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Spectra of algebras of analytic functions, generated by
sequences of polynomials on Banach spaces,

and operations on spectra

Vasylyshyn S.I.

We consider the subalgebra of the Fréchet algebra of entire functions of bounded type, generated

by a countable set of algebraically independent homogeneous polynomials on the complex Banach

space X. We investigate the spectrum of this subalgebra in the case X = ℓ1. We also consider some

shift type operations that can be performed on the spectrum of this subalgebra in the case X = ℓp

with p ≥ 1.
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Introduction

Algebras of analytic functions on a Banach space generated by a countable number of

polynomials naturally appear as algebras of invariants with respect to actions of groups of

symmetry on the Banach space. Typical examples of such algebras are algebras of symmet-

ric analytic functions on ℓp, 1 ≤ p < ∞, with respect to the group of permutations of the

basis vectors [1–3, 10] or algebras of symmetric analytic functions of bounded type on Lp(Ω),

1 ≤ p ≤ ∞, with respect to the group of automorphisms of a measurе space Ω [5,6,14–17]. The

problem of the description of spectra of such kind of algebras is non-trivial ever in the finite

dimensional case. For example, the famous Hilbert’s fourteenth problem on invariant theory

has a negative solution due to the counterexample of Nagata.

Let X be a complex Banach space. Let us consider the sequence {Pn}∞
n=1 of n-homogeneous

(see the definition below) continuous complex-valued polynomials on X, n ∈ N. Let us define

the multi-valued mapping β : X → C∞ by the formula

β(x) =
{

P
1
n

n (x)
}∞

n=1
for every x ∈ X.

Note that
{

P
1
n

n (x)
}∞

n=1
⊂ ℓ∞ for every x ∈ X. For every x ∈ ℓ∞ and n ∈ N let us define the

polynomials
{

I
(∞)
n

}∞

n=1
by the formula I

(∞)
n (x) = xn

n.

It is easy to see that Pn(x) = I
(∞)
n

(
β(x)

)
for every x ∈ X. Taking into account such the

representation of the polynomials {Pn}∞
n=1, it was interesting to investigate (see [18, 19]) the
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existence of analytic functions of unbounded type, generated by the polynomials {Pn}∞
n=1,

dependently on the image of the mapping β.

In this paper, we consider the particular case of countable generated algebras, namely the

algebras generated by the polynomials
{

I
(p)
n

}∞

n=1
on the spaces ℓp, 1 ≤ p < ∞.

In Section 1, we recall some basic notions on the theory of analytic functions on a Banach

space which are necessary for a full comprehension of the paper. In Section 2, we investigate

the spectrum of the Fréchet algebra of entire functions of bounded type, generated by the se-

quence of polynomials on a complex Banach space ℓ1. Spectra of algebras of analytic functions

of bounded type were studied in [8,9]. In Section 3, we consider some shift type operations that

can be performed on the spectra of the algebras of entire functions of bounded type, generated

by the sequences of polynomials on complex Banach spaces ℓp, p ≥ 1.

1 Preliminaries

In this section, we introduce the necessary background and establish some notations.

Throughout the whole article, the letter X will always stand for a complex Banach space. The

set of all positive integers will be denoted by N, whereas the set N ∪ {0} will be denoted by

N0. We denote by Q+ the set of all positive rationals. The set of complex numbers will be

denoted by C. We also denote by ℓp, 1 ≤ p < ∞, the complex Banach space consisting of all

sequences of complex numbers x = {xn}∞
n=1 satisfying the condition ∑

∞
n=1 |xn|p < ∞ with the

norm ‖x‖ =
(

∑
∞
n=1 |xn|p

)1/p
. If p = ∞, then ℓ∞ is defined to be the space of all bounded

sequences of complex numbers endowed with the norm ‖x‖ = sup
n∈N

|xn|.

Definition 1. For each n ∈ N a mapping P : X → C is said to be an n-homogeneous polyno-

mial if there exists some n-linear form AP : Xn → C such that

P(x) = AP(x, . . . , x
︸ ︷︷ ︸

n

)

for every x ∈ X.

Let Pn(X) be the vector space of all n-homogeneous polynomials from X to C and P0(X)

be the vector space of all constant mappings from X to C. For each P ∈ Pn(X) we set

‖P‖1 = sup
{
|P(x)| : x ∈ X, ‖x‖ ≤ 1

}
.

It is known that a polynomial P ∈ Pn(X) is continuous if and only if ‖P‖1 < ∞.

Definition 2. A mapping P : X → C is said to be a polynomial of degree at most n, n ∈ N0, if

it can be represented as a sum P = P0 + P1 + · · ·+ Pn, where Pj ∈ P j(X) for j = 0, n.

Definition 3. Polynomials P1, P2, . . ., Pj ∈ P j(X), j ∈ N, are called algebraically independent if

for every n ∈ N and every polynomial q : Cn → C the equality q(P1(x), P2(x), . . . , Pn(x)) = 0

for every x ∈ X implies q ≡ 0.

Definition 4. A polynomial P : X → C is called an algebraic combination of elements of

P = {P1, P2, . . .} if there exist n ∈ N and a polynomial q : Cn → C such that P(x) =

q
(

P1(x), . . . , Pn(x)
)

for every x ∈ X.
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Let us denote by B(a, r) and B̄(a, r) an open and a closed balls of a radius r and a center

a ∈ X, respectively.

Definition 5 ([11, p. 33, Definition 5.1]). Let U be the open subset of X. A mapping f : U → C

is said to be holomorphic or analytic on U if for each a ∈ U there exist an open ball B(a; r) ⊂ U

and a sequence of continuous polynomials { f0, f1, . . . }, where f0 ∈ C and fj : X → C is a

j-homogeneous polynomial for each j ∈ N, such that

f (x) =
∞

∑
n=0

fn(x − a) uniformly for x ∈ B(a; r).

Note that the power series ∑
∞
n=0 fn(x − a) is called the Taylor series of the function f at the

point a. If U = X, the function f is called an entire function.

Definition 6. The radius of uniform convergence R( f ) of the function f (x) = ∑
∞
n=0 fn(x − a)

is the supremum of all r ≥ 0 such that the series ∑
∞
n=0 fn(x − a) converges uniformly on the

ball B(a, r).

According to [11, p. 27, Theorem 4.3], the radius of convergence of the power series is given

by the Cauchy-Hadamard formula

R( f ) =
1

lim sup
n→∞

‖ fn‖
1
n
1

.

Definition 7. Let Y be a Fréchet linear space. A continuous linear operator T : Y → Y is hyper-

cyclic if there is a vector y0 ∈ Y for which the orbit under T, Orb(T, y0) = {y0, Ty0, T2y0, . . .},

is dense in Y. Every such vector y0 is called a hypercyclic vector of T.

Let P = {P1, P2, . . . , Pn, . . .} be a set of algebraically independent continuous n-homoge-

neous polynomials on X, such that ‖Pn‖1 = 1, n ∈ N. We denote by PP(X) the minimal

unital algebra containing polynomials P. Clearly that P forms an algebraic basis in PP(X),

that is, every polynomial in PP(X) can be uniquely represented as an algebraic combination

of elements in PP(X). It is easy to see that the basis P is not unique.

Denote by Hb(X) the Fréchet algebra of C-valued entire functions of bounded type on X,

that is, the algebra of all entire mappings from X to C, which are bounded on bounded subsets.

We endow the algebra Hb(X) with the system of uniform norms

‖ f‖r = sup
{
| f (x)| : x ∈ X, ‖x‖ ≤ r

}
, where r ∈ Q+.

Let HbP(X) be the closure of PP(X) in Hb(X). Note that HbP(X) is a subalgebra of Hb(X).

In [8], it is proved that each term of the Taylor series of a function f ∈ HbP(X) can be uniquely

represented as an algebraic combination of elements of the set P. Consequently,

f (x) = f (0) +
∞

∑
n=1

∑
k1+2k2+···+nkn=n

ak1,k2,...,kn
Pk1

1 (x)Pk2
2 (x) · · · Pkn

n (x),

where x ∈ X, ak1,k2,...,kn
∈ C and k1, k2 . . . , kn ∈ N0.

Algebras HbP(X) for various sequences of polynomials were considered in [4,8,9,12,18]. We

denote by MbP = MbP(X) the spectrum (the set of all non-trivial continuous complex-valued

linear multiplicative functionals = non-trivial continuous complex-valued homomorphisms

= continuous characters) of HbP(X). It is known [8] that the spectrum MbP can be described

as the set of sequences τ(MbP), where the mapping τ : MbP(X) 7→ C∞ is defined by

τ(ϕ) =
(

ϕ(P1), ϕ(P2), . . .
)

for every ϕ ∈ MbP(X). (1)
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2 On the spectrum of the algebra HbI(ℓ1)

Let I =
{

I
(p)
1 , I

(p)
2 , . . .

}

be the set of n-homogeneous complex-valued polynomials on the

space ℓp, 1 ≤ p ≤ +∞, defined as

I
(p)
n (x) = xn

n (2)

for all n ∈ N and x ∈ ℓp. In this section, we provide some information about the spectrum

of the algebra HbI(ℓ1), where I =
{

I
(1)
n

}∞

n=1
. Note that for every x ∈ ℓ1 the point-evaluation

functional δx defined by δx( f ) = f (x) for every f ∈ HbI(ℓ1) belongs to the spectrum MbI(ℓ1)

of the algebra HbI(ℓ1). It is interesting whether there exist any other characters in the spectrum

MbI(ℓ1).

Let us suppose that there exists a non-trivial linear continuous multiplicative functional

φ : HbI(ℓ1) → C, which is not equal to any δx with x ∈ ℓ1. Let us consider the sequence

xφ =
(

φ
(

I
(1)
1

)
,

√

φ
(

I
(1)
2

)
, . . . ,

n

√

φ
(

I
(1)
n

)
, . . .

)

. Note that xφ /∈ ℓ1. Otherwise, if xφ ∈ ℓ1, the

character φ would be equal to the point-evaluation functional δxφ . Let f ∈ HbI(ℓ1). Then

f (x) =
∞

∑
n=0

∑
k1+2k2+···+nkn=n

ak1,k2,...,kn

(

I
(1)
1 (x)

)k1
(

I
(1)
2 (x)

)k2 · · ·
(

I
(1)
n (x)

)kn
,

where x ∈ ℓ1, ak1,k2,...,kn
∈ C and k1, k2 . . . , kn ∈ N0. Note that

∞

∑
n=0

∑
k1+2k2+···+nkn=n

ak1,k2,...,kn

(

I
(1)
1 (xφ)

)k1
(

I
(1)
2 (xφ)

)k2 · · ·
(

I
(1)
n (xφ)

)kn

=
∞

∑
n=0

∑
k1+2k2+···+nkn=n

ak1,k2,...,kn

(

φ(I
(1)
1 )
)k1
(

φ(I
(1)
2 )
)k2 · · ·

(

φ(I
(1)
n )
)kn

= φ( f ).

Therefore the function f can be naturally extended to the set ℓ1
⋃{xφ}. In general, every

f ∈ HbI(ℓ1) can be extended to each point of the set ν−1
(
τ
(

MbI(ℓ1)
))

, where the mapping τ

is defined by (1) and ν : C∞ → C∞ is defined by

ν
(
(x1, x2, . . . , xn, . . .)

)
= (x1, x2

2, . . . , xn
n, . . .), (3)

where (x1, x2, . . . , xn, . . .) ∈ C∞. Thus, the question of the description of the spectrum of the

algebra HbI(ℓ1) is closely related to the question of the extension of elements of this algebra

to the set that is wider than ℓ1. In this section we investigate which points do not belong to

the spectrum MbI(ℓ1). We also construct an example of a function that belongs to the algebra

HbI(ℓ1) and is well-defined on the element x0 = (1, 1/2, . . . , 1/n, . . .), but cannot be extended

to the analytic function of bounded type on the spaces ℓp, 1 < p < ∞.

Proposition 1. The polynomials I
(p)
1 , I

(p)
2 , . . . , defined by the formula (2), are algebraically in-

dependent.

Proof. Let n ∈ N. Let q : Cn → C be a polynomial such that

q
(

I
(p)
1 (x), . . . , I

(p)
n (x)

)

= 0 (4)
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for all x ∈ ℓp, 1 ≤ p ≤ +∞. Since q is the polynomial, then there exist a finite set A ⊂ Nn
0 and

complex numbers αk, k = (k1, . . . , kn) ∈ A, such that q can be represented in the form

q(z1, z2, . . . , zn) = ∑
k∈A

αkzk1
1 zk2

2 · . . . · zkn
n , z1, . . . , zn ∈ C. (5)

Taking into account the equalities (4) and (5) we have

q
(

I
(p)
1 (x), . . . , I

(p)
n (x)

)
= ∑

k∈A

αkxk1
1 · . . . · xnkn

n = 0 for all x ∈ ℓp, 1 ≤ p ≤ +∞.

It follows that all the coefficients αk, k ∈ A, are equal to zero. Therefore, q ≡ 0 and the

polynomials I
(p)
1 , I

(p)
2 , . . . are algebraically independent.

Proposition 2. The polynomials I
(p)
1 , I

(p)
2 , . . . , defined by the formula (2), are continuous.

Proof. It is clear that

∥
∥I

(p)
n

∥
∥

1
= sup

{∣
∣I

(p)
n (x)

∣
∣ : x ∈ ℓp, ‖x‖ ≤ 1

}

= sup
{
|xn|n : x ∈ ℓp, ‖x‖ ≤ 1

}
= 1 < ∞

for every n ∈ N. Since
∥
∥I

(p)
n

∥
∥

1
< ∞ for every n ∈ N, the polynomials I

(p)
1 , I

(p)
2 , . . . are contin-

uous.

Proposition 3. For the polynomials I
(p)
1 , . . . , I

(p)
n , . . . , which are defined by the formula (2), the

following equality

∥
∥I

(p)
1 · . . . · I

(p)
n

∥
∥

b
=

p

√
√
√
√
√

H(n)
(

n(n+1)
2

) n(n+1)
2

b
n(n+1)

2

is true for every b > 0 and n ∈ N, where H(n) is a hyperfactorial of n, i.e.

H(n) = 112233 . . . nn, (6)

and the norm is attained at the point

x =

(

p

√

2

n(n + 1)
b, p

√

4

n(n + 1)
b, . . . , p

√

2n

n(n + 1)
b, 0, . . .

)

.

Proof. Let us use the mathematical induction. Note that, according to the Maximum-Modulus

Theorem
(
see, e.g., [13, Chapter 5]

)
, we have

∥
∥I

(p)
1 · . . . · I

(p)
n

∥
∥

b
= sup

‖x‖≤b

∣
∣I

(p)
1 (x) · . . . · I

(p)
n (x)

∣
∣

= sup
‖x‖≤b

∣
∣x1x2

2 · . . . · xn
n

∣
∣ = sup

‖x‖=b

∣
∣x1x2

2 · . . . · xn
n

∣
∣ = sup

‖x‖=b

∣
∣I

(p)
1 (x) · . . . · I

(p)
n (x)

∣
∣,

where x ∈ ℓp, 1 ≤ p < ∞. It is easy to see that the statement is true for n = 1. Indeed,

∥
∥I

(p)
1

∥
∥

b
= sup

‖x‖=b

|x1| = b for x = (b, 0, . . .).
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Let n ∈ N and n ≥ 2. Suppose the statement holds for n − 1, that is,

∥
∥I

(p)
1 · . . . · I

(p)
n−1

∥
∥

b
= sup

‖x‖=b

∣
∣x1 · . . . · xn−1

n−1

∣
∣ =

p

√
√
√
√
√

H(n − 1)
(

n(n−1)
2

) n(n−1)
2

b
n(n−1)

2 (7)

and the norm is attained at the point

x =

(

p

√

2

n(n − 1)
b, p

√

4

n(n − 1)
b, . . . ,

p

√

2(n − 1)

n(n − 1)
b, 0, . . .

)

.

Let us prove that the statement is true for n. Let a = |xn|. Since ‖x‖ = b and |xn| ≤ ‖x‖,

it follows a ≤ b. Thus, a ∈ [0, b]. Since |xn| = a and for every x = (x1, . . . , xn, 0, . . .) ∈ ℓp

we have ‖x‖ = p
√

|x1|p + . . . + |xn|p = b, then p
√

|x1|p + . . . + |xn−1|p + ap = b, therefore

|x1|p + . . . + |xn−1|p = bp − ap and, consequently, p
√

|x1|p + . . . + |xn−1|p = p
√

bp − ap.

Then, using (7), we have

∥
∥I

(p)
1 · . . . · I

(p)
n

∥
∥

b
= sup

‖x‖=b

|x1 · . . . · xn
n| = an sup

(
|x1|p+...+|xn−1|p

)1/p
=
(

bp−ap
)1/p

∣
∣x1 · . . . · xn−1

n−1

∣
∣

= an
p

√
√
√
√
√

H(n − 1)
(

n(n−1)
2

) n(n−1)
2

(bp − ap)
n(n−1)

2p .

Let us consider the function

f (a) = an
p

√
√
√
√
√

H(n − 1)
(

n(n−1)
2

) n(n−1)
2

(bp − ap)
n(n−1)

2p .

It can be checked that the function f has its maximum value on the segment [0, b] at the

point amax = p

√
2

n+1 b. Then

∥
∥I

(p)
1 · . . . · I

(p)
n

∥
∥

b
= f (amax) =

p

√
√
√
√

(

2

n + 1

)n

bn
p

√
√
√
√
√

H(n − 1)
(

n(n−1)
2

) n(n−1)
2

(

bp − 2

n + 1
bp

) n(n−1)
2p

.

After simplifying the latter expression we obtain the desired result

∥
∥I

(p)
1 · . . . · I

(p)
n

∥
∥

b
=

p

√
√
√
√
√

H(n)
(

n(n+1)
2

) n(n+1)
2

b
n(n+1)

2 .

This completes the proof.

Corollary 1. For the polynomials I
(1)
1 , . . . , I

(1)
n , . . . , defined by the formula (2), the following is

true
∥
∥I

(1)
1 · . . . · I

(1)
n

∥
∥

1
=

H(n)
(

n(n+1)
2

) n(n+1)
2

.
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Corollary 2. For the polynomials I
(p)
1 , . . . , I

(p)
n , . . . , defined by the formula (2), the following is

true
∥
∥I

(p)
1 · . . . · I

(p)
n

∥
∥

1
=

p

√
√
√
√
√

H(n)
(

n(n+1)
2

) n(n+1)
2

.

Proposition 4. The sequence (c, c, . . .) with c ≥ 1 does not belong to the set ν−1
(
τ
(

MbI(ℓ1)
))

,

where the mapping τ is defined by the formula (1) and the mapping ν is defined by the for-

mula (3).

Proof. Let us consider the function

f (x) =
∞

∑
m=1

(m

2

)m
I
(1)
1 (x)I

(1)
2 (x) · . . . · I

(1)
m (x), x ∈ ℓ1.

Note that the nth term of a Taylor series of the function f is defined by the formula

fn(x) =

{
(

m
2

)m
I
(1)
1 (x) · . . . · I

(1)
m (x), if n = m(m+1)

2 for some m ∈ N,

0, otherwise.

It is known [7] that the asymptotic growth rate of H(m) is

H(m) ∼ Am
6m2+6m+1

12 e
−m2

4 , (8)

where A = 1.2824 . . . is the Glaisher-Kinkelin constant. Taking this into account, it can be

checked that

lim
m→∞

∥
∥ f m(m+1)

2

∥
∥

2
m(m+1)

1 = lim
m→∞

((m

2

)m ∥∥
∥I

(1)
1 I

(1)
2 · . . . · I

(1)
m

∥
∥
∥

1

) 2
m(m+1)

= lim
m→∞







(m

2

)m H(m)
(

m(m+1)
2

)m(m+1)
2







2
m(m+1)

= lim
m→∞







(m

2

)m Am
6m2+6m+1

12 e
−m2

4

(
m(m+1)

2

)m(m+1)
2







2
m(m+1)

= 0.

Therefore, the radius of uniform convergence of f is equal to infinity. And so, f ∈ HbI(ℓ1).

Next let us prove that the given function f is not defined on the sequence (c, c, . . .), with

c ∈ [1,+∞), that is the series ∑
∞
m=1

(
m
2

)m
c

m(m+1)
2 diverges. It is easy to see that

lim
m→∞

m

√
(m

2

)m
c

m(m+1)
2 = lim

m→∞

m

2
c

m+1
2 = ∞.

Therefore, by the Cauchy root test, the series ∑
∞
m=1

(
m
2

)m
c

m(m+1)
2 is not convergent. This com-

pletes the proof.
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Proposition 5. Let
{

I
(1)
1 , . . . , I

(1)
m , . . .

}
be the set of polynomials defined by the formula (2).

Then every function f of the form f (x) = ∑
∞
m=1 α(m)I

(1)
1 (x) · . . . · I

(1)
m (x), where α(m) is

some coefficient depending on m, such that f ∈ HbI(ℓ1), is well-defined on the element

x0 = (1, 1/2, . . . , 1/n, . . .).

Proof. Let the function f (x) = ∑
∞
m=1 α(m)I

(1)
1 (x) · . . . · I

(1)
m (x), where α(m) is some coefficient

depending on m, belongs to the algebra HbI(ℓ1). Note that the nth term of the Taylor series of

the function f is defined by the formula

fn(x) =

{

α(m)I
(1)
1 (x) · . . . · I

(1)
m (x), if n = m(m+1)

2 for some m ∈ N,

0, otherwise.
(9)

Since the given function f belongs to the algebra HbI(ℓ1), the radius of uniform convergence of

f is equal to infinity. Then lim sup
n→∞

‖ fn‖1/n
1 = 0 and, consequently, lim

n→∞
‖ fn‖1/n

1 = 0. Therefore,

taking into account (9), we have that

lim
m→∞

∥
∥
∥ f m(m+1)

2

∥
∥
∥

2
m(m+1)

1
= 0, i.e. lim

m→∞

∥
∥
∥α(m)I

(1)
1 · . . . · I

(1)
m

∥
∥
∥

2
m(m+1)

1
= 0.

Let us make the substitution α(m) =

(
ε(m)
)m(m+1)

2

∥
∥I

(1)
1 ·...·I(1)m

∥
∥

1

. Then we obtain

lim
m→∞




|ε(m)|m(m+1)

2

∥
∥I

(1)
1 · . . . · I

(1)
m

∥
∥

1

∥
∥I

(1)
1 · . . . · I

(1)
m

∥
∥

1





2
m(m+1)

= lim
m→∞

∣
∣ε(m)

∣
∣ = 0.

Therefore lim
m→∞

ε(m) = 0. The latter equality is a necessary and sufficient condition of belong-

ing the given function f to the algebra HbI(ℓ1).

Let us prove that the function f (x) =
∞

∑
m=1

(
ε(m)
)m(m+1)

2

∥
∥
∥I

(1)
1 ·...·I(1)m

∥
∥
∥

1

I
(1)
1 (x) · . . . · I

(1)
m (x), such that

f ∈ HbI(ℓ1), is well-defined on the element x0 = (1, 1/2, . . . , 1/n, . . .) Note that, taking into

account the Corollary 1, we have

f (x0) =
∞

∑
m=1

(ε(m))
m(m+1)

2

∥
∥I

(1)
1 · . . . · I

(1)
m

∥
∥

1

1 · 1

22
· . . . · 1

mm

=
∞

∑
m=1

(ε(m))
m(m+1)

2

∥
∥I

(1)
1 · . . . · I

(1)
m

∥
∥

1

1

H(m)
=

∞

∑
m=1

(ε(m))
m(m+1)

2

(
m(m+1)

2

)m(m+1)
2

H2(m)
.

So, we need to show that the series

∞

∑
m=1

(ε(m))
m(m+1)

2

(
m(m+1)

2

)m(m+1)
2

H2(m)
(10)
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converges. Since f ∈ HbI(ℓ1), it follows that lim
m→∞

ε(m) = 0 and so
∣
∣ε(m)

∣
∣ ≤ 1

2 , when m is large.

Taking into account this fact and (8), let us use the Cauchy root test. Then we obtain

lim
m→∞

m

√
√
√
√
√

∣
∣ε(m)

∣
∣

m(m+1)
2

(
m(m+1)

2

)m(m+1)
2

H2(m)
= lim

m→∞

∣
∣ε(m)

∣
∣

m+1
2
(
m2 + m

)m+1
2 e

m
2

A
2
m 2

m+1
2 m

12m2+12m+2
12m

≤ lim
m→∞

(
m2 + m

)m+1
2 e

m
2

A
2
m 2m+1m

12m2+12m+2
12m

= 0.

On the other hand,

lim
m→∞

m

√
√
√
√
√

∣
∣ε(m)

∣
∣

m(m+1)
2

(
m(m+1)

2

)m(m+1)
2

H2(m)
≥ 0.

Then, according to the squeeze theorem,

lim
m→∞

m

√
√
√
√
√

∣
∣ε(m)

∣
∣

m(m+1)
2

(
m(m+1)

2

)m(m+1)
2

H2(m)
= 0.

Thus, according to the Cauchy root test, the series (10) is convergent.

Finally, let us replace

(
ε(m)
)m(m+1)

2

∥
∥I

(1)
1 ·...·I(1)m

∥
∥

1

with α(m). Then we obtain the desired. This completes

the proof.

Example 1. The function f (x) = ∑
∞
m=1

(

H(m)
)1− 1

log(log m)
I
(1)
1 (x)I

(1)
2 (x) . . . I

(1)
m (x) ∈ HbI(ℓ1),

where the polynomials I
(1)
1 , I

(1)
2 , . . . are defined by (2) and H(m) is a hyperfactorial of m ∈ N,

defined by (6), cannot be extended to the analytic function of bounded type to the space ℓp,

1 < p < ∞. But f is well-defined on the element x0 = (1, 1/2, . . . , 1/n, . . .).

Proof. Firstly, let us show that f ∈ HbI(ℓ1). To do this, we need to prove that the radius of

uniform convergence of f is equal to infinity. Note that the n-th term of the Taylor series of the

function f is defined by the formula

fn(x) =







(

H(m)
)1− 1

log(log m)
I
(1)
1 (x) · . . . · I

(1)
m (x), if n = m(m+1)

2 for some m ∈ N,

0, otherwise.
(11)

Taking into account (11) and the Corollary 1, we have

∥
∥
∥ f m(m+1)

2

∥
∥
∥

2
m(m+1)

1
=
∥
∥
∥

(
H(m)

)1− 1
log(log m) I

(1)
1 · . . . · I

(1)
m

∥
∥
∥

1

=

(
(

H(m)
)1− 1

log(log m)

∥
∥
∥I

(1)
1 · . . . · I

(1)
m

∥
∥
∥

1

) 2
m(m+1)

=

(
(

H(m)
)1− 1

log(log m)

) 2
m(m+1)

·
(

H(m)
) 2

m(m+1)

m(m+1)
2

=

(
H(m)

)
(

2− 1
log(log m)

)

· 2
m(m+1)

m(m+1)
2

.
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Taking into account (8), it can be checked that

lim
m→∞

∥
∥
∥ f m(m+1)

2

∥
∥
∥

2
m(m+1)

1
= lim

m→∞

(
H(m)

)
(

2− 1
log(log m)

)

· 2
m(m+1)

m(m+1)
2

= lim
m→∞

2

(

Am
6m2+6m+1

12 e
−m2

4

) 2
m(m+1)

(

2− 1
log(log m)

)

m(m + 1)
= 0.

Therefore R( f ) = ∞ and f ∈ HbI(ℓ1).

Next let us prove that f /∈ HbI(ℓp), where p > 1, that is, R( f ) 6= ∞. Using the Corollary 2,

we have

∥
∥
∥ f m(m+1)

2

∥
∥
∥

2
m(m+1)

1
=







(H(m))

1− 1
log(log m)

p

√
√
√
√
√

H(m)
(

m(m+1)
2

)m(m+1)
2








2
m(m+1)

=
2

1
p
(

H(m)
) 2

m(m+1)

(

1− 1
log(log m)

+ 1
p

)

(
m(m + 1)

) 1
p

.

Then it can be checked that

lim
m→∞

∥
∥
∥ f m(m+1)

2

∥
∥
∥

2
m(m+1)

1
= lim

m→∞

2
1
p
(

H(m)
) 2

m(m+1)

(

1− 1
log(log m)

+ 1
p

)

(
m(m + 1)

) 1
p

= lim
m→∞

2
1
p

(

Am
6m2+6m+1

12 e
−m2

4

) 2
m(m+1)

(

1− 1
log(log m)

+ 1
p

)

(m2 + m)
1
p

= ∞.

Therefore R( f ) = 0 and f /∈ HbI(ℓp), where p > 1.

Besides, according to the Proposition 5, the given function f is well-defined on the element

x0 = (1, 1/2, . . . , 1/n, . . .).

3 Operations on the set τ(MbI)

Let P = {Pn}∞
n=1 be the set of continuous complex-valued n-homogeneous algebraically

independent polynomials on X, such that ‖Pn‖1 = 1 for every n ∈ N. Since every function

f ∈ HbP(X) can be uniquely represented in the form

f (x) = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

αk1 ...kn
Pk1

1 (x)Pk2
2 (x) · · · Pkn

n (x),

where αk1 ... kn
∈ C and k1, k2, . . . , kn ∈ N

⋃{0}, then every character ϕ ∈ MbP is uniquely

determined by its values on the polynomials {Pn}∞
n=1. Therefore it is interesting to consider the

image τ(MbP) of the spectrum MbP of the algebra HbP(X), where the mapping τ is defined by

the formula (1). It is also interesting to consider the subset τ
(

M
(0)
bP

)
of the set τ (MbP) , where

M
(0)
bP

= {δx : x ∈ X}. (12)
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In this section, we show that τ
(

M
(0)
bP

)
has a structure of the linear space in the case

X = ℓp, 1 ≤ p ≤ +∞, and {Pn}∞
n=1 =

{
I
(p)
n

}∞

n=1
, where the polynomials I

(p)
1 , I

(p)
2 , . . . are

defined by (2).

Let I = {In}∞
n=1. As it was mentioned above, every element f ∈ HbI(ℓp), 1 ≤ p ≤ +∞, has

the following representation:

f (x) = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

αk1...kn

(
I
(p)
1 (x)

)k1
(

I
(p)
2 (x)

)k2 · · ·
(

I
(p)
n (x)

)kn ,

where αk1 ... kn
∈ C and k1, k2, . . . , kn ∈ N

⋃{0}.

Let us define the functions Jλ( f ) : ℓp → C and J+c( f ) : ℓp → C by

Jλ( f )(x) = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

αk1...kn

(

λI
(p)
1 (x)

)k1 · · ·
(

λI
(p)
n (x)

)kn

(13)

and

J+c( f )(x) = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

αk1...kn

(

I
(p)
1 (x) + c1

)k1 · · ·
(

I
(p)
n (x) + cn

)kn
(14)

for all λ ∈ C and c = {cn}∞
n=1 =

{
ϕ
(

I
(p)
n

)}∞

n=1
∈ C∞, where ϕ = δz ∈ M

(0)
bI

(ℓp) and z ∈ ℓp is a

fixed element.

Theorem 1. The functions Jλ( f ) and J+c( f ), defined by (13) and (14), are entire functions of

bounded type on ℓp for every f ∈ HbI(ℓp), 1 ≤ p ≤ +∞. The mappings Jλ : f 7→ Jλ( f ) and

J+c : f 7→ J+c( f ) are the homomorphisms from the algebra HbI(ℓp) to itself.

Proof. Let f ∈ HbI(ℓp), 1 ≤ p ≤ +∞. Firstly, let us show that for every λ ∈ C the mapping

Jλ is well defined. Let us prove that for all λ ∈ C and x = (x1, x2, . . . , xn, . . .) ∈ ℓp there

exists yx ∈ ℓp such that the equality I
(p)
n (yx) = λI

(p)
n (x) holds. It is sufficient to consider the

sequence yx = (λx1,
√

λx2, . . . , n
√

λxn, . . .).

Let us show that yx ∈ ℓp. In the case 1 ≤ p < +∞ we have

‖yx‖p =
∞

∑
n=1

| n
√

λxn|p =
∞

∑
n=1

| n
√

λ|p|xn|p≤
(

max
{
|λ|, 1

})p
∞

∑
n=1

|xn|p=
(

max
{
|λ|, 1

})p‖x‖p
<+∞,

since x ∈ ℓp. Consequently, yx ∈ ℓp. Besides, ‖yx‖ ≤ max
{
|λ|, 1

}
‖x‖.

In the case p = ∞, we have

‖yx‖ = sup
n∈N

(∣
∣ n
√

λ
∣
∣|xn|

)
≤ sup

n∈N

(
max

{
|λ|, 1

}
|xn|

)
= max

{
|λ|, 1

}
‖x‖ < ∞,

since x ∈ ℓ∞, Consequently, yx ∈ ℓ∞ and ‖yx‖ ≤ max
{
|λ|, 1

}
‖x‖. The fulfillment of the

equality I
(p)
n (yx) = λI

(p)
n (x) is obvious in both cases. Thus, the given element yx ∈ ℓp, where

1 ≤ p ≤ +∞, is desired. Then, taking into account that the function f ∈ HbI(ℓp) is well

defined, we can write the following:

Jλ( f )(x) = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

αk1...kn

(

λI
(p)
1 (x)

)k1 · · ·
(

λI
(p)
n (x)

)kn

= α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

αk1...kn

(

I
(p)
1 (yx)

)k1 · · ·
(

I
(p)
n (yx)

)kn

= f (yx) < ∞.
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Therefore the function Jλ( f ) is well defined.

Next let us show that Jλ( f ) ∈ HbI(ℓp), 1 ≤ p ≤ +∞. According to [11, Section 8, Propo-

sition 8.6 and Theorem 8.7] and taking into account that every function of bounded type is

locally bounded, it is sufficient to show that Jλ( f ) is a G-holomorphic function of bounded

type.

Firstly, we show that the function Jλ( f ) is G-holomorphic. According to the definition

of a G-holomorphic function (see [11, Section 8, Definition 8.1]) we need to prove that for all a =

{an}∞
n=1, b = {bn}∞

n=1 ∈ ℓp and µ ∈ C the function h : C → C defined as h(µ) = Jλ( f )(a + µb),

is entire on C. Let hm+1(µ) be the (m + 1)-st partial sum of the series corresponding to the

function h. It is obvious that hm+1 ∈ H(C). According to the above mentioned the following

equalities are true:

h(µ) =
∞

∑
n=0

∑
k1+2k2+...+nkn=n

αk1...kn

(

λI
(p)
1 (a + µb)

)k1 · · ·
(

λI
(p)
n (a + µb)

)kn

=
∞

∑
n=0

∑
k1+2k2+...+nkn=n

αk1...kn

(

I
(p)
1 (ya+µb)

)k1 · · ·
(

I
(p)
n (ya+µb)

)kn

= f (ya+µb)

and

hm+1(µ) =
m

∑
n=0

∑
k1+2k2+...+nkn=n

αk1...kn

(

λI
(p)
1 (a + µb)

)k1 · · ·
(

λI
(p)
n (a + µb)

)kn

=
m

∑
n=0

∑
k1+2k2+...+nkn=n

αk1...kn

(

I
(p)
1 (ya+µb)

)k1 · · ·
(

I
(p)
n (ya+µb)

)kn

= fm+1(ya+µb).

Let us show that the sequence of the partial sums {hm+1}∞
m=0 of the series corresponding to

the function h uniformly converges to the function h. Let l ∈ N. Since f ∈ HbI(ℓp), we have

‖h − hm+1‖l = sup
|µ|≤l

|h(µ) − hm+1(µ)| ≤ sup

{y∈ℓp :‖y‖≤max
{
|λ|,1
}(

‖a‖+l‖b‖
)
}

∣
∣ f (y) − fm+1(y)

∣
∣ → 0

as m → ∞. Therefore, since the space H(C) is complete and hm+1 ∈ H(C), then h ∈ H(C).

And so the function Jλ( f ) is G-holomorphic.

Next, let us show that Jλ( f ) is the function of bounded type. Let S be an arbitrary bounded

set in ℓp, that is, there exists a ball B(a, r), where a ∈ ℓp, r > 0 such that S ⊂ B(a, r). Let us

prove that the function Jλ( f ) is bounded on S, that is, for all s ∈ S the estimate
∣
∣Jλ( f )(s)

∣
∣ < +∞

holds. Let s be an arbitrary element from the set S. Then ‖s‖ ≤ r. Since f ∈ HbI(ℓp), then the

following is true
∣
∣Jλ( f )(s)

∣
∣ =

∣
∣ f (ys)

∣
∣ ≤ sup

{
z∈ℓp:‖z‖≤‖ys‖

}

∣
∣ f (z)

∣
∣

≤ sup
{

z∈ℓp:‖z‖≤r max
{
|λ|,1
}}

∣
∣ f (z)

∣
∣ = ‖ f‖

r max
{
|λ|,1
} < +∞.

Thus, Jλ( f ) ∈ HbI(ℓp). It is easy to check that the given mapping Jλ preserves the operations

of the algebra HbI(ℓp).
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Prove the second part of the theorem. Analogically, let f ∈ HbI(ℓp), 1 ≤ p ≤ +∞.

Let us fix z ∈ ℓp and denote by c = {cn}∞
n=1 the sequence of complex numbers such that

{cn}∞
n=1 =

{
ϕ
(

I
(p)
n

)}∞

n=1
, where ϕ = δz ∈ MbI(ℓp).

Firstly, let us show that for every x ∈ ℓp, 1 ≤ p ≤ +∞, and the given sequence

c = {cn}∞
n=1 ∈ C∞ there exists yx ∈ ℓp such that the equality

I
(p)
n (yx) = I

(p)
n (x) + cn

holds. Consider the sequence

yx =

(

x1 + c1,
√

x2
2 + c2, . . . , n

√

xn
n + cn, . . .

)

.

It is obvious that for the given sequence yx the condition I
(p)
n (yx) = I

(p)
n (x) + cn holds. Let us

show that yx ∈ ℓp, 1 ≤ p ≤ +∞. Firstly, let us consider the case 1 ≤ p < +∞. It is easy to see

that

∣
∣
∣

n
√

xn
n + cn

∣
∣
∣

p
=

(

n

√

|xn
n + cn|

)p

≤
(

n

√

|xn|n + |cn|
)p

=

(

n

√

|xn|n + |zn|n
)p

≤
(

n

√

(|xn|+ |zn|)n

)p

=
(
|xn|+ |zn|

)p
=

(

|xn|+ n

√

|cn|
)p

≤ 2p

(

max

{

|xn|, n

√

|cn|
})p

≤ 2p

(

|xn|p + n

√

|cn|p
)

.

Then

∞

∑
n=1

|yn|p =
∞

∑
n=1

∣
∣
∣

n
√

xn
n + cn

∣
∣
∣

p
≤ 2p

∞

∑
n=1

(

|xn|p + n

√

|cn|p
)

= 2p

(
∞

∑
n=1

|xn|p +
∞

∑
n=1

n

√

|cn|p
)

< ∞,

since x, z ∈ ℓp. Therefore yx ∈ ℓp, 1 ≤ p < +∞. Besides,

‖yx‖ ≤ 2

(

‖x‖+
( ∞

∑
n=1

n

√

|cn|p
) 1

p
)

.

Let us denote L =
(

∑
∞
n=1

n
√

|cn|p
) 1

p
. Then

‖yx‖ ≤ 2
(
‖x‖+ L

)
.

Next, consider the case p = ∞. Since x, z ∈ ℓ∞, the following is true

‖yx‖ = sup
n∈N

∣
∣
∣

n
√

xn
n + cn

∣
∣
∣ = sup

n∈N

n

√

|xn
n + cn| ≤ sup

n∈N

n

√

|xn|n + |cn| = sup
n∈N

n

√

|xn|n + |zn|n

≤ sup
n∈N

n

√
(
|xn|+ |zn|

)n
= sup

n∈N

(
|xn|+ |zn|

)

≤ sup
n∈N

|xn|+ sup
n∈N

|zn| ≤ ‖x‖+ ‖z‖ < ∞.

Therefore yx ∈ ℓ∞. Let M = supn∈N |zn| = supn∈N
n
√

|cn|. Then

‖yx‖ ≤ ‖x‖+ M.



Spectra of algebras of analytic functions and operations on spectra 117

It is easy to see that for the given sequence c the mapping J+c is well defined. Indeed, taking

into account the above mentioned and that the function f ∈ HbI(ℓp), 1 ≤ p ≤ +∞, is well

defined, we have the desired:

J+c( f )(x) = α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

αk1...kn

(

I
(p)
1 (x) + c1

)k1 · · ·
(

I
(p)
n (x) + cn

)kn

= α0 +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

αk1...kn

(

I
(p)
1 (yx)

)k1 · · ·
(

I
(p)
n (yx)

)kn

= f (yx) < ∞.

Now let us prove that J+c( f ) ∈ HbI(ℓp), 1 ≤ p ≤ +∞. Analogically, we need to show

that the mapping J+c( f ) is G-holomorphic and bounded on bounded sets. We need to show

that for all a = {an}∞
n=1, b = {bn}∞

n=1 ∈ ℓp and µ ∈ C the function h : C → C defined as

h(µ) = J+c( f )(a + µb), is entire on C, that is, h ∈ H(C). Let hm+1(µ) be the (m + 1)-st partial

sum of the series corresponding to the function h. It is obvious that hm+1 ∈ H(C). According

to the above mentioned the following equalities are true:

h(µ) =
∞

∑
n=0

∑
k1+2k2+...+nkn=n

αk1...kn

(

I
(p)
1 (a + µb) + c1

)k1 · · ·
(

I
(p)
n (a + µb) + cn

)kn

=
∞

∑
n=0

∑
k1+2k2+...+nkn=n

αk1...kn

(

I
(p)
1 (ya+µb)

)k1 · · ·
(

I
(p)
n (ya+µb)

)kn

= f (ya+µb)

and

hm+1(µ) =
m

∑
n=0

∑
k1+2k2+...+nkn=n

αk1...kn

(

I
(p)
1 (a + µb) + c1

)k1 · · ·
(

I
(p)
n (a + µb) + cn

)kn

=
m

∑
n=0

∑
k1+2k2+...+nkn=n

αk1...kn

(

I
(p)
1 (ya+µb)

)k1 · · ·
(

I
(p)
n (ya+µb)

)kn

= fm+1(ya+µb).

Let us show that the sequence of the partial sums {hm+1}∞
m=0 of the series corresponding to

the function h uniformly converges to h.

Let l ∈ N. Since f ∈ HbI(ℓp), then in the case 1 ≤ p < +∞, we have

‖h − hm+1‖l = sup
|µ|≤l

∣
∣h(µ)− hm+1(µ)

∣
∣ ≤ sup

{
y∈ℓp :‖y‖≤2(‖a‖+l‖b‖+L)

}

∣
∣ f (y) − fm+1(y)

∣
∣

=
∥
∥ f − fm+1

∥
∥

2(‖a‖+l‖b‖+L)
→ 0 as m → ∞.

And in the case p = ∞, since f ∈ HbI(ℓ∞), we have

‖h − hm+1‖l = sup
|µ|≤l

∣
∣h(µ)− hm+1(µ)

∣
∣ ≤ sup

{
y∈ℓ∞ :‖y‖≤‖a‖+l‖b‖+M

}

∣
∣ f (y) − fm+1(y)

∣
∣

=
∥
∥ f − fm+1

∥
∥
‖a‖+l‖b‖+M

→ 0 as m → ∞.

Therefore, since the space H(C) is complete and hm+1 ∈ H(C), then h ∈ H(C) in all these

cases. And so, the function J+c( f ) is G-holomorphic for every f ∈ HbI(ℓp), 1 ≤ p ≤ +∞.



118 Vasylyshyn S.I.

Next, let us show that J+c( f ) is the function of bounded type. Let S be an arbitrary bounded

set in ℓp, 1 ≤ p ≤ +∞, that is, there exists a ball B(a, r), where a ∈ ℓp and r > 0, such that

S ⊂ B(a, r). Let us prove that the function J+c( f ) is bounded on S, that is, for all s ∈ S the

estimate
∣
∣J+c( f )(s)

∣
∣ < +∞ holds. Let s be an arbitrary element from the set S. Then ‖s‖ ≤ r.

Since f ∈ HbI(ℓp), then in the case 1 ≤ p < ∞, the following is true

∣
∣J+c( f )(s)

∣
∣ =

∣
∣ f (ys)

∣
∣ ≤ sup

{
z∈ℓp:‖z‖≤‖ys‖

}

∣
∣ f (z)

∣
∣ ≤ sup

{
z∈ℓp:‖z‖≤2(r+L)

}

∣
∣ f (z)

∣
∣ = ‖ f‖2(r+L) < +∞.

And in the case p = ∞, since f ∈ HbI(ℓ∞), the following is true

∣
∣J+c( f )(s)

∣
∣ =

∣
∣ f (ys)

∣
∣ ≤ sup

{
z∈ℓ∞:‖z‖≤‖ys‖

}

∣
∣ f (z)

∣
∣ ≤ sup

{
z∈ℓ∞:‖z‖≤r+M

}

∣
∣ f (z)

∣
∣ = ‖ f‖r+M < +∞.

Thus J+c( f ) ∈ HbI(ℓp), 1 ≤ p ≤ ∞.

It is also easy to check that the given mapping J+c preserves the operations of the algebra

HbI(ℓp), 1 ≤ p ≤ ∞.

Theorem 1 implies the following corollary.

Corollary 3. For every ϕ ∈ MbI(ℓp), 1 ≤ p ≤ ∞, the following equalities hold:

(

ϕ ◦ Jλ

(
I
(p)
1

)
, ϕ ◦ Jλ

(
I
(p)
2

)
, . . .

)

= λ
(

ϕ
(

I
(p)
1

)
, ϕ
(

I
(p)
2

)
, . . .

)

, (15)

(

ϕ ◦ J+c

(
I
(p)
1

)
, ϕ ◦ J+c

(
I
(p)
2

)
, . . .

)

=
(

ϕ
(

I
(p)
1

)
+ c1, ϕ

(
I
(p)
2

)
+ c2, . . .

)

. (16)

Since the equalities (15) and (16) hold, then it is clear that we can perform the operations

of scalar multiplication and addition (note that the second addend must be an image of the

point-evaluation functional at points of ℓp) on the set τ
(

MbI(ℓp)
)
, where the mapping τ is

defined by (1).

Corollary 4. The set τ
(

M
(0)
bI

)
, where M

(0)
bI

is defined by (12), has a structure of the linear space

in case X = ℓp, 1 ≤ p ≤ +∞.

Taking into account the continuity of the operator J+c and [4], we have the following asser-

tion.

Corollary 5. The operator J+c is hypercyclic.
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Василишин С.I. Спектри алгебр аналiтичних функцiй, породжених послiдовностями полiномiв на

банахових просторах, та операцiї на спектрах // Карпатськi матем. публ. — 2023. — Т.15, №1.

— C. 104–119.

Ми розглядаємо пiдалгебру алгебри Фреше цiлих функцiй обмеженого типу, породжену

злiченною множиною алгебраїчно незалежних однорiдних полiномiв на комплексному бана-

ховому просторi X. Ми дослiджуємо спектр цiєї пiдалгебри у випадку X = ℓ1. Ми також роз-

глядаємо деякi операцiї зсуву, якi здiйснюються на спектрi цiєї пiдалгебри у випадку X = ℓp

для p ≥ 1.

Ключовi слова i фрази: n-однорiдний полiном, аналiтична функцiя, спектр алгебри.


