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Hessenberg-Toeplitz matrix determinants with Schréder and
Fine number entries

Goy T."™, Shattuck M.2

In this paper, we find determinant formulas of several Hessenberg-Toeplitz matrices whose
nonzero entries are derived from the small and large Schroder and Fine number sequences.
Algebraic proofs of these results can be given which make use of Trudi’s formula and the gener-
ating function of the associated sequence of determinants. We also provide direct arguments of our
results that utilize various counting techniques, among them sign-changing involutions, on combi-
natorial structures related to classes of lattice paths enumerated by the Schroder and Fine numbers.
As a consequence of our results, we obtain some new formulas for the Schréder and Catalan num-
bers as well as for some additional sequences from the OEIS in terms of determinants of certain
Hessenberg-Toeplitz matrices.
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1 Introduction

Let S, denote the nth large Schroder number given by

n
_ 1 k n n S
Sn nk:212 (k) (k—l)’ n=l

with Sy = 1. The small Schoder number s, is defined as s, = %Sn forn > 1, with sp = 1. The
nth Fine number, denoted here by t,, is given by
|4
2n — 2k 2
=3 Y (" )—(”), n>1,
= n—1 n
with tg = 0. The first several terms of the sequences s, and t,, for n > 0 are as follows:
{sn}n20 ={1,1,3,11,45,197,903, 4279, 20793, 103049, 518859, . . . }
and
{tn}nzo ={0,1,0,1,2,6,18,57,186,622,2120, .. .}.
We will make use of in our proofs the (ordinary) generating functions for S;, s, and t;,
which are given respectively by

1—x—V1—6x+2x2 1+x—+vV1—6x—+x2
Z Sux" = e , anx” = P ,

n>0 n>0
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Zt o 142x —+1—4x
=" 22+x)
LetC, = HLH (2,;1 ) denote the nth Catalan number (see A000108 in [18]) and recall

ZCx”—l_‘/1_4x
n i .

2x

n>0

The preceding three sequences are closely aligned with C,. For example, for n > 1 we have

n n +k> 1& Ck
S, = < Ck and t +1 = = T 7
" k;o 2% " 2,(;2 (=2)*

Additional relations for the Fine numbers are given by
n—1
Cn =2tpy1+tn and th1 = Cn — Z Citn—k-
k=0

The sequences S, s, and t, arise in various settings in enumerative and algebraic com-
binatorics and give the cardinalities of some important classes of first quadrant lattice paths
[2-6,17]. See entries A006318, A001003 and A000957, respectively, in [18] for further informa-
tion. Here, we are interested in some new combinatorial properties of these numbers related
to their occurrence in certain Hessenberg-Toeplitz matrices.

Many relations for Schroder and Fine numbers have previously been found (see, e.g., [6,20,
21] and references contained therein), and determinants of matrices with Schroder or Fine
number entries and their generalizations have attracted recent attention. A couple of ba-
sic results in this direction involve Hankel determinants for the Schréder numbers, namely,

det(Si4) Zj_:lo =2() and det(5i+j+1)zj_:10 =2("2). The comparable formulas for the Fine num-

bers (see [6]) are given by det(ti+j+1)zj;10 = 1and det(t1j;2) Z].;lo = 1 — n. These results have
been generalized in different ways by considering various families of Catalan-like sequences
(see, e.g., [7,15] and reference contained therein).

In [19], F. Qi presents negativity results for a class of Hessenberg-Toeplitz determinants
whose elements contain the products of the factorial and the large Schroder numbers. By
using Cramer’s rule together with a generating function approach, E. Deutsch [5] obtained the
following Fine-Catalan determinant relation

6 1 1 0 0
c G 1 0 0
C C C 0 0

= (-1t T ,
Can Cn73 Cn—4 e CO 1
Cic1 Cha Gz -+ G G

which was later rediscovered by the authors in [8] (formula (2.21) witha = —1). In [8], the
authors found determinants of several families of Hessenberg-Toeplitz matrices having var-
ious subsequences of the Catalan sequence for the nonzero entries. These determinant for-
mulas may also be rewritten equivalently as identities involving sums of products of Catalan
numbers and multinomial coefficients. Comparable results featuring combinatorial arguments
have been found for the generalized Fibonacci (Horadam), tribonacci, tetranacci and Motzkin
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numbers in [9-12]. See also [1], where further results for Horadam number permanents and
determinants are obtained using an algebraic approach.

The organization of this paper is as follows. In the next section, we find formulas providing
algebraic arguments of several Hessenberg-Toeplitz matrices whose nonzero entries are given
by Sy, su, tn or translates thereof. As a consequence of our results, one obtains new deter-
minant expressions, and hence combinatorial interpretations, for S;, s, and C,, as well as for
several additional sequences occurring in [18]. Further, equivalent multi-sum versions of these
determinant identities may be obtained using Trudi’s formula (see Lemma 1 below). In the
third section, we provide combinatorial proofs of the preceding formulas upon making use
of various counting techniques such as direct enumeration, bijections between equinumerous
structures and sign-changing involutions. In doing so, we draw upon the well-known combi-
natorial interpretations of S, C;,, s, and t,, as enumerators of certain classes of first quadrant
lattice paths.

2 Schroder and Fine number determinant formulas

A Hessenberg-Toeplitz matrix is one having the form

a ag o --- 0 0
a, a ap 0 0
as ar aq cee 0 0
Ap = Ay (ag;aq,...,0n) = . , (1)
an-1 Ap—2 Ap-3 -+ d1 4dg
an  Odp—1 A4p-2 -+ 42 M

where ay # 0. The following multinomial expansion of det (A, ) in terms of a sum of products
of the a; is known as Trudi’s formula (see, e.g., [14, Theorem 1]).

Lemma 1. Letn be a positive integer. Then

det (Ay) = Y (—a0)""" ( ’ )”Zflﬂ?zmﬂi”, @)
o=n Ul,...,vn
where (, ") = 5ol 5= 014 20; 4 - 4 oy and [o] = 01 + 02+ - + 0, withv; > 0.

Equivalently, we have

n
det(An) =Y (=ap)"™* Y aja,--a.
k=1

i1eip>1
ij+ip+ - Fi=n

It is seen that the sum in (2) may be regarded as being over the set of partitions of the
positive integer n. The special case of Trudi when ay = 1 is known as Brioschi’s formula [16].
Here, we focus on some cases of det (A,) when ayp = %1. For the sake of brevity, we denote
det (A, (£1;a1,ay,...,a,) ) by D+ (a1,a2, ..., ay).

There is the following inversion theorem involving 4; and the corresponding sequence of
Hessenberg-Toeplitz determinants when ap = 1 (see [13, Lemma 4]).

Lemma 2. Let (bn)nzo be defined by b, = det(A,) forn > 1, where A, is given by (1) with
ap = bp = 1. If B, denotes the Hessenberg-Toeplitz matrix associated with by, ...,b,, then
a, = det(By) forn > 1.
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We have the following determinant identity formulas involving the large and small
Schréder numbers.

Theorem 1. We have

D:(S1,52,...,5:) = (=1)"71s, 4, n=2, 3)
D_(51,5,...,5,) = 2- A134425[n — 1], (4)
Dy (S0,51,...,5,-1) = (=1)" 15,1, (5)
D_(S0,51,.-.,5,-1) = sn, (6)
Dy (s1,52,.-.,52) = (—1)" 'S4, )
D_ (s1,82,...,5,) = A225887[n — 1], (8)
Dy (s0,81,...,5q-1) = (—=1)""1A114710[n — 1], 9)
D_ (sp,51,---,51-1) = Sn—1, (10)

D, (s2,s3, .. 5n+1) (—1)"1S, 4, n>2, (11)

where all formulas hold for n > 1 unless stated otherwise.

Making use of Lemma 1 yields the following multinomial identities for the two kinds of
Schroder numbers.

Theorem 2. We have

Z(_1)|v|71 <Ul ’U’ 0 )S;Jlszz)z te SZH == Sn—l; n Z 2!
7 ¥n

o=n
y ( | )57111532 - S =2 A134425[n — 1],
i—n vl,...,vn
Yk Pl Yengen gm g
y: v1,...,05) 071 no1 ol
o=n

|U| V] QU v

SUG%2. .. GV g

Z7§1<vll---rvn 01 -l >

_ 0
Z:(—l)'v| 1(?}1 ; vn>szljls;2 Sy = Su,
=
Z( 0] )Szlnsgz .50 = A225887[n],
S—n vl,...,vn
¥ (—1)fl-1 ol SUsT2 .50 = A114710[n — 1],
G 01,.-..,0n

0
Z <v1 8 vn>sglsz1)2 8,1 = Sty
= \vy, ...,

B v
Y (-1 1<vl ) ) 253 S =81, 122,
=

where all formulas hold for n > 1 unless stated otherwise.

The identities in Theorems 1 and 2 are seen to be equivalent by (2), so we need only prove
the former.
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Proof. Let f(x) = Y,>1 det(A;) x", where A, is given by (1). Then rewriting (2) in terms of
generating functions implies

where g(x) = Zizl(—ao)i_laixi.
We consider several cases on a;. Firstlet a; = S; fori > 1. Then

s 1—|—3a0x—\/1+6a0x+a%x2
x) = —ap) " Six’ = .
g( ) ;( 0) i 2a%x

If ag = 1, then

fx) = gx) 143x—vV14+6x+x2
1—g(x) —1—x+VIt6x+a2
:2x—%<1+3x—\/1+6x+x2)
— 2+ Y (=)L, 1,
n>2

which implies (3). If a9 = —1, then

fa)= 8B _ 1-8x—Vi-ex+¥
S 1l-g(x)  —145x+V1-6x+a2

4
= ad — Y 2. A134425[n — 1]x",
1-7x+V1—6x+22 3

which implies (4), upon recalling the formula }_,~ o A134425[n]x" = m (see OEIS

article).
Now let a; = S;_1 for i > 1. In this case, we have

—1—apx + \/1 + 6a9x + a3x?
2110 '

g(x) = Z (—Elo)i_l S;qxt =

i>1

If ag = 1, then

flx) =

—1—-x+vV14+6x+x2 —1+x+V1+6x+x2 Y
3+x—+V1+6x+x2 4 =1

which gives (5), whereas if a9 = —1, then

_1—x—\/1—6x+x2_1—3x—\/1—6x+x2_Z "

X) = =
fx) 1+x+Vv1—6x+ x2 4x =1

which gives (6).
Similar proofs may be given for (7)—(10). Alternatively, formulas (7) and (10) follow from
(6) and (5), respectively, upon applying Lemma 2 since

Dy (s1,...,5:) = (=1)"718, 4

if and only if
D_(So,...,Su_1) = D+ (50, ~S,..., (—1)"—1sn_1) _
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and
D+ (SOr ceey Snfl) = (_1)117151’!71
if and only if

D_(so,...,8n—-1) = Dy (so, —S1,.. ., (—1)”_1sn_1> =8S,_1.

Finally, to show (11), let a; = s;;1 fori > 1 and ap = 1 to get

—1 —3x +4x2 + /1 + 6x + 12

§(0) = L (~1) il = =
i>1
Thus,
flx) = g(x) —1-3x+4x?+V1+6x+x?
1—g(x) 143x — V14 6x+ x2

— 1 2

=3+ (-1-3r+V1+6x+22)

=3x+ ) (-1)" 1S, 12",

n>2

which completes the proof. O

We have the following Fine number determinant formulas.

Theorem 3. We have

Dy (t,to, ... tn) = Un, (12)
D_(ti,tz, ..., tn) = Cp_1, (13)
Dy (to,t3,.. . tyy1) = (=1)"1Cpy, n>2, (14)
D_ (ta,t3,..., thy1) = A137398[n], (15)
Dy (t3,tg, ..., thy2) = (—1)""1A030238[n — 1], (16)
Dy (tgts, ... thes) = (=1)"1Cmy, 1 >3, (17)

where all formulas hold forn > 1 unless stated otherwise and u,, denotes the sequence defined
recursively by u, = u,_1 + Z?:_lz(—l)”lciun,i,l ifn >3 withu; = up = 1.

Proof. Proofs comparable to those given for (3)-(11) may also be given for (12)-(17). We illus-
trate using formula (17). First note that

1 2
tyys3x™ = t x"2:—< —1—x2>,
n/; nt3 n/; nt1 el O Wy
and hence we have

(1) = ¥ (—1)" Thypax — 1142 -2+ 2% — (1+2%) VI+
& = e 2 1—2x+/1+4x '
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This gives

Y det(An)x" = % — det (A;) x — det (A;) x

n>3

—1—2x+x* =2+ (1+x%) V1+4x )

= —2x 4+ 2x
14+2x —+/1+4+4x

1l —dx— 2420 + (14 2x —x?) V1 +4x
B 1+2x — /1 +4x

(—1—dx— 4200+ (1+2x —x2) VT F4x) (1420 + VT +43)
- 4x2
_—2x2 (14 2x — 222 — /1 + 4x)
N 4x2

1-v1+4
=x <% -1 —i—x) =x Z Co(—x)" = Z(—l)”flcn,lxn,
—<X n>2 n>3
which implies (17). O

3 Combinatorial proofs

In this section, we provide combinatorial proofs of formulas (3)-(11) and (12)—(17). Let us
first recall combinatorial interpretations of the sequences S, s, and t,, which we will make
use of in our proofs, and define some related terms. Let P, denote the set of lattice paths
(called Schrider paths) from the origin to the point (21,0) that never go below the x-axis using
u=(1,1),d = (1,—-1) and h = (2,0) steps. Then S, = |Py| for all n > 0, where P is
understood to consist of the empty path of length zero. Half the horizontal distance traversed
by a Schroder path A will be referred to here as the length of A and is denoted by |A|. Note
that |A| equals the sum of numbers of u and & steps in A. (We remark that the term semi-
length is often used in the literature, instead of length, for the quantity indicated, though we
prefer the latter due to brevity.) An h step connecting two points with y-coordinate ¢/ > 0
is said to be of height £. A low h step will refer to an h step of height 0. The subset of P,
whose members contain no low / steps will be denoted by Q,, with its members referred to
as restricted Schroder paths. Then it is well-known that s, = |Q,| for n > 0. Hence, since
Sp = 2s, if n > 1, we have that exactly half the members of P, are restricted.

Let D, denote the subset of P, whose members contain no & steps. Members of D, are
referred to as Dyck paths with |D,| = C,, for n > 0. A member of D,, is said to have a peak of
height i, where 1 < i < n if there exists a u directly followed by a 4 in which the u has ending
height i. Let £, denote the subset of D,, whose members contain no peaks of height 1. Then it
is well-known that ¢, = &, _1 for n > 1 with ty = 0.

By a return within a member of P,,, we mean an & or u step that terminates on the x-axis. A
terminal return is one that has endpoint (21, 0) with all other returns being referred to as non-
terminal. By a unit within A € P,, we mean a subpath of A occurring between two adjacent
returns or prior to the first return. Note that a low / step comprises its own unit with all other
units of the form ucd for some possibly empty Schroder path . Within members of &, all
units must have length at least two, whereas members of O, can also contain units of the form
ud, but not h. Finally, a member of P, having no non-terminal returns is said to be primitive. A
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primitive member A € P, for n > 2 is necessarily of the form A = ucd, where o € P,,_1, and
hence belongs to Q,,.

We compute the determinant of an n x n Hessenberg-Toeplitz matrix using the definition
of a determinant as a signed sum over the set of permutations ¢ of [n]. In doing so, one
need only consider those o whose cycles when expressed disjointly each comprise a set of
consecutive integers. Such ¢ are clearly in one-to-one correspondence with the compositions
of n, upon identifying the various cycle lengths with parts of a composition. This implies that
the determinant of a matrix A, of the form (1) may be regarded as a weighted sum over the
set of compositions of n. If a9 = 1 in this sum, then each part of size r > 1 has (signed)
weight given by (—1)"1a, (regardless of its position) and the weight of a composition is the
product of the weights of its constituent parts. One can then define the sign of a composition
as (—1)""™, where m denotes the number of its parts. On the other hand, when 4y = —1,
every part of size r now contributes a, towards the weight of the composition. Thus, assuming
a; > 0fori > 1, each term in the determinant sum for A, is non-negative in this case. Note
that computing det(A,), where ap = —1, is equivalent to finding the permanent of the matrix
obtained from A, by replacing a9 = —1 with ag = 1.

We now provide combinatorial proofs of the formulas from Theorems 1 and 3 above.

Proofs of (3), (4), (7) and (8)

Let A, denote the set of marked Schroder paths of length n in which returns to the
x-axis may be marked and whose final return is always marked. Define the sign of A € A,
by (—1)""#M), where 1(A) denotes the number of marked returns of A. Let A/, C A, con-
sist of those members of A, in which there are no low & steps (marked or unmarked). Then
Dy (S1,...,54) and D4 (sq,...,s,) give the sum of the signs of all members of A, and A},
respectively. To see this, first suppose T is a member of A, or A/, and is derived from the
(weighted) composition ¢ in either determinant expansion. That is, T is obtained from ¢ by
overlaying a member of P, or Q, on each part of ¢ of size r for every r, marking the final return
of each path and finally concatenating the paths in the same order as the parts of ¢. Then the
sequence of part sizes of ¢ corresponds to the sequence of lengths of the subpaths occurring
between adjacent marked returns of T (or prior to the first marked return), and, in particular,
the number of parts of o equals the number of marked returns of 7. Thus, the sign of ¢ in the
determinant expansion corresponds to n — u(7) and considering all T associated with each o
implies D (Sq,...,Sn) and D4 (51, ..., S,) give the sum of the signs of the members of A, and
Aj,, respectively, as claimed.

We define a sign-changing involution on A, by identifying the leftmost non-terminal re-
turn and either marking it or removing the marking from it. The set of survivors of this invo-
lution consists of the primitive members of A,,. If n > 2, then there are S,,_; primitive members
of A,, each of sign (—1)"~!, which implies (3). Since the survivors of the involution all belong
to A/, this establishes (7) as well.

On the other hand, it is seen from the preceding that D_ (Sy,...,S,) and D_ (s1,...,5,)
give the cardinalities of the sets A, and A}, respectively, since when a9 = —1 the sign of ¢ is
cancelled out by the product of the superdiagonal —1 factors in the term corresponding to ¢
in the determinant expansion. We first show (8). Let P,; denote the set of colored members of
P wherein each low & step is colored in one of three ways. Recall one of the combinatorial
interpretations of A225887[n] is that it gives the cardinality of P;; for n > 0. Thus, to complete
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the proof of (8), it suffices to define a bijection ¢ : P;_; — Al . Let hy, hy, he denote the three
kinds of colored low & steps within A € P;_,. We decompose A as A = A A0 for some
r > 1, where each subpath A for 1 < i < r—1 ends in either h, or h;, with all other low h
steps in A (if there are any) equal to /., and A(") is possibly empty. Note that if A contains no
or hy, steps, then we taker = 1and A = A further, if A ends in h, or hy, then v > 2 with A
understood to be empty in this case. If 1 <i <r—1and A ends in h, with Al = w;h,, where
(i)

w; is possibly empty, then let '/ = ua;d, where the final d is marked (i.e. the return to the
x-axis associated with this d is marked). If A() = Bihy, then let X(Z) = upid, where the final d is
unmarked. Finally, let A0 = uA")d, where the final d is marked. Define ¢(A) = AW A0 6

the concatenation of the lattice paths 2% Note that ¢ can be reversed, and hence is bijective,
as desired, upon considering the positions of the returns and whether or not they are marked.
Further, it is seen that the number of /. steps within A equals the number of / steps of height
1 within ¢(A) for all A.

We now show (4). Let P, denote the set derived from members of P, by stipulating that
the low / steps come in one of four kinds, denoted by 1) for 1 < i < 4. Recall that A134425 [n]
gives |P,| for n > 0, so for (4), we need to prove |A,| = 2|P,_1| for n > 1. We proceed
inductively, noting that the n = 1 case of the equality is clear. Let n > 2 and we consider the
following cases on members A € A,: (i) A = A'h, (i) A = Ma, where « # h is a unit and A’ is
nonempty, with the final return of A’ marked, or (iii) A = A'B, where B # h is a unit and either
A = @ or A' # @ with the final return of A’ not marked. We partition p € P,_; as follows:
(I) p ends in V) or K, () p = p’a, where a # h(?) for any i is a unit and p’ is possibly empty,
or (III) p ends in h®) or h4),

We now demonstrate for each of (i)—(iii) that there are twice as many members A € A, as
there are p € P,_1 in the corresponding case (I)—(III). Upon considering whether or not the
final return in A is marked, it is seen by the induction hypothesis that there are twice as many
A € A, for which (i) applies as there are p € P,_; for which (I) applies. The same holds true
of (ii) and (II) as A’ in (ii) has length one greater than that of p’ in (II), with a the same in both
cases. To show that the same holds for cases (iii) and (III) above, observe first that the number
of possible p € P,_1 in (III) is given by 2| P, _,|. Thus, to complete the proof of (4), it is enough
to prove that there are 2|.A,,_1| possible A € A, in (iii).

Let A = M'B € A,, where B # h is a unit and A’ does not have a marked final return.
If ' = @, ie. A is primitive, then write § = up'd and regard p’ as a member of A,_; in
which only the final return is marked. Otherwise, consider cases based on the length ¢ of §,
where1 < ¢ <n—1.If ¢ =1, ie B = ud, then regard A’ as a member of A, _; by marking
its last return. If £ > 2, then let B = up’d, where B’ is nonempty. Then form the lattice path
o = A B of length n — 1, wherein the last return of A’ and of B’ are now both marked (here, it is
understood that all other returns of A’ remain of the same status regarding whether or not they
are marked and that all non-terminal returns of ', if any, are unmarked). Note that o € A, _4
with o containing at least two marked returns. It is seen then that each member of A,,_1 arises
exactly twice when one performs the operations described above on the various members of
A, for which (iii) applies, upon considering whether or not a member of A,_; contains two
or more marked returns, and if it does, additionally taking into account the position of the

rightmost non-terminal marked return. This establishes the desired equality |A,| = 2 )75”,1‘
for all n > 1, which completes the proof of (4).
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Proofs of (5), (6), (9) and (10)

Let A, be as in the previous proof and let B, C A, consist of those members in which all
marked returns (including the final return) correspond to low h steps. Let B, C B, consist of
those members in which no low / is unmarked. Define the sign of A € B, by (—1)"#"), where
#(A) denotes the number of marked low h’s. Reasoning as in the prior proof, we have that
Dy (So,...,S4—1) and D4 (so, ...,s,—1) respectively give the sum of the signs of all members
of B, and B;,. To show (5), we define a sign-changing involution on B, by identifying the
leftmost non-terminal low h and either marking it or removing the marking from it. This
involution fails to be defined for paths of the form A = ah, where « € Q,,_1 and & is marked.
Thus, there are s,_; survivors of the involution, each of sign (—1)”*1, which implies (5). For
(9), we define an involution on B}, by identifying the leftmost non-terminal (marked) low h
step or peak of height 1 (i.e. unit of the form ud) and replacing one option with the other. This
involution is not defined on members p = Bh, where 8 € P,,_1 contains no low / steps or peaks
of height 1. Note that there are A114710[n — 1] such p for all n > 1, each with sign (—1)""1,
which implies (9).

On the other hand, we have that D_ (Sp,...,S,—1) and D_ (sg,...,s,_1) respectively give
the cardinalities of the sets B, and B),. To show (6), consider decomposing p € B, as p =
oW ... 0(") for some r > 1, where each p(!) ends in a marked low & step and contains no other
marked steps. Write p()) = w;hi for 1 < i < r, where a; is possibly empty. Define p!) = ua;d and
letp = ﬁ(l) X -ﬁ(’). Then the mapping p — p is seen to define a bijection between B, and QO
(to reverse it, consider positions of the returns in members of Q,), and hence |B,| = s,, which
implies (6). Finally, members of B), and P,_1 are seen to be synonymous, upon removing the
marking from all low h’s and disregarding the final / in members of the former, which implies
(10).

Proof of (11)

Let J, x for 1 < k < n denote the set of ordered k-tuples A = (Aq,..., Ax) wherein each A;
is a restricted Schroder path having length at least two such that Zf:l |Ai] = n + k. Define the
sign of A € J,,x by (—1)" ¥ and let 7, = U?_, J,,x- Then we have that D (s, ...,s,+1) gives
the sum of the signs of all members of 7,. We define a sign-changing involution of 7,, which
makes use of several cases as follows. First suppose that the final component Ay of A € 7, «
is not primitive. If Ay = uodt, where ¢ is a possibly empty Schréder path and |t| > 2, then
replace A, with the two components Ay = T and A1 = uodud, leaving all other components
of A unchanged. We perform the reverse operation, i.e. fusing the last two components and
dropping ud, if the last component consists of a unit followed by ud. This pairs all members
of J, in which the final component is not primitive except for those belonging to 7, ;1 where
A1 = uodud for some 0.

Now suppose A, within A is primitive. First assume |Ax| > 3, and we consider the following
further subcases:

(i) Ax = uod, with o containing no low h’s and || > 2,
(i) Ax =uc’ho’d, with ¢’ # @ and containing no low h’s and ¢’ possibly empty,

(iii) Ay = uhod, with o # &,
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where ¢,0’,0” denote Schroder paths. (Note that by ¢ or ¢’ not containing a low % in the
preceding, we mean when ¢ or ¢’ is viewed by itself starting from the origin.) Now suppose
p = (p1,---,0k) € Tk, with p primitive and |px| = 2. We consider the following subcases:
(@) px = u?d?, (1) py = uhd, with p;_; not primitive, or (II) px = uhd, with py_; primitive. Note
that n > 2 implies k > 2 in (I)~(III) and hence a penultimate component exists in each case.
We now perform the following operations on the members of 7, i in (i)—(iii) above (leaving all
other components unchanged):

(a) )\k = uod < )\k =0, Ak+1 = u2d2,
(b) Ar =ud’ho’d < A = oc'uo’d, A = uhd,
(c) Ax =uhod <> A =uod, A = uhd.

Note that the assumptions on ¢,0’,¢” in (i)-(iii) imply that these operations are well-
defined and it is seen that they are reversible in each case. Hence, they provide bijections
between the members of 7, satisfying (i), (ii) or (iii) and those satisfying (I), (II) or (III), re-
spectively. Since the number of components changes by one in all cases, each member of 7
whose final component is primitive is paired with another of opposite sign. Thus, when taken
together with the pairing defined in the preceding paragraph, we have that all members of 7,
are paired except for A = (A1) € J,, 1 such that Ay = uodud for some o € P,,_1. There are S,,_1
possibilities for these A, each having sign (—1)"~!, which implies formula (11).

Proofs of (12) and (13)

We first find a combinatorial interpretation for D_ (ty, ..., t;). A short unit within a member
of D, will refer to a unit having length one (i.e. is equal ud), with all other units being referred
to as long. Let D, denote the subset of D, whose members have last unit short and hence
|D;,| = Cy—1 for n > 1. Suppose p is a (weighted) composition of n with m parts occurring
in the expansion of D_ (t4,...,t,). On a part of size r within p, we overlay a € &£,_1 followed
by ud. We do this for each part of p and concatenate the resulting lattice paths aud to obtain
a member of D;, in which there are m short units altogether. Upon considering all possible ,
we have that D_ (#y, ..., t,) gives the cardinality of D}, which implies (13).

To show (12), first note that D (#,...,t,) gives the sum of the signs of all A € Dj,, where
the sign of A is defined as (—1)"~¥(}) and v denotes the statistic recording the number of short
units. Letr, = D4 (f1,...,tn) for n > 1; clearly, we have r; = rp, = 1, so we may assume
n > 3. Let p € Dj,. If the first unit of p has length i + 1 for some 1 < i < n — 2, then the
contribution towards the sum of signs is given by (—1)i+1Cirn,i,1. Summing over all i yields
a total contribution of 2?:_12(—1)i+1Cirn_i_1 for members of D;, whose first unit is long. On
the other hand, if the first unit is short, then there are r,_; possibilities as no adjustment for
the sign is required when prepending a short unit to a member of Dj, ;. Combining the prior
cases of p implies r, satisfies the desired recurrence and completes the proof.

Proofs of (14) and (15)

Let £,, denote the set of marked members of £, wherein the first unit is not marked and all
other units may be marked. Define the sign of A € &£, by (—1)" "), where y(A) denotes the
number of unmarked units of A. Then D (f,...,t,+1) and D_ (tp,...,t,41) are seen to give
the sum of signs and cardinality, respectively, of the members of L. To show (14), define an
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involution on £, by marking or unmarking the second unit, if it exists. This operation is not
defined on the primitive members of £, each of which has sign (—1)"~1. Since the primitive
members of £, have cardinality C,,_ for n > 2, formula (14) is established.
To show (15), let b, = D_ (t,...,t,41) for n > 1 and note
n—3
bp=Cpo14+2 Y Cebyg1, n>3, (18)

k=1
with b; = 0 and b, = 1, upon considering whether or not a member of £, is primitive and,
if not, taking into account the length k + 1 of the first unit, where 1 < k < n — 3. Here, the
factor of 2 accounts for the choice concerning whether or not the second unit is marked in the
latter case. In order to establish b, = A137398[n], we must show that b, satisfies the defining
recurrence for A137398(n], i.e.

n—3
by =2by_1+2by2+ Y Ciby_i_1, n>4. (19)
k=1
Comparing (18) and (19), to complete the proof of (15), it suffices to show
n—3
Coc1+ Y Cibyg1=2by_1+byn,  n>4 (20)
k=2
We may assume n > 5 in (20) since it is seen to hold for n = 4.

To prove (20), we describe a combinatorial structure enumerated by the left side of the
identity and show that this structure is also enumerated by the right. We will make use of the
same descriptors short and long as before when referring to units of varying length. Let ),
denote the set of all marked Dyck paths of length n containing at least one short unit wherein
long units occurring to the right of the rightmost short unit (if there are any) may be marked,
but where the first such long unit is always unmarked. Further, we require that the rightmost
short unit within a member of ), correspond to the (2i — 1)-st and (2i)th steps for some i > 3.
Note that there are C,,_; members of ), ending in a short unit, upon appending ud to any
member of D,,_1. Otherwise, A € ), is expressible as A = A'ud)”, where A is any Dyck path
with [A'] > 2 and A" is nonempty and consists of long units that may be marked, except for the
first, which is always unmarked. Then there are Cyb,__1 possibilities for A in which || = k
and considering all possible k € [2, n — 3] implies that there are ZZ;E’ Cib,,_x—1 members of )y,
that end in a long unit. Thus, we have that the left-hand side of (20) gives | V|

We now show that 2b,,_1 + b,,_» also gives |),|. First let us take two copies of each a €
L, _1, where it is assumed for now that a contains at least one marked unit. Then write
& = ®q---qy_1&y- - &, where the a; denote the units of «, the leftmost marked unit is a,
and 2 < ¢ < r. Within the first copy of a, we insert ud directly between the units ay_; and
wg. Within the second copy of &, we replace ay_q with udajud, where ay_; = ua),_,d. In both
cases, we remove the mark from the unit a; and leave all other units of & undisturbed. On the
other hand, if « € £,,_, contains a marked unit and is decomposed into units as above, then
we insert udud between the units ay_; and a; and remove the mark from a,. Note that the
operations described in this paragraph yield uniquely all members of ), not ending in ud and
can be reversed by considering the position of the rightmost short unit and taking into account
whether there are one or more short units. If there are more than one, then consider further
whether or not the leftmost and rightmost short units are adjacent.
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So it remains to show
2|{a € L,_1 : a has no marked units}| + [{a € £,,_> : a has no marked units} |

equals the number of members of ), ending in ud (recall that this number is C,,_1). Note that
this equality is equivalent to the known relation 2t, +t,_1 = C,_1 for n > 2; for a combinato-
rial proof, we refer the reader to [6, Section 3]. This completes the proof of (20), as desired.

Proof of (16)

Let M, for 1 < k < n denote the set of ordered k-tuples (A4, ..., Ax) such that each A;
is a nonempty Dyck path all of whose units are long, with Y'¥_, |A;| = 1 + k. Let members of
M, have sign (—1)"k. Then it is seen that D (t3,...,t,+2) gives the sum of the signs of all
members of M,,, where M, = U/_; M,, ;. Before defining an involution on M, let us recall a
definition. By a valley of height j within a Dyck path where j > 0, we mean a d directly followed
by a u step in which the u has starting height j. A special valley will refer to one of height 1. Let
A= (A1,...,Ar) € M, and suppose first that the component A, contains at least one special
valley. We decompose Ay as Ay = adup, where « and B contain 22 and 2b steps respectively
and du denotes the rightmost special valley. Note that a,b > 1, with |Ay| = a+ b+ 1. Let
A* be obtained from A by replacing Ay with the two components Ay = ad? and Ay 1 = u?B,
keeping all other components of A the same. One may verify Ay € &1, A1 € Epyp, and
hence A* € M, 41, with Ajy; containing no special valleys. If it is the case that A € M,
for some k > 1 with Aj containing no special valleys, then A* is obtained from A by reversing
the operation described above. The mapping A — A* is an involution of M, which always
changes the sign and is not defined on M;, C M, consisting of those A = (p) € M, ;1 such
that p contains no special valleys.

To enumerate the members of M;,, note that p can be decomposed into unitsas p = p; - - - p;
for some j > 1, where p; = u?p!d? for each i with p! possibly empty. Let a(n,j) denote the
number of members of D,, that have j returns. Then removal of the initial # and the final 4
from each unit p; within p implies that there are a(n + 1 — j, j) possible p, and summing over
all j yields

L(n+1)/2]
M| = 21 a(n+1—j,j).
=
Recall that one of the combinatorial properties for A030238[n] is that it is given explicitly as
Zji”ﬁz)/zj a(n+2—j,j). Hence, M| = A030238[n — 1] for n > 1. Since each member of M,

has sign (—1)""1, the proof of (16) is complete.
Proof of (17)

Let 7, x denote the set of ordered k-tuples (A4, ..., Ax) such that each A; is a Dyck path of
length at least three all of whose units are long, with Y'¥_; |A;| = 1 + 2k. Let members of 7,
have sign (—1)""* and let 7, = U/_, 7, x. Then we have that D, (ts,...,t,13) gives the sum
of signs of all members of 7,,. Let 7,/ C 7, consist of (A1) € T, 1 such that A; is expressible
as Ay = u?d?a, where « is a unit. Note that n > 3 implies |a| > 3 and hence « is long, as
required. As there are C,_1 possibilities for A, we have ¢ (7,/) = (—1)""1C,_1, where ¢(S)
denotes the sum of the signs of the members of a subset S of 7. Below, we define in several
steps a sign-changing involution on the entirety of 7, — 7,) when n > 3, which implies (17).
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We first partition 7, — 7,, into three subsets Uy, V,, and W, given by
i) Up={(A1,..., Ax) € Ta — T, : Ay not primitive},
(i) Vu={(A1,...,Ax) € Ta — T, : A primitive and contains no special peaks},
(ii)) Wh = {(A1,...,Ax) € Tn — T,) : Ax primitive and contains at least one special peak },

where k > 1 in each case and a special peak is one of height two. We first define involutions
onUy, and Vy. Let (Aq,...,Ax) € Uy, and suppose A = af, where |a| > 2 and f is a unit. Then
we replace the component A, with the two components Ay = a and Ay = u?d?B, if || > 3,
or perform the inverse operation if |a| = 2 (i.e. « = u?d?). Note that the possible case where
k = 1and A; = u%d?B has been excluded from consideration since such members of 7, belong
to 7,. Thus, the two operations defined above taken together yield an involution, which we
will denote by ¢, that is defined on all of I4,.

Now suppose (Aq,...,Ax) € Vy. Theneither [A;| > 4 and is primitive with no special peaks
or Ay = u3d3. In the former case, we decompose A as Ay = uad, where & > 3. If |A;| > 4, then
replace the component A; = uad with the two components Ay = « and Ay = u?d®, keeping
all other components the same. Note that Ay containing no special peaks implies that the
penultimate component « in the resulting member of 7, contains no short units, as required.
If the final component A equals u3d®, then perform the inverse operation, noting that n > 3
implies k > 2 in this case. Thus, the two operations taken together yield an involution, which
we will denote by ¢, that is defined on all of V,,.

Define the subset W, (1) of W, as follows:

Wi(1) = {(M,..., Ak) € Wh 2 Ay = uaudpd},

where |a| > 1 and B contains only long units and is possibly empty.

In Lemma 3 below, it is shown o (W, (1)) = 0.

Now define the subset W, (2) of W), as consisting of those (Aq, ..., A;) such that one of the
following two conditions holds:

(@) k>1and Ay = u(ud)pd, where B consists of two or more long units, or

(b) k > 2 and Ay = u(ud)td, where 7 is a single long unit, and Ay, = u(ud)Bd, where
consists of one or more long units.

Define an involution of W, (2) by breaking apart or combining the final two components as
indicated:
A = u(ud)Bd < Ay = u(ud)p'd, \poq = u(ud)td,

where B consists of two or more long units, the first of which is denoted by 7, and p' = p — 7.

Let W), = W, — W, (1) — Wy (2). Note that (A, ..., Ax) € W), implies Ay = u(ud)td, where
7 is a long unit. We decompose W, as W), = U*_ W, (i), where W, (i) for 1 < i < 4 consists of
those (A1, ..., Ax) in W, satisfying respectively

Mk=1,

(2) k > 2 and Ak_1 is not primitive,

(3) k > 2 and A,_1 is primitive with no special peaks, or

(4) k > 2and Ay_1 = ua(ud)pBd, where |a| > 1 and B, possibly empty, consists of long units.
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Below, it is shown in Lemma 4 that ¢ (W),) = 0 using the cases above, and hence o (W,) =
0. This implies ¢ (7T, — 7,]) = 0, as desired.

Lemma 3. Ifn > 2, then (W, (1)) = 0.

Proof. The result is readily shown if n = 2, so we may assume n > 3. We pair members of
Wi (1) of opposite sign by either breaking apart the last component or combining the last two
components as indicated:

A = uaudpBd, |a| >2 < Ay = uad, Appq = u(ud)?pd.

The set of survivors of this involution consists of those k-tuples (A1, ..., Ax) such that either (i)
k > 2 and Ay = u(ud)?Bd, with B consisting of long units if nonempty and A;_; not primitive,
or (ii) k = 1 and Ay = u(ud)?Bd, with B as in (i). Note that n > 3 implies B # @ in the latter
case. On the survivors satisfying condition (i), we apply the involution ¢ defined above to the
(k — 1)-tuple comprising the first k — 1 components and then append A to the resulting vector.
Thus, all members satisfying (i) are paired except for those in which k = 2 with A; = u?d?t
and Ay = u(ud)?Bd, where B consists of long units and 7 is a single (long) unit.
Suppose |T| =i+ 1 in the decomposition of A;. This implies

Bl =mn+4)—|M|-3=n—-2—i

in Ay, and thus B € &,_,_;. Hence summing over all i yields Z?:_lz Cit,,—1—; possible ordered
pairs (A1, A). Further, the survivors in case (ii) above have cardinality ¢, since 8 has length
n — 1 and contains only long units. Thus, the sum of the signs of the remaining unpaired

members of W, (1) is given by

n—2
(=1)" 2 Y City—1—i + (=1)" ', =0,
i=1
as desired, upon observing the recurrence t, = 2?:_12 C;t,,_1—; for n > 3. Note that this recur-
rence may be easily realized combinatorially by considering the length i + 1 of the first unit
within a member of &,,_1. Thus, if desired, it is straightforward to pair the remaining members
of W, (1) of opposite sign upon considering the position of the first return within a member

of &,1. ]
Lemma4. Ifn > 3, then

o (ULWi(0)) = —o (Wi(4)) = (-1)""'Cus,
and hence c(W)) = 0.

Proof. We consider several cases on A = (Aq,...,A;) € W, whose last component Ay is given
by Ay = u(ud)td, where T is a long unit. If A € W)(1), then k = 1 implies |t| = n and
thus o(W)(1)) = (-1)""1C,_1. f A € W),(2), we apply the mapping ¢ defined above to
A= (Ay,..., Ak 1) and then append A to ¢(A’). This operation yields an involution on W}, (2)
that is not defined for those members in which k = 2 with A; = u2d?¢ and ¢ is a unit. Upon
considering |o| =i+ 1for1 <i <n — 3, one gets

n—3

. CiCh2i=Cy1—2Cy2

=1
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unpaired members of W, (2), by the recurrence for the Catalan numbers. If A € W),(3), we
apply the mapping i defined above to A’ and then append Ay to ¥(A’). This operation yields
an involution on W/ (3) except for those members where k = 2 and A; = u3d3, of which there
are C,_; possibilities. Combining the contributions from Wj, (i) for 1 < i < 3 yields

7 (ULWa(0) = (<1 1Cut + (=1 2(Cy1 = 2Ca2) + (<1)" 3Gy 2 = (~1)" Gy

For the second statement, let T denote the subset of W), (4) consisting of those members
where k = 2and Ay = u(ud)?d. Since ¢(T) = (—1)""2C,_», we need to show o (W (4) — T) =
0. Note that within the final component Ay = u(ud)td of A € W, (4) — T, we must have
2 <|t| < n — 2. We may then apply the involution g from Lemma 3 to A’ (as || < n — 2), and
to the resulting vector ¢(A’), we append the component A. This operation is seen to yield a
sign-changing involution of Wj,(4) — T, which completes the proof. O
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Y wmitt craTTi MM 0OAepXaay POPMYAM AAST BUBHAUHMKIB Aesikyx MaTpuib ['eccerbepra-Teraira,
HEHYABOBMMMU eAeMeHTaMI SKUX € MaAi (Beauki) uncaa llpeaepa i uncaa @arina. Hapeaeni aare-
bpaiuHi AOBeAeHHS Pe3yAbTaTiB 3 BUKOpUCTaHHSM dpopmyAn Tpyai Ta TBipHMX (PYHKITI AesTKIX
ITOCAIAOBHOCTEN BM3HAUHMKIB. TakoX 3aIponoHOBaHO KOMOIHATOpPHI AOBEAEHHSI, SIKi BUKOPMCTO-
BYIOTb Pi3Hi METOAM ITIAPaXYHKY, 30KpeMa 3HaKO3MiHHi iHBOAIOIIT Ha KOMOiHATOPHMX CTPYKTypaXx,
MOB’sI3aHMX 3 KAaacamy rpardactux masixis lpeaepa i Aika. Y pe3yAbTaTi HalllMX AOCAIAXKEHb MU
TaKOX OTpMMaAM HOBi popmyan arst umcer lIpeaepa Ta KararaHa, a TaKOX AAST AeSTKMX iHIIIX
nocAipoBHOCTet 3 OHAAlH eHIMKAOIeAl HiAOUMCeABHIX TTIOCAIAOBHOCTE, Y BUTASIAL BU3HAYHMKIB
MaTpyIh I'eccenbepra-Tromaina.

Kntouosi cnosa i ppasu: marpunst I'eccerbepra-Tromnina, dpopmyaa Tpyai, uncao llpeaepa, un-
cao QartHa, uncao Karanana, masix Hlpeaepa, miasix Aika.



