Py,P,,...,P,,...} be a set of algebraically independent continuous n-homoge-
neous polynomials on X, such that ||P,|l; = 1, n € IN. We denote by Pp(X) the minimal
unital algebra containing polynomials IP. Clearly that IP forms an algebraic basis in Pp(X),
that is, every polynomial in Pp(X) can be uniquely represented as an algebraic combination
of elements in Pp(X). It is easy to see that the basis IP is not unique.

Denote by Hy(X) the Fréchet algebra of C-valued entire functions of bounded type on X,
that is, the algebra of all entire mappings from X to C, which are bounded on bounded subsets.
We endow the algebra Hj,(X) with the system of uniform norms

Ifllr =sup {|f(x)| :x € X, ||x|| <r}, where reQt.

Let Hyp(X) be the closure of Pp(X) in Hy(X). Note that Hyp(X) is a subalgebra of Hy(X).
In [8], it is proved that each term of the Taylor series of a function f € Hyp(X) can be uniquely
represented as an algebraic combination of elements of the set IP. Consequently;,

(e 9]

k k
flx) = f(0) + ) ). O o, oy P () Py (x) -+ P (x),
n=1kq+2ky+---+nk,=n

where x € X, ay x, .k, € Cand ky, k..., k, € Np.

Algebras Hyp(X) for various sequences of polynomials were considered in [4,8,9,12,18]. We
denote by Myp = Myp(X) the spectrum (the set of all non-trivial continuous complex-valued
linear multiplicative functionals = non-trivial continuous complex-valued homomorphisms
= continuous characters) of Hyp(X). It is known [8] that the spectrum M;p can be described
as the set of sequences 7(Myp ), where the mapping 7 : Mp(X) — C® is defined by

(¢) = (¢(P1), ¢(P2),...) forevery ¢ e Myp(X). (1)
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2 On the spectrum of the algebra Hy;(4;)

Letl = {Il(p ), Iz(p ), . } be the set of n-homogeneous complex-valued polynomials on the
space £y, 1 < p < +o0, defined as

I (x) = x! )

foralln € IN and x € £,. In this section, we provide some information about the spectrum
of the algebra Hyp(¢1), where I = {I,sl)} . Note that for every x € /; the point-evaluation

functional J, defined by d,(f) = f(x) forne_\}ery f € Hyp(41) belongs to the spectrum Myy(¢1)
of the algebra Hyy(¢1). Itis interesting whether there exist any other characters in the spectrum
Myy (61).

Let us suppose that there exists a non-trivial linear continuous multiplicative functional
¢ : Hp(¢£1) — C, which is not equal to any 6, with x € ¢;. Let us consider the sequence

Xp = (4)(11(1)),\/4)(12(1)),..., \"/4)(1,9),...). Note that x4, ¢ /1. Otherwise, if x4, € /1, the

character ¢ would be equal to the point-evaluation functional dy,. Let f € Hpy(¢1). Then

=Y L e (100) (@)% (1),

n=0 k1+2k2+~-+nk,1:n

where x € {1, ay k, ., € Cand ki, kz ..., k, € No. Note that

i L Loy <11(1)(x¢)>k1 <12(1)(X¢)>k2 a (I;Sl)(ﬂap))k"

n=0ki+2ko+---+nk,=n

“Y T kg (™) (08)) % (08 = ().

n=0ky+2ky+---+nk,=n

Therefore the function f can be naturally extended to the set /1 U{xy}. In general, every
f € Hyy(¢1) can be extended to each point of the set v (7 (M (¢1))), where the mapping ©
is defined by (1) and v : C* — C® is defined by

v((x1, %2, Xn,.0)) = (21,23, ..., x0L,..), (3)

where (x1,x2,...,Xp,...) € C®. Thus, the question of the description of the spectrum of the
algebra Hpy(¢1) is closely related to the question of the extension of elements of this algebra
to the set that is wider than ¢;. In this section we investigate which points do not belong to
the spectrum My (/7). We also construct an example of a function that belongs to the algebra
Hpp(¢1) and is well-defined on the element xo = (1,1/2,...,1/n,...), but cannot be extended
to the analytic function of bounded type on the spaces £, 1 < p < oo.

Proposition 1. The polynomials Il(p ), Iz(p ), ..., defined by the formula (2), are algebraically in-
dependent.

Proof. Letn € IN. Let g : C" — C be a polynomial such that

q (11(”)(x), . .,I,SP)(x)) =0 (4)
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forallx € £,,1 < p < +o00. Since g is the polynomial, then there exist a finite set A C INjj and
complex numbers ay, k = (ky,...,k,) € A, such that g can be represented in the form

ki _k
q(z1,22,...,20) = Z NgZy'Zy zﬁ", z1,...,2y € C. (5)

keA

Taking into account the equalities (4) and (5) we have

q(Il(p)(x),...,I,gp)(x)) =) xR =0 forall x €l 1< p< +oo.
keA

It follows that all the coefficients ay, k € A, are equal to zero. Therefore, g = 0 and the

polynomials Il(p ), Iz(p ), ... are algebraically independent. O
Proposition 2. The polynomials Il(p ), Iép ), ..., defined by the formula (2), are continuous.

Proof. Itis clear that
|17, = sup { |17 ()] : x € £y, 2] <1} = sup {Jxal" 12 € 6, [Ix] 1} =1 < o0

rf)Hl (r) 1(p)

for every n € IN. Since HI,(I < oo for every n € IN, the polynomials I;"’, I,", . .. are contin-
uous. ]

Proposition 3. For the polynomials Il(’7 ), e, I,SV ), ..., which are defined by the formula (2), the
following equality

H(n) LR
n(n+1)

(p) Py —
(R i P
<n(n+1)> 2
2
is true for every b > 0 and n € IN, where H(n) is a hyperfactorial of n, i.e.

H(n) =11223%...n", (6)

and the norm is attained at the point

|2 |4 2
x:(\/n(n+1)b,\/n(n+1>b,..., mb,o,...).

Proof. Let us use the mathematical induction. Note that, according to the Maximum-Modulus
Theorem (see, e.g., [13, Chapter 5]), we have

[P 1P|, = sup [P (x) - 1P ()|

[|x]|<b
= sup }xlx%-..uxﬂ = sup }xlx%-..uxﬂ = sup ‘Il(p)(x)-..ulr(,p)(x) ,
x| <b [l x||=b |l x||=b
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Letn € IN and n > 2. Suppose the statement holds for n — 1, that is,

e H(n—1 n(n-1)
TP = sup gl = | D %
Jxl=b Ca

2

and the norm is attained at the point

— P 2 p 4 p 2(1’1—1)
= (e g (B0,

Let us prove that the statement is true for n. Let a = |x,|. Since ||x|| = b and |x,| < ||x||,
it follows a < b. Thus, a € [0,b]. Since |x,;| = a and for every x = (x1,...,x,,0,...) € £p
we have ||x|| = ¢/[x1]P + ...+ |xu|P = b, then {/|xq|F + ...+ |x,_1|P +aP = b, therefore
|x1|P + ...+ |x,_1|P = bP — aP and, consequently, {/|x1]P + ...+ |x,_1|F = {/bF —aP.

Then, using (7), we have

Hll(p)-...-l,gp)Hb:sup X1 ... x| = a" sup. ) ESRTRE
[|x[|=b (|xl|p+“.+|xn71|l¢) p:(bpfap) :
_ _Hm-1) (b7 — ap)—"(',vf;” ,
p n(n—1)
(n(n—l)) 2
2

Let us consider the function

H(n _ 1) n(n—1)

f(g) fd ai’l —nM (bp — ap) 2p .

\ () T

It can be checked that the function f has its maximum value on the segment [0, b] at the

point apay = n—ilb. Then

n n(n—1)
. P _ (2 w | _H0=1) [, 2 )\
Hll e I Hb—f(ﬂmux)— (Tl—i—l) b p (n(nl))n(ﬂzl) b n—i—lb ’
2

After simplifying the latter expression we obtain the desired result

H n n(n+1)
HI:EP)I’SP)Hb: » %b 2.
n(n+1)> 2
2
This completes the proof. O
Corollary 1. For the polynomials Il(l), een, 1,21), ..., defined by the formula (2), the following is
true H( )
1 1 n
Hll()""'lfg)le (i+1) *
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Corollary 2. For the polynomials Il(p ), ees, Ir(f7 ), ..., defined by the formula (2), the following is

true

PP = H(n)

n Hl p n(n+1) °
<n(n+1)) 2
2

Proposition 4. The sequence (c,c, ...) withc > 1 does not belong to the set v='(t(My(¢1))),
where the mapping T is defined by the formula (1) and the mapping v is defined by the for-
mula (3).

Proof. Let us consider the function
oo m m
f) =Y (5) M) 1), xed.

m=1

Note that the nth term of a Taylor series of the function f is defined by the formula

fn(x)z{ (5)" 1)) - 1), i on= " forsome m e N,
0, otherwise.

It is known [7] that the asymptotic growth rate of H(m) is

6m2+6m+1 —m?

H(m)~Am 12 ¢4, (8)

where A = 1.2824... is the Glaisher-Kinkelin constant. Taking this into account, it can be
checked that

2

lim U@Hﬁ = lim <<%>m Hll(l)lél)'~~~'I£11)H1>m<mﬂ)
2

m—o0 m—00
m(m+1)
. mym H(m
= lim | () o
m(m+1)
2
m(m+1)
6m2+6m+1 ;mz
) m\™m Am 12 e 4
= lim <_) m(m+1) = 0.

U ()

Therefore, the radius of uniform convergence of f is equal to infinity. And so, f € Hyy(¢1).

Next let us prove that the given function f is not defined on the sequence (c,c,...), with
m m(m+1

. . ) 5. .
¢ € [1,400), that is the series Y5>, (%) ¢ z  diverges. Itis easy to see that

. m] (N m(m+1) . m m+1
lim — ] ¢z = 1lim —c 2 = oo.
m—o0

. m(m+1) | .
Therefore, by the Cauchy root test, the series ) >, (%)mc 2 is not convergent. This com-

pletes the proof. O
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Proposition 5. Let {11(1)’ ., I,S}), ...} be the set of polynomials defined by the formula (2).
Then every function f of the form f(x) = Z;j:la(m)ll(l)(x) S I,(nl)(x), where a(m) is
some coefficient depending on m, such that f € Hp({1), is well-defined on the element
xo=(1,1/2,...,1/n,...).

Proof. Let the function f(x) = Y 4 oc(m)ll(l) (x)-...- Ir(nl)(x), where a(m) is some coefficient
depending on m, belongs to the algebra Hyy(¢1). Note that the nth term of the Taylor series of
the function f is defined by the formula

Fulx) = { a(m)ll(l)(x) oI (), i n= m("éﬂ) for some m € N, ©)

0, otherwise.

Since the given function f belongs to the algebra Hy(¢1), the radius of uniform convergence of

f is equal to infinity. Then lim supl|| |H/ " = 0 and, consequently, nlgrolo | fn |H/ " = 0. Therefore,

n—oo
taking into account (9), we have that

2 2
Tim (| fure || =0, ie Tim [la(mr 07T <o
2 m—00 1
m(m+1)
Let us make the substitution a(m) = }(“}(51))71(1)} Then we obtain
1 Teee” m 1

= lim |e(m)| = 0.

T TR
lim [Fa——s }1)
o0 (;11“) Sl

Therefore lign e(m) = 0. The latter equality is a necessary and sufficient condition of belong-
m—o0

ing the given function f to the algebra Hyy (/7).

m(m+1)

Let us prove that the function f(x) = Y Wiﬂu“lfl)(@ Ceae Ir(nl)(x), such that
m=1 ||I; " Im )

f € Hpp(41), is well-defined on the element xo = (1,1/2,...,1/n,...) Note that, taking into

account the Corollary 1, we have

m(m+1)

- (e(m)) 1 1
flxo) = R
m; o), 2 m
m(m+1) m(m+1)
i (e(m))m(H;rl) 1 i (S(n/l))T+ <m(*rr£+1) 2
BRI = H2(m)

So, we need to show that the series

(e(m)) ™ (mlprn)
E2(m)

>

m=1

(10)
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converges. Since f € Hyy(f1), it follows that lim e(m) = 0 and so |e(m)| < 3, when m is large.
m—00

Taking into account this fact and (8), let us use the Cauchy root test. Then we obtain

m(m+1)

(m+1)
" ‘S(m)‘m"; <m(rg+1)> i \s(m)\mTH(m2+m)mTHe%
r&l_l;rgo HZ(m) - ,&E}t}o 2 m+l  12m2412m+2
An2 2 m 12m
+1 m
' (m? +m) R
< lim 2 r2itomi2 0.
m—o0 Aﬁ2m+1mT
On the other hand,
m(mt1) m(m+1)
= D\ 2z
i m ‘g(m)‘ 2 <m(n; )) -
e H2(m) =

Then, according to the squeeze theorem,

m(m m(m+1)
m ‘g(m) ‘ ( 2+1> <m(”;+1)> 2
A, H2(m) =0

Thus, according to the Cauchy root test, the series (10) is convergent.
m(m+1)

Finally, let us replace (em) * with a(m). Then we obtain the desired. This completes
[

the proof. O

1——1
Example 1. The function f(x) = Y~ <H(m)) tosllogm) Ifl)(x)lél)(x)...lr(nl)(x) € Hyp(4),

where the polynomials Il(l), 12(1), ... are defined by (2) and H(m) is a hyperfactorial of m € N,

defined by (6), cannot be extended to the analytic function of bounded type to the space {,
1 < p < 0. But f is well-defined on the element xo = (1,1/2,...,1/n,...).

Proof. Firstly, let us show that f € Hyy(¢;). To do this, we need to prove that the radius of
uniform convergence of f is equal to infinity. Note that the n-th term of the Taylor series of the
function f is defined by the formula

1——1
Fulx) = (H(m)) togllog ) Il(l)(x) o Ir(nl)(x), if n= m(”éﬂ) for some m € N, (1)
L(x) =
0, otherwise.

Taking into account (11) and the Corollary 1, we have

fm(m+1)

2

WO _ | (1)) meeem 10D
1 1

2
= ((0my s 1] )

> _2
m(m+1) m(m
— ((ra) e ) (HGm)) "o

m(m+1)
2

(F (m)) (2 ostigan ) s

m(m+1)
2
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Taking into account (8), it can be checked that

2 (Z—W)W
y ’ WO _ (H(m))\" toslis
ml—I}go fm 1 T om0 m(m+1)
2 1
D) <A 6n124{gm+1 Z@) m(m-+1) (2 log(logm)>
m e
= lim =0.
m—roo m(m + 1)

Therefore R(f) = oo and f € Hyy(41).
Next let us prove that f ¢ Hyy(¢,), where p > 1, that is, R(f) # oo. Using the Corollary 2,
we have

m(m+1)
i 1 2 (1 sy )
) R H(m) 27 (H(m))m D\ oslogm) 7
’fm(nHl) 1 = (H(m)) log{log m) p m(m+1) - 1 '
m(m+1) (m(m+1)> S (m(m+1))?
2

Then it can be checked that

T 2 (H(m)) 1) (1_10g(11>gm> +%)
—oo ‘ el m—00 1
B (m(m+1))7
2 1 1
2% <Am 6n12+1§m+1eziz> m(m+1) (1710g(logm)+f>
= lim - — oo,

Therefore R(f) = 0and f ¢ Hyy(¢,), where p > 1.
Besides, according to the Proposition 5, the given function f is well-defined on the element
xo=(1,1/2,...,1/n,...). O

3 Operations on the set (M)

Let P = {P,}5_; be the set of continuous complex-valued n-homogeneous algebraically
independent polynomials on X, such that ||P,||; = 1 for every n € IN. Since every function
f € Hpp(X) can be uniquely represented in the form

o0

k k
f(x) =ag+ ) ). k.., Py () P2 (%) - - P (x),
n=1ki+2ko+...+nk,=n

where ay, r, € C and ki, ky, ..., k, € NU{0}, then every character ¢ € Mp is uniquely
determined by its values on the polynomials { P, }}°_;. Therefore it is interesting to consider the
image T(Myp) of the spectrum M;p of the algebra Hyp(X), where the mapping 7 is defined by

the formula (1). It is also interesting to consider the subset T (M;()gj)) of the set T (Mpp) , where

MY = {5, : x e X}. (12)
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In this section, we show that T(Még,)) has a structure of the linear space in the case
X =4y, 1< p < oo, and {Py}5, = {1,5”)}:’:1, where the polynomials Il(p),lép),... are
defined by (2).

LetI = {I,};> ;. As it was mentioned above, every element f € Hy(¢p), 1 < p < 400, has
the following representation:

- k k K
fO =m0+, ¥ e 0(@) G @) - (1 @)
n=1ki+2ky+...4+nk,=n
where ay, , € Cand ky, ky, ..., ky € N U{0}.
Let us define the functions ], (f) : £, = C and J,.(f) : {, — Cby

MA@ =0+ ¥ s (@) (@)

n=1ki+2ky+...+nk,=n

and

L@ =aw+Y ¥t (@ +a) (0@ 1a)”

n=1ky+2ky+...+nk,=n

o
n=1

forallA € Cand c = {¢,}°, = {q)(l,gp))} € C®, where ¢ = 4, € M;()g)(ép) andz € {yisa

fixed element.

Theorem 1. The functions J,(f) and J+.(f), defined by (13) and (14), are entire functions of
bounded type on ¢, for every f € Hy(fy), 1 < p < +oo. The mappings |, : f — JA(f) and
Jic: f = Jic(f) are the homomorphisms from the algebra Hyy(¢) to itself.

Proof. Let f € Hyy(¢p), 1 < p < +-oc0. Firstly, let us show that for every A € C the mapping

Ja is well defined. Let us prove that forall A € C and x = (x,x2,...,Xp,...) € ¢y there

exists y, € £, such that the equality I,Sp ) (yx) = M,(lp ) (x) holds. It is sufficient to consider the

sequence yy = (Axq, VAxy, ., Axy,. ).
Let us show that y, € /. In the case 1 < p < 400 we have

lyxlIP =Y 1/ AP = Y- | V/AIP [P < (max {[A], 1})7 Y [a]? = (max {A], 1})"[|x[|P < 40,
n=1 n=1 n=1

since x € {,. Consequently, yx € {,. Besides, ||yx| < max {|A[, 1}]x]|.
In the case p = oo, we have

lyx|| = sup (| VA|[xn]) < sup (max {|A|,1}|xx|) = max {|A[, 1}[|x] < oo,
nelN nelN

since x € lo, Consequently, yx € lo and ||yx|| < max{|A[,1}|/x||. The fulfillment of the

equality I,Sp ) (yx) = M,(lp ) (x) is obvious in both cases. Thus, the given element y, € ¢,, where

1 < p < +o0, is desired. Then, taking into account that the function f € Hb]l(ﬂp) is well
defined, we can write the following;:

MO =a0+Y T s (AP @)" - (AP )"

n=1k;+2ky+...4nk,=n

= oo + i Z Xky.. ke (pr)(yx))kl T (Iigp)(yx>>kn

n=1kq+2ky+...4+nk,=n
= f(yx) < .
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Therefore the function J, (f) is well defined.

Next let us show that Jy(f) € Hpp(€p), 1 < p < +oo. According to [11, Section 8, Propo-
sition 8.6 and Theorem 8.7] and taking into account that every function of bounded type is
locally bounded, it is sufficient to show that J,(f) is a G-holomorphic function of bounded
type.

Firstly, we show that the function J,(f) is G-holomorphic. According to the definition
of a G-holomorphic function (see [11, Section 8, Definition 8.1]) we need to prove that foralla =
{an}? 1, b= {bu} 4 € £y and p € C the function /1 : C — C defined as h(u) = JA(f)(a + ub),
is entire on C. Let h,,11(¢) be the (m + 1)-st partial sum of the series corresponding to the
function h. It is obvious that 1,41 € H(C). According to the above mentioned the following
equalities are true:

ky

) k
YL s (AP @) (AL a4 b))
n=0ky+2ko+...+nk,=n

i k

Z Z Xy .. ky, <I1(p)(]/a+yb)> 1 T (Izgp) (yaﬂtb))
n=0ki+2ky+...+nk,=n

= (%Hyb)

h(p)

ky

and

kq kyn
Ok, ko <Ml(p) (a+ Hb)) e <M;gp) (a+ Vb)>
k1 +2ky+...4+nk,=n

ky
Z k.. ky (pr)(ya-i-yb)) <115p) (]/aﬂtb))
n=0ky+2ko+...+nk,=n
= fmt1 (]/aerb)-

Let us show that the sequence of the partial sums {/,,11}5_, of the series corresponding to
the function  uniformly converges to the function i Let | € IN. Since f € Hy(¢p), we have

hm+1 (“I/l) =

ky

M= IPs

7= o ll; = sup [A(p) = 1 ()] < sup fY) = fura(y)| =0
M {yetyilly| <max{|A[1} (llall+1(]1) }

as m — oo. Therefore, since the space H(C) is complete and /.1 € H(C), then h € H(C).
And so the function ], (f) is G-holomorphic.

Next, let us show that ], (f) is the function of bounded type. Let S be an arbitrary bounded
set in /,, that is, there exists a ball B(a,r), where a € £,,r > 0 such that S C B(a,r). Let us
prove that the function ], (f) isbounded on S, that s, forall s € S the estimate | J,(f)(s)| < o0
holds. Let s be an arbitrary element from the set S. Then ||s|| < r. Since f € Hyy(¢;), then the
following is true

WA =fs)l < sup [f(2)]
{zetplzl<llvsl }
< sup ‘f(Z)‘ = Hf”rmax{\)t\,l} < oo

{zeﬂp:Hzﬂgrmax { \)\\,1} }

Thus, Ji(f) € Hpi(€p). It is easy to check that the given mapping ) preserves the operations
of the algebra Hyy(¢p).
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Prove the second part of the theorem. Analogically, let f € Hy(fp), 1 < p < +oo.
Let us fix z € £, and denote by ¢ = {c,};; the sequence of complex numbers such that

{ea}ee, = {q)(lr(,p)) }:):1' where ¢ = 6, € Myy(4p).
Firstly, let us show that for every x € £,, 1 < p < +oo, and the given sequence
= {cn};2, € C* there exists yy € ¢, such that the equality

Ir(,p) (yx) = Ir(,p)(x) +cu

holds. Consider the sequence

Yy = <x1+c1,\/x%+cz,...,\”/xﬁ—i—cn,...).

It is obvious that for the given sequence y, the condition I,Sp ) (yx) = I,Sp ) (x) + ¢, holds. Let us
show that y, € £y, 1 < p < +o0. Firstly, let us consider the case 1 < p < +oc0. It is easy to see

that
» p p p
Vxgteon = (\n/ ]xﬁ+cn\> < (\”/ x| + ‘Cno = (\”/ x| + ‘Zn’">
< ( (|| + |zal) ) = ’xn""’zn‘ (‘an'\/ ’Cn>

< 2P <max{|xn|, ;1/|cn|}) < 2P <|xn|ﬁ+ ; |cn|?7>.

Then

(o) o0 p (o) o0 o0

Yo lyal? =Y |V xEFen| <2°) <]xn]”+\"/\cn\P> :2P<Z\xn\p+2 \”/]cnli’> < o0
n=1 n=1 n=1 n=1 n=1

since x,z € {p. Therefore y, € £,,1 < p < +o0. Besides,

Iyl <211+ (12 \/W))

1
Let us denote L = <ZZ°:1 Y/ |cn|P> ’ . Then

[l < 2(f1x]l + L)

Next, consider the case p = o0. Since x, z € /«, the following is true

lyx|| = sup VX +cn| =sup \n/ |xt +cu| < sup \n/ |xn |" + |cn| = sup \n/ x| + |zu|"
nelN nelN nelN nelN
< sup (|xn| + |Zn|)n = sup <|xn| + |Zn|)
nelN nelN
< sup x| +Sup |zn| < [|x]| + [|z]] < oo
nelN

Therefore yy € leo. Let M = sup,, . 21| = sup,cy V/ |cn|- Then

[yl < ]l + M.
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It is easy to see that for the given sequence ¢ the mapping /. is well defined. Indeed, taking
into account the above mentioned and that the function f € Hyy(¢,), 1 < p < +oo, is well
defined, we have the desired:

L@ =at), Lt (@ +a) - (100 +e)

n=1ki+2ky+...+nk,=n

. i 3 Bk, (Il(p)(yx))kl . <Lgp)(yx))kn

n=1ky+2ky+...+nk,=n

ky

= f(yx) < oo.

Now let us prove that [, .(f) € Hp(¢p), 1 < p < +00. Analogically, we need to show
that the mapping J1.(f) is G-holomorphic and bounded on bounded sets. We need to show
that for all a = {a,} ,b = {bu}iy, € ¢y and p € C the function h : C — C defined as
h(u) = J+c(f)(a + ub), is entire on C, that is, h € H(C). Let hy,11(u) be the (m + 1)-st partial
sum of the series corresponding to the function . It is obvious that /1,11 € H(C). According

to the above mentioned the following equalities are true:

00 k kn
Z Z Xy ke <Il(p)(a + ub) + c1> . <I,5p)(a + ub) + cn)
n=0ky+2ko+...+nk,=n

0 k

Z Z Xy .. ky, <11(p) (%zﬂtb)) 1 T <Izgp) (]/a—i—yb))
n=0ki+2ko+...+nk,=n

= (ya+yb)

h(p)

k n

and

m k kn
) =Y, L g (BP@rp) +a) - (B a4 ) + e
n=0ki+2ky+...+nk,=n

m k

Z Z Ky .. ky, <11(p) (yu+yb)) 1 e <Izgp) (]/a+yb))
n=0ki+2ky+...4+nk,=n

ferl(ya-i-yb)'

ky

Let us show that the sequence of the partial sums {/,,1}5_, of the series corresponding to
the function & uniformly converges to h.
Let! € IN. Since f € Hpy(¢p), then in the case 1 < p < 400, we have

[ =l lls = sup [h(p) — Byia ()] < sup 1f(W) = fnr1(v)|
K<l {vetyillyl<a(lal+1]p]+L) }

= f = Soeallagopapopery 20 a5 oo

And in the case p = oo, since f € Hy({s), we have

Ih = Ry ll = sup [A(p) = hysa ()| < sup 1f(Y) = fiun1(y)]
Iul<! {veta:lyli<lal +1]p]+M}

= Hf _fm+1H‘|uH+leH+M —0 as m — oo,

Therefore, since the space H(C) is complete and 4,1 € H(C), then h € H(C) in all these
cases. And so, the function ] ;.(f) is G-holomorphic for every f € Hyy(¢p), 1 < p < +c0.
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Next, let us show that J;.(f) is the function of bounded type. Let S be an arbitrary bounded
setin £, 1 < p < 400, that is, there exists a ball B(a,r), where a € £, and r > 0, such that
S C B(a,r). Let us prove that the function J;.(f) is bounded on S, that is, for all s € S the
estimate |J;c(f)(s)| < 4o holds. Let s be an arbitrary element from the set S. Then ||s| < r.

Since f € Hyy(¢}), then in the case 1 < p < oo, the following is true

J+e(F) ()] = [flys)] < sup  [f(z)] < sup [f@)] = fll2r+r) < +oo.

{zetplzl<llysl } {zety|zl<2(r+L)}

And in the case p = oo, since f € Hyj(/ ), the following is true

J+e(A)] = [fys)] < sup f(z)] < sup [f@)] = lIfllr+n < +oo.

{zetailzll<llys ] } {zetuilz| <r+M}

Thus J+c(f) € Hy(£,),1< p < oo.
It is also easy to check that the given mapping .. preserves the operations of the algebra
Hyp(£p), 1 < p < o0 O

Theorem 1 implies the following corollary.

Corollary 3. Forevery ¢ € Myi(£p), 1 < p < oo, the following equalities hold:

(0o (@) 9o n(”)...) = A o), o(15"),..), (15)

(q;o]+C(Il(p)),(po]+c(12(p)),...) = <(p(ll(p)) +cl,q)(12(p)) +cz,...). (16)

Since the equalities (15) and (16) hold, then it is clear that we can perform the operations
of scalar multiplication and addition (note that the second addend must be an image of the
point-evaluation functional at points of £,) on the set T(M1(¢,)), where the mapping 7 is
defined by (1).

Corollary 4. The set T(Még)), where Még) is defined by (12), has a structure of the linear space
incase X = {p,1 < p < +oo0.

Taking into account the continuity of the operator ] . and [4], we have the following asser-
tion.

Corollary 5. The operator ] is hypercyclic.
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Mu posrasiaaemo miaaarebpy asrebpu @pettre miAnx PYHKII 06MeXEHOr0 THUITY, TOPOAXKEHY
3AiUEHHOI0 MHOXXIHOIO aArebpaiuHo He3aAeXXHMX OAHOPIAHMX ITOAIHOMIB Ha KOMIIAEKCHOMY OaHa-
xoBoMy mpocTopi X. Mu aocaiaXyemo criekTp wiei miaarreb6pn y Bumaaky X = ¢1. Mu Takox pos-
TASIAQEMO AesIKi omeparlii 3cyBy, sIKi 3AIICHIOIOTBCS Ha CrIeKTpi wiei miaaarebpu y Bumaaky X = £
Aap > 1.

Kntouosi cnosa i ppasu: n-oAHOPiAHWMIT MOAIHOM, aHaAITMYHA PYHKIIIS, CIEKTp aATebpu.



