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Asymptotic estimates for the widths of classes of functions of
high smothness

Serdyuk A.S., Sokolenko L. V.

We find two-sided estimates for Kolmogorov, Bernstein, linear and projection widths of the
classes of convolutions of 27-periodic functions ¢, such that ||¢|; < 1, with fixed generated

kernels ¥, which have Fourier series of the form ozo: (k) cos(kt — Bxrt/2), where (k) > 0,
k=1

Y ¢?(k) < oo,Br € R. It is shown that for rapidly decreasing sequences (k) (in particular, if
klim P(k+1)/¢(k) = 0) the obtained estimates are asymptotic equalities. We establish that asymp-
—00

totic equalities for widths of this classes are realized by trigonometric Fourier sums.
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Introduction

Let Ly, 1 < p < oo, be the space of 27r-periodic functions f summable to the power p on
[—7t, 77), in which the norm is given by the formula

s, = = ([ o)™,

L be the space of measurable and essentially bounded 27t-periodic functions f with the norm

7

1fllze = [ flleo = ess sup £(t)

C be the space of continuous 27t-periodic functions f, in which the norm is defined by the
equality

Ifllc = max|£()].
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Denote by Cg » 1 < p < oo, the set of all 27t-periodic functions f, representable as convo-

lution
+ / p(x—)¥5(t)dt, ag€R, ¢ € By, (1)

By={gely: llgll,<1,gL1}

with a fixed generated kernel ¥z € L, 1/p+1/ p’ =1, the Fourier series of which has the
form

S[¥gl(t) = Y y(k) cos <kt Pirt >, Br€R, y(k)>0

A function f in the representation (1) is called (¢, B)-integral of the function ¢ and is de-
noted by 7. ;;P [ < f=J gj q)). If (k) # 0, k € N, then the function ¢ in the representation (1)

is called (¢, B)-derivative of the function f and is denoted by f;f <g0 = fg) The concepts of

(¢, B)-integral and (¢, B)-derivative was introduced by A.L. Stepanets (see, e.g., [30,31]). Since

¢ € Lpand ¥z € Ly, the function f of the form (1) is a continuous function, i.e. Cgp ccC

(see [31, Proposition 3.9.2.]). In the case By = B, B € R, the classes Cg are denoted by Cg,p.

For (k) = k=",r > 0, the classes Cgp and Cg are denoted by WE and Wy ,, respectively.
The classes Wy , are the well-known Weyl-Nagy classes (see, e.g., [12, 29—31]) In other words,

Wg /1 < p < oo, are the classes of 27-periodic functions f, representable as convolutions of
the form

+ / (x = t)B,g(t)dt, ap € R, (2)

the Weyl-Nagy kernels B, g of the form

B, g(t) = ki k™" cos <kt = ﬁ%) , >0, BER, (3)
=1

with functions ¢ € Bg. The function ¢ in the formula (2) is called the Weyl-Nagy derivative of
the function f and is denoted by fg.

Ifr € Nand g = r, then the functions B, s of the form (3) are the well-known Bernoulli
kernels and the corresponding classes W,E,p coincide with the well-known classes W, which
consist of 271-periodic functions f with absolutely continuous derivatives fX) up to (r — 1)-th
order inclusive and such that ||f(")||, < 1. In addition, f")(x) = fI(x) = @(x) for almost all
x € R, where ¢ is the function from (2).

For ¢(k) = e=*, & > 0, r > 0, the classes C;f and Cgp are denoted by C%V and Cg ;,

respectively. The sets Cy’ are well-known classes of the generalized Poisson integrals (see,
e.g., [30,31]), i.e. classes of convolutions

—|— / (x = t)Pyrp(t)dt, ag€R, @€ BY,

with the generalized Poisson kernels

Porp(t) = Y e cos <kt - '3771) , «>0, r>0, BeR
k=1
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Let 9 be a some functional class from the space C (91 C C). The quantity
E(M)c =sup Ey(f)c = sup_ inf  [|f = T lc
fen fen Ty—1€T2n-1

is called the best uniform approximation of the class 9t by elements of the subspace 75,1 of
trigonometric polynomials T;,_; of the order n — 1:

n—1
Tu1(x) = % + Y (axcoskx + Bysinkx), ay, Pr € R.
k=1

The order estimates for the best approximations E,(K)c of classes K = lep, 1 <p < o,

(and, hence, classes Wy , Cg:; and Cg,p) depending on rate of decreasing to zero of sequences
P(k) were obtained, in particular, in the works of V.N. Temlyakov [35], U.Z. Hrabova and
A.S. Serdyuk [5], A.S. Serdyuk and T.A. Stepanyuk [25,26].

If the sequences (k) decrease to zero faster than any geometric progression, then asymp-
totic equations of the best uniform approximations are even known (see, for example, the au-
thors work [24] and the bibliography available there).

In [24], it was shown that for such classes C; the following asymptotic equations take

By
places
|| cost||
B (Ch) e~ & (CF,) o~ ¥, 1<p <,
where

En <C1£,p) = suI; Hf— Sn,l(f)‘
CCpp

CI

1 1
Sy—1(f) is the partial Fourier sum of order n—1 of the function f, . + p =1,and A(n)~B(n)
as n — co means that lgn A(n)/B(n) =1.
n—oo

For p = oo in the case of K = Wé 7 > 0, and in the cases of K = Cg’;,r > 1, and

= CIBPoo (K = Cgoo) for certain restrictions on sequences 1 and B the exact values of the
best uniform approximations are known thanks to the works of J. Favard [6,7], N.I. Akhiezer

and M.G. Krein [1], M.G. Krein [10], B. Sz.-Nagy [12], S.B. Stechkin [29], V.K. Dzyadyk [3, 4],
Y.-S. Sun [33], A.V. Bushanskij [2], A. Pinkus [13], A.S. Serdyuk [15-19] etc.

For p = 2 and for arbitrary B = By € R, OZo: ¢?(k) < oo the exact values for the quantity
k=1

En <C;l§,2> o are also known (see [23]).

In this paper, we establish two-sided estimates of Kolmogorov, Bernstein, linear and projec-
tion widths of the classes Cg,z in the space C, which become into asymptotic equations under
certain restrictions on the sequence (k) (in particular, if kh_{glo P(k+1)/p(k) =0).

Let K be a convex centrally symmetric subset of C and let B be a unit ball of the space C.
Let also Fy be an arbitrary N-dimensional subspace of space C, N € IN, and .Z(C, Fy) be a
set of linear operators from C to Fy. By &(C, Fy) we denote the subset of projection operators
of the set .Z(C, Fy), that is, the set of the operators A of linear projection onto the set Fy such
that Af = f when f € Fy. The quantities

bn(K,C) = supsup {e > 0:eBNFyy1 C K}, (4)

Fnia
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dn (K, C) = infsup mf Hf—uHC, (5)

FN feK”
AN(K,C) = inf f — Af|| ~, 6
N(K,C) int Aeér(lchN) iléE”f fllc (6)
nn(K,C) =inf inf = sup|f—Af|. (7)

v A€2(CFy) fek

are called Bernstein, Kolmogorov, linear, and projection N-widths of the set K in the space C,
respectively.
The results containing order estimates of the widths (4)—(7) in the case of K = Cgp (and,

in particular, W;S/ p and Cg/ p) can be found, for example, in the works of V.M. Tikhomirov [36],
A. Pinkus [13], N.P. Kornejchuk [8], A.K. Kushpel” [11], A.S. Romanyuk [14], V.N. Temlyakov
[34,35] etc.

1 Main results

The main result of this paper is the following statement.

Theorem 1. Let B = {B}>, P € R, and (k) > 0 satisfies the condition
Y P (k) < o ®)
k=1

Then for alln € N the following inequalities hold

where Py is any of the widths by, dy, AN or 7Ty
If, in adition, (k) satisfies the condition

ol (E )t (£ ) )0

then the following asymptotic equalities hold

e e} = 0 (s romes oo E i) 5t ( £, 7))
a

NI—

where O(1) are the quantities uniformly bounded in all parameters. The equalities (11) are
realized by trigonometric Fourier sums S, _1(f).

Proof. In the work [23], it was proved that if the condition (8) is satisfied, then the following
equality

1
(o) 2
b _ 1 »
¢ <CB,2’ S”_l)c Nz (I{:X:nl/] (k)> , PreR, neN, (12)
holds.
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Since the operator that assigns to each function f € C its partial Fourier sum is a linear
projector, then by virtue (12)

1
1 (& ’
-1 (C:,,C) < E(CL,;S,— :—<le2(k)> , Br€R, nelN. (13)
(cf0) <& (cfosm) = = | L
Foralln e Nand 9t C C
PZ?I (mr C) S Panl(m/ C)/
where Py is any of the widths by, dy, An, and 71y, and, in addition, for all N € IN
bN(sﬁ, C) S dN(sﬁ, C) S AN(m, C) S NN(sﬁ, C) (14)

Therefore on the basis of (13) we obtaine an estimate from above for the widths Py in the
formula (9). To obtain a required estimate from below in (9) it suffices to establish that

o (692 (s E )

In (21 + 1)-dimensional space 75,41 of trigonometric polynomials T, of order # let us consider
a ball of the form

Nl

T e < = (oua ¥ L) 16
B, 1:{T€2 12Tcg—<—+2 —) } 16
" A R AN (O =)
and prove the following embedding
Byyi11 C C,BZ (17)
For any trinometric polynomial
n
Tu(x) = {12—0 + Y (ax coskx + by sinkx) (18)
k=1

from the ball By, 1 its (¢, B)-derivative has a form

=i

Vi) =y (% P in (1 + PET
(T} >—k:z;1(¢(k) cos (1r-+ BT) 4 sin (14 47 )
n B Birt B -
B ay COS =5~ _aks1 5 by cos by cos =5~ by sin =5
— k;l (71/)0() cos kx 7#)(]() sinkx + ————= (0 sinkx + 7#)(]() cos kx>
:é%<<akcosﬁ7+b smﬁk )coskx+< aksmﬁkT—l—b Cosﬁk )sinkx) )

By virtue of Parseval equality, from the above equalities we get

! s , \?
H(TH)EHZ = ﬁ( ) lpzl(k) <<ak cos% + by sin %)

24\ 2
+ <—ak sin ﬁan%—bkcos ﬁk%) >> (19)
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By Parseval equality for the polynomial T}, of the form (18) we obtaine
a2 n 1 rm
EO +kZ: <ai + b%) = / nT,%(x)dx.
=1

Therefore we have a chain of inequalities

n 1 T
<) (R+0f) < [ ITlRdx=2|T.2,
k=1 T J—n
and, consequently, we obtaine an estimate for /a2 + b7 of the following form

Var + 02 < V2| Tulle, k=1n. (20)

In the case of k = n this estimate can be improved. To do this, let us consider a trigonometric
polynomial

Tu(x) 1 <a0 e : )
Tu(x):= = — + ay cos kx + by sin kx

1 <a0 1 o o aj bk .

s — —+Z a; + by | ——=——==coskx + ———sinkx 71

NCET AN -~ S 2412 =
n

:% + )  pxcos(kx +6),

k=1
where
a2 + b?

___ % _ VK Tk
00 /7[1% T b%, Ok /F% T b%’

and 6y are such that

cosby = ——, k=1,n,
a2 + b?
. —by
sinfp = ——, k=1,n
a2 + b?

As it follows from [9, Statement 2.9.1] for all p € [1, 00| the following inequality
Il = [ cosn(:)

holds and, consequently, for p = co

p/
[Tullc > 1. (22)

T
Ja+n=1Tle yp ) 23)
Tl

Using the equations (19) and the estimates (20) and (23) we have

la2 b2 g2 4 b2 :
gl - v (S i)

From (21) and (22) we get

1 1 (24)
n—1 2 2\ 2 n—1 2
T2 | Tl i i
2 = 2 — Tall~.
Sﬁ( L k) +1/J2<n>> ””(¢2(n)+ k_1¢2<k>) ITulle
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Since the polynomials T, belongs to the ball By, 1 of the form (16), from (24) it follows that
L4
gl <.

The embedding (17) is proved.
The inequality (15) follows from the definition of the Berstein width by, (Cg o C) and the

embedding (17). The relations (13)—(15) prove the inequalities (9). To prove the asymptotic
equations (11) under satisfying the condition (10) first of all we note that

(Z ‘P2<k>> < p(n ( X v ) (25)
k=n k=n+1
and 1 1
1 n-1 4 2 1 n-1 1 3
em PrPhpm) S 2 : 26
<l”2<”>+ k;ﬂ/’z(k)) B <”>+( ;§1¢2<k>> 26)
From (26) we get
(2T i) !
O =1 OV - 7
=1 A <2Zk:11 ﬁ)
1 1 2507 ?
:lp(”)_(l - %>:¢7(n)— 1 < kllP ) %
D (22,’3;11 1/;21k)> (5 + Rl ) )

(25 7 >>%
o + (255 i)

So, as it follows from (9) and (25), on the one hand,

= y(n) (1 -

P (€4, C) < Paa (Ch,C) < w()(\} ﬁp (Zw )) @)

k=n+1

and, on the other hand, by virtue of (9)

c? c)> ! \/7 o1y 28
() 2 v (o (L ) ) @)
The combination of (27) and (28) allows us to write equations
1 ..
P () = vl (=), 9

Por1 (Chp C) = win )(%HSF)), (30)
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(i)

in which for ,,’,i = 1, 2, the following double inequalities

e (f 1 >%<7(i) Y @
7T o) T \/_’JJ

k=n+1

NI—

hold. If the condition (10) is satisfied, then by virtue of (29)—(31) the asymptotic equations (11)
take place. Theorem 1 is proved. O

We note that the condition
lim Z P2 (
2
nree IP k n+1

is satisfied if (k) satisfies the condition

. p(k+1) _

To make sure of this, let us put
pk+1)
£y = sSup —————.
=ART0

By virtue of (32) ¢, | 0 as n — o0. So, we get

& o Prn+1)  *(n+2)p*(n+1)

L ‘“"“‘”“( V) g *)
82

<92(n) (S +eh+...) = P07 = o(y2(m)).

2
€

k=n+1

Let us show that for strictly decreasing sequences ¢ the fulfillment of condition of the form
(32) ensures the truth of the following equality

—_

n—

lim ¢*(n) ; ¢21(k)

= 0. (33)

To do this, we use Stoltz’s theorem, according to which the relation (33) is followed from
the following equality

n—1 1 n—2 1
L pem o

¥r(n)  ¢r(n-1)
Since
l’lil 1 niZ 1 . 2( )
L R = R e I i )
1 1 ~1r 1 1 p2(n) 7
¥:(n)  y*(n-1) $2(n)  y(n-1) T P2(n-1)

then (34) follows from (32). In view of the above, we have the following statement.
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Corollary 1. Let B = {Br}t>;, Bx € R and the sequence (k) > 0 is strictly decreasing and
satisfies the condition of the form (32). Then the asymptotic equalities (11) hold as n — co.

We give the corollaries of Theorem 1 in some important special cases.

Theorem 2. Let f = {Br};>, fx € R and n € N. Then for all r > ”TH the following inequali-
ties

1 4(1-17 N2 ( )
_nr(1_—n> < Py (W5, C
v 1+4(1- 1) e (35)
1 241 \:2
< Py, <W}g,2, C) < ﬁn r<1 —+ W) ’

hold, where Py is any of the widths by, dn, An or Ty.

Proof. Let us put (k) = k=",r > 1. Obviously, the condition (8) is satisfied. Since for
2r > n+1,n € N, we have

ii< 1 /wﬁ_ L 1 1 2r+m
WSk T (0T St (n4+ D) 2r -1+ 1)1 (n+ 1) 2r -1
36
1 4r—1 1 1 1 2+1 (36
< < 24— )< - n_
T (n+1)Z2r—1" (n+1)¥ 2r—1) = n? (14 1y

then according to the right-hand side of the equality (9) of Theorem 1 we obtain the estimate

1 1

1 /& 1\2 1 _ 241 \2
Pt (Wi€) < 2 (L) < r<1+(1+;)2r> | 7
n

k=n

On the other hand, for r > n+tl

and ¢ (k) = k~" we have

L_}_2ni:1 1 :n27+2nz:1k21’<n27+2<(n_1)27+/n_1t21’dt>
l[)z(n) k=1 l/Jz(k) k=1 o 1

2r 2r (n_1)2r+1 1
— 2 1 _
e <(” L P

<n? 42 <(n—1)2r+w>

(38)

n+2

2r
<n¥ 4 4(n—1)¥ = n2r<1 +4<1 - %) )

By virtue of the left part of the inequality (9) of Theorem 1 and the formula (38) we get the
estimate

1 2r 1
1 1 21 4(1-1) 2
Py (WL, C) > ——=n ’<—> = ——n f<1——") . (39)

Combining the estimates (37) and (39) we obtaine (35). Theorem 2 is proved. O
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Note that if the condition .
lim — = o0 (40)

n—oo 1

is satisfied, then for ¢(k) = k=" the condition (32) is also satisfied, because

pk+1) [ kK \ [ 1\ 1)) s
S (1) - (1) —(<”%> semoh ke

Taking the limit as # — oo in the relations (35), we obtain the following statement.

Theorem 3. Let B = {Br}i> ., Br € R, n € N, and the condition (40) is satisfied. Then the
following asymptotic equalities

Py, (WZ ,, C) 1 1\
p2 =n" | =400 <1+—> 41
Pay -1 (W, C) oM (14 (41)
hold, where Py is any of the widths by, dn, AN or iy, and O(1) are the quantities uniformly
bounded in all parameters.

Note also that the equalities (41) are easy obtained from the formula (11) and estimates (36)
and (38).

Theorem 4. Letf = {Bi}5>,, fr € R,a > 0,7 > 1,n € N and be such that

L1
(n=1) >, (42)

then the following inequalities

1
_ —1)-1 2
1 —an” 2'706,7,716 2ar(n—1) a,r a,r
e (1_1 e 2T | = (C5€) < P (G C)

1
1 r r—1 1 2
< e (1 —2arn 14—
= T_Ce < +e < + errnfl))

hold, where Py is any of the widths by, dn, AN or iy and

_ 1 —20(n—1)" du e
Yan = (1 + W +e )" max { e NESYE . (44)

Proof. First of all, note that if « > 0, > 1, n € IN and satisfy the condition (42), then for a
quantity of the form

(43)

n—1 ,
I,_q:= / dt, a>0,r>1,
1
the following inequality

eZa(n—l)’ . 2
o
Infl S W -+ max {e , W} (45)

holds. Indeed, integrating by parts we have

1 -1 , 1 e2a(n=1)" r—1 [n-1g2at
I =— porge2dt — — | 2w _/ dt. 4
-l 2041’/1 ¢ 2ur ((n —1)r-1 i 1 tr (46)
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For 0 < 2« < 1, taking into account (42), we obtain

-1 204t —1/r 204t -1 204t 62 n—1 it 62
_ lx —_
/1 - dt = /1 —dt —{—/ . ——dt < T + a/am es dt < A7 +al, 1. 47)

From (46) and (47) under condition (42) we get

P S SU §
"L Dar(n — 1)1 2alHl/r Tl

and
p2a(n—=1)" 2

e
T g 0<2: <1 (48)

I, 1<

For 2o > 1 we obtain

n—1 p2at’ ol/r p2at” n—1 p2at’ ol/r . 1 n—1 .
/ dt — / dt + dt < / 2 g 4 = / 2 gy
1 tr tr 21/ tr 1 2 Joisr

/M e dt + 1 At WSS SRR 3 >
2 n—-1 < ) ) n—1 ) > n—1-
From (46) and (49) under condition (42) we have

I _ e2a(n—1)" N P N 1 ; _ e2a(n—1)" N P N 11

L 2ar(n— 1)1 4a  da T D 2ar(n—1)y-1 T 2 T2
and

e2(n—1)
L1 < +e*, 20> 1. (50)

ar(n — 1)1

The inequality (45) follows from (48) and (50). For ¢(k) = ¢, « > 0, r > 1, under
condition (42), taking into account that for r > 1 and n € IN the inequality

holds, we obtain

n>"i:1 7 —2an Z P20k < p—an < 2a(n—1)" _|_/ Z“trdt>
k=1 k=1
o v 1 omln1) e (51)
2 2a(n—1 2a(n—1 4
< (@0 (1 et e man e )
< ~2(n 1)r((1+ﬁ)r71)')’rx,rn < Ya,rne 2ur(n=1)"

Thus, by virtue of the left part of the inequality (9) of Theorem 1 and (51), we obtain a required

estimate from below for widths P, (Cg ;, C) , & >0, r > 1,under condition (42)

1

c%" ¢ 1 20n” = 20k” ? 1 —an” 2’)/04 rn€ 2ar(n 1)#1 ?
P Vi 2 > 1 L . 52
21’!( B2 ) et \/— e + kE_l e —¢ 1 Yarne 21xr(n 1)1'71 ( )
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As was shown in [30, p. 163-164],

e r r 1 r—
) e < pman (1 + r1> e S 1w >0,n€eN.
k=n-+1 &rn
Therefore,
1 - 2 2an” - —2uk” 1 —2arn’~1
$2(n) k_nZH k_gul 2arn’—1

Thus, by virtue of the right part of the inequality (9) of Theorem 1 and the formula (53) we
get the estimate

1
1 r r—1 1 2
T —an —2arn
Pz”(WB,Z’ C) < —\/Ee (1 +e (1 + a1 )) . (54)
Combining the estimates (52) and (54) we obtaine (43). Theorem 4 is proved. O

Taking the limit as n — oo in the relations (43), we obtain the following statement.

Theorem 5. Let f = {Brtiy B € R,a > 0,7 > 1,n € N and the condition (42) is satisfied.
Then as n — co the following asymptotic equalities

PZ”(CA'MI C) 1 1
p2 —e [ O(1 —ar(n—1)" -
P, 1 (Cg:;, C) ¢ (ﬁ + ( )’Ya,r,ne ) ( )

hold, where Py is any of the widths by, dn, An or Tn and Ya r,n is defined by (44) and O(1) are
the quantities uniformly bounded in all parameters.

Note that the Theorem 5 complements the results of the works [17,21,22,28,32], which con-
tain exact estimates for the widths of the classes of convolutions with classical or generalized
Poisson kernels. As it follows from the proofs of Theorems 4 and 5 the asymptotic equalities
for widths in (55) are realized by trigonometric Fourier sums. The asymptotic equalities for de-
viations of Fourier sums on classes of generalized Poisson integrals Cg;; in the uniform metric
are seen, for example, in [20,27,31] and others.
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3HaliAeHO ABOCTOPOHHI OITiHKM KOAMOTOPOBCBHKMX, DepINTelHiBChKIMX, AIHIMHMX Ta IpOeKIIil-
HJIX TIOLIEPEYHMKIB KAACIB Y IPOCTOPi 3TOPTOK 27T-TIepioAMYHIX (PYHKIIN ¢ Takux, mio || ¢z < 1,

i3 posinbEyMu TBIpHUMY siapamy ¥ g, psia Dyp’e sIKmx Mae BUTASIA kOZj:llp(k) cos(kt — Brt/2), ae
(k) >0, Z¢?(k) < oo, B € R. TTokasaHo, 110 AAST ITBUAKO CTIAAHVX TIOCAiAOBHOCTel 1 (k) (30Kpe-
Ma, takmx, wo lim P(k +1)/y(k) = 0) orep>kaHi OLIHKM € aCMMOTOTUYHMMM piBHOCTSIMI. Bera-
HOBAEHO, 110 aCkI:Mo;ITOTI/I‘-]]-Ii PIBHOCTi AAST IOMIEPEYHMKIB 3a3HaYEHMX KAACIB Peani3yloTh TPUTOHO-
MeTpuuHi cymu Dyp’e.

Kontouosi cnoea i ppasu: GepIITeiHiBCHKII IIOTIEPEUHMK, KOAMOTOPOBCHKIM TTOTIEpEYHNK, AiHil-

HII1 TIONepeYHNK, MPOeKLiViHmii nonepeunmk, cyma Myp’e, kaac Belias-Haas, xaac y3araabHeHUX
inTerpanis [Tyaccona, (1, B)-iHTerpaa, acMMITOTUYHA PiBHICTb.



