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Hessenberg-Toeplitz matrix determinants with Schröder and
Fine number entries
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In this paper, we find determinant formulas of several Hessenberg-Toeplitz matrices whose

nonzero entries are derived from the small and large Schröder and Fine number sequences.

Algebraic proofs of these results can be given which make use of Trudi’s formula and the gener-

ating function of the associated sequence of determinants. We also provide direct arguments of our

results that utilize various counting techniques, among them sign-changing involutions, on combi-

natorial structures related to classes of lattice paths enumerated by the Schröder and Fine numbers.

As a consequence of our results, we obtain some new formulas for the Schröder and Catalan num-

bers as well as for some additional sequences from the OEIS in terms of determinants of certain

Hessenberg-Toeplitz matrices.
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1 Introduction

Let Sn denote the nth large Schröder number given by

Sn =
1

n

n

∑
k=1

2k

(
n

k

)(
n

k − 1

)
, n ≥ 1,

with S0 = 1. The small Schöder number sn is defined as sn = 1
2 Sn for n ≥ 1, with s0 = 1. The

nth Fine number, denoted here by tn, is given by

tn = 3
⌊ n+1

2 ⌋
∑
k=1

(
2n − 2k

n − 1

)
−
(

2n

n

)
, n ≥ 1,

with t0 = 0. The first several terms of the sequences sn and tn for n ≥ 0 are as follows:

{sn}n≥0 = {1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859, . . .}
and

{tn}n≥0 = {0, 1, 0, 1, 2, 6, 18, 57, 186, 622, 2120, . . .}.

We will make use of in our proofs the (ordinary) generating functions for Sn, sn and tn,

which are given respectively by

∑
n≥0

Snxn =
1 − x −

√
1 − 6x + x2

2x
, ∑

n≥0

snxn =
1 + x −

√
1 − 6x + x2

4x
,
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∑
n≥0

tnxn =
1 + 2x −

√
1 − 4x

2(2 + x)
.

Let Cn = 1
n+1(

2n
n ) denote the nth Catalan number (see A000108 in [18]) and recall

∑
n≥0

Cnxn =
1 −

√
1 − 4x

2x
.

The preceding three sequences are closely aligned with Cn. For example, for n ≥ 1 we have

Sn =
n

∑
k=0

(
n + k

2k

)
Ck and tn+1 =

1

2

n

∑
k=2

Ck

(−2)n−k
.

Additional relations for the Fine numbers are given by

Cn = 2tn+1 + tn and tn+1 = Cn −
n−1

∑
k=0

Cktn−k.

The sequences Sn, sn and tn arise in various settings in enumerative and algebraic com-

binatorics and give the cardinalities of some important classes of first quadrant lattice paths

[2–6, 17]. See entries A006318, A001003 and A000957, respectively, in [18] for further informa-

tion. Here, we are interested in some new combinatorial properties of these numbers related

to their occurrence in certain Hessenberg-Toeplitz matrices.

Many relations for Schröder and Fine numbers have previously been found (see, e.g., [6,20,

21] and references contained therein), and determinants of matrices with Schröder or Fine

number entries and their generalizations have attracted recent attention. A couple of ba-

sic results in this direction involve Hankel determinants for the Schröder numbers, namely,

det
(
Si+j

)n−1

i,j=0
= 2(

n
2) and det

(
Si+j+1

)n−1

i,j=0
= 2(

n+1
2 ). The comparable formulas for the Fine num-

bers (see [6]) are given by det
(
ti+j+1

)n−1

i,j=0
= 1 and det

(
ti+j+2

)n−1

i,j=0
= 1 − n. These results have

been generalized in different ways by considering various families of Catalan-like sequences

(see, e.g., [7, 15] and reference contained therein).

In [19], F. Qi presents negativity results for a class of Hessenberg-Toeplitz determinants

whose elements contain the products of the factorial and the large Schröder numbers. By

using Cramer’s rule together with a generating function approach, E. Deutsch [5] obtained the

following Fine-Catalan determinant relation

tn = (−1)n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C0 1 1 · · · 0 0

C1 C0 1 · · · 0 0

C2 C1 C0 · · · 0 0

· · · · · · · · · . . . · · · · · ·
Cn−2 Cn−3 Cn−4 · · · C0 1

Cn−1 Cn−2 Cn−3 · · · C1 C0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

which was later rediscovered by the authors in [8]
(
formula (2.21) with a = −1

)
. In [8], the

authors found determinants of several families of Hessenberg-Toeplitz matrices having var-

ious subsequences of the Catalan sequence for the nonzero entries. These determinant for-

mulas may also be rewritten equivalently as identities involving sums of products of Catalan

numbers and multinomial coefficients. Comparable results featuring combinatorial arguments

have been found for the generalized Fibonacci (Horadam), tribonacci, tetranacci and Motzkin
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numbers in [9–12]. See also [1], where further results for Horadam number permanents and

determinants are obtained using an algebraic approach.

The organization of this paper is as follows. In the next section, we find formulas providing

algebraic arguments of several Hessenberg-Toeplitz matrices whose nonzero entries are given

by Sn, sn, tn or translates thereof. As a consequence of our results, one obtains new deter-

minant expressions, and hence combinatorial interpretations, for Sn, sn and Cn, as well as for

several additional sequences occurring in [18]. Further, equivalent multi-sum versions of these

determinant identities may be obtained using Trudi’s formula (see Lemma 1 below). In the

third section, we provide combinatorial proofs of the preceding formulas upon making use

of various counting techniques such as direct enumeration, bijections between equinumerous

structures and sign-changing involutions. In doing so, we draw upon the well-known combi-

natorial interpretations of Sn, Cn, sn and tn as enumerators of certain classes of first quadrant

lattice paths.

2 Schröder and Fine number determinant formulas

A Hessenberg-Toeplitz matrix is one having the form

An := An (a0; a1, . . . , an) =




a1 a0 0 · · · 0 0

a2 a1 a0 · · · 0 0

a3 a2 a1 · · · 0 0

· · · · · · · · · . . . · · · · · ·
an−1 an−2 an−3 · · · a1 a0

an an−1 an−2 · · · a2 a1




, (1)

where a0 6= 0. The following multinomial expansion of det (An) in terms of a sum of products

of the ai is known as Trudi’s formula (see, e.g., [14, Theorem 1]).

Lemma 1. Let n be a positive integer. Then

det (An) = ∑
ṽ=n

(−a0)
n−|v|

( |v|
v1, . . . , vn

)
av1

1 av2
2 · · · avn

n , (2)

where ( |v|
v1,...,vn

) = |v|!
v1!v2!···vn ! , ṽ = v1 + 2v2 + · · ·+ nvn and |v| = v1 + v2 + · · ·+ vn with vi ≥ 0.

Equivalently, we have

det (An) =
n

∑
k=1

(−a0)
n−k ∑

i1,...,ik≥1
i1+i2+···+ik=n

ai1 ai2 · · · aik
.

It is seen that the sum in (2) may be regarded as being over the set of partitions of the

positive integer n. The special case of Trudi when a0 = 1 is known as Brioschi’s formula [16].

Here, we focus on some cases of det (An) when a0 = ±1. For the sake of brevity, we denote

det
(

An (±1; a1, a2, . . . , an)
)

by D± (a1, a2, . . . , an).

There is the following inversion theorem involving ai and the corresponding sequence of

Hessenberg-Toeplitz determinants when a0 = 1 (see [13, Lemma 4]).

Lemma 2. Let (bn)n≥0 be defined by bn = det (An) for n ≥ 1, where An is given by (1) with

a0 = b0 = 1. If Bn denotes the Hessenberg-Toeplitz matrix associated with b0, . . . , bn, then

an = det (Bn) for n ≥ 1.
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We have the following determinant identity formulas involving the large and small

Schröder numbers.

Theorem 1. We have

D+ (S1, S2, . . . , Sn) = (−1)n−1Sn−1, n ≥ 2, (3)

D− (S1, S2, . . . , Sn) = 2 · A134425[n − 1], (4)

D+ (S0, S1, . . . , Sn−1) = (−1)n−1sn−1, (5)

D− (S0, S1, . . . , Sn−1) = sn, (6)

D+ (s1, s2, . . . , sn) = (−1)n−1Sn−1, (7)

D− (s1, s2, . . . , sn) = A225887[n − 1], (8)

D+ (s0, s1, . . . , sn−1) = (−1)n−1 A114710[n − 1], (9)

D− (s0, s1, . . . , sn−1) = Sn−1, (10)

D+ (s2, s3, . . . , sn+1) = (−1)n−1Sn−1, n ≥ 2, (11)

where all formulas hold for n ≥ 1 unless stated otherwise.

Making use of Lemma 1 yields the following multinomial identities for the two kinds of

Schröder numbers.

Theorem 2. We have

∑
ṽ=n

(−1)|v|−1

( |v|
v1, . . . , vn

)
Sv1

1 Sv2
2 · · · Svn

n = Sn−1, n ≥ 2,

∑
s̃=n

( |v|
v1, . . . , vn

)
Sv1

1 Sv2
2 · · · Svn

n = 2 · A134425[n − 1],

∑
ṽ=n

(−1)|v|−1

( |v|
v1, . . . , vn

)
Sv1

0 Sv2
1 · · · Svn

n−1 = sn−1,

∑
ṽ=n

( |v|
v1, . . . , vn

)
Sv1

0 Sv2
1 · · · Svn

n−1 = sn,

∑
ṽ=n

(−1)|v|−1

( |v|
v1, . . . , vn

)
sv1

1 sv2
2 · · · svn

n = Sn−1,

∑
s̃=n

( |v|
v1, . . . , vn

)
sv1

1 sv2
2 · · · svn

n = A225887[n],

∑
ṽ=n

(−1)|v|−1

( |v|
v1, . . . , vn

)
sv1

0 sv2
1 · · · svn

n−1 = A114710[n − 1],

∑
ṽ=n

( |v|
v1, . . . , vn

)
sv1

0 sv2
1 · · · svn

n−1 = Sn−1,

∑
ṽ=n

(−1)|v|−1

( |v|
v1, . . . , vn

)
sv1

2 sv2
3 · · · svn

n+1 = Sn−1, n ≥ 2,

where all formulas hold for n ≥ 1 unless stated otherwise.

The identities in Theorems 1 and 2 are seen to be equivalent by (2), so we need only prove

the former.
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Proof. Let f (x) = ∑n≥1 det (An) xn, where An is given by (1). Then rewriting (2) in terms of

generating functions implies

f (x) = ∑
n≥1

(−a0x)n
∑
ṽ=n

( |v|
v1, . . . , vn

)(
−a1

a0

)v1

· · ·
(
−an

a0

)vn

=
g(x)

1 − g(x)
,

where g(x) = ∑i≥1(−a0)
i−1aix

i.

We consider several cases on ai. First let ai = Si for i ≥ 1. Then

g(x) = ∑
i≥1

(−a0)
i−1Six

i =
1 + 3a0x −

√
1 + 6a0x + a2

0x2

2a2
0x

.

If a0 = 1, then

f (x) =
g(x)

1 − g(x)
=

1 + 3x −
√

1 + 6x + x2

−1 − x +
√

1 + 6x + x2

= 2x − 1

2

(
1 + 3x −

√
1 + 6x + x2

)

= 2x + ∑
n≥2

(−1)n−1Sn−1xn,

which implies (3). If a0 = −1, then

f (x) =
g(x)

1 − g(x)
=

1 − 3x −
√

1 − 6x + x2

−1 + 5x +
√

1 − 6x + x2

=
4x

1 − 7x +
√

1 − 6x + x2
= ∑

n≥1

2 · A134425[n − 1]xn,

which implies (4), upon recalling the formula ∑n≥0 A134425[n]xn = 2
1−7x+

√
1−6x+x2

(see OEIS

article).

Now let ai = Si−1 for i ≥ 1. In this case, we have

g(x) = ∑
i≥1

(−a0)
i−1 Si−1xi =

−1 − a0x +
√

1 + 6a0x + a2
0x2

2a0
.

If a0 = 1, then

f (x) =
−1 − x +

√
1 + 6x + x2

3 + x −
√

1 + 6x + x2
=

−1 + x +
√

1 + 6x + x2

4
= ∑

n≥1

(−1)n−1sn−1xn,

which gives (5), whereas if a0 = −1, then

f (x) =
1 − x −

√
1 − 6x + x2

1 + x +
√

1 − 6x + x2
=

1 − 3x −
√

1 − 6x + x2

4x
= ∑

n≥1

snxn,

which gives (6).

Similar proofs may be given for (7)–(10). Alternatively, formulas (7) and (10) follow from

(6) and (5), respectively, upon applying Lemma 2 since

D+ (s1, . . . , sn) = (−1)n−1Sn−1

if and only if

D− (S0, . . . , Sn−1) = D+

(
S0,−S1, . . . , (−1)n−1Sn−1

)
= sn
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and

D+ (S0, . . . , Sn−1) = (−1)n−1sn−1

if and only if

D− (s0, . . . , sn−1) = D+

(
s0,−s1, . . . , (−1)n−1sn−1

)
= Sn−1.

Finally, to show (11), let ai = si+1 for i ≥ 1 and a0 = 1 to get

g(x) = ∑
i≥1

(−1)i−1si+1xi =
−1 − 3x + 4x2 +

√
1 + 6x + x2

4x2
.

Thus,

f (x) =
g(x)

1 − g(x)
=

−1 − 3x + 4x2 +
√

1 + 6x + x2

1 + 3x −
√

1 + 6x + x2

= 3x +
1

2

(
−1 − 3x +

√
1 + 6x + x2

)

= 3x + ∑
n≥2

(−1)n−1Sn−1xn,

which completes the proof.

We have the following Fine number determinant formulas.

Theorem 3. We have

D+ (t1, t2, . . . , tn) = un, (12)

D− (t1, t2, . . . , tn) = Cn−1, (13)

D+ (t2, t3, . . . , tn+1) = (−1)n−1Cn−1, n ≥ 2, (14)

D− (t2, t3, . . . , tn+1) = A137398[n], (15)

D+ (t3, t4, . . . , tn+2) = (−1)n−1 A030238[n − 1], (16)

D+ (t4, t5, . . . , tn+3) = (−1)n−1Cn−1, n ≥ 3, (17)

where all formulas hold for n ≥ 1 unless stated otherwise and un denotes the sequence defined

recursively by un = un−1 + ∑
n−2
i=1 (−1)i+1Ciun−i−1 if n ≥ 3 with u1 = u2 = 1.

Proof. Proofs comparable to those given for (3)–(11) may also be given for (12)–(17). We illus-

trate using formula (17). First note that

∑
n≥1

tn+3xn = ∑
n≥3

tn+1xn−2 =
1

x2

(
2

1 + 2x +
√

1 − 4x
− 1 − x2

)
,

and hence we have

g(x) = ∑
n≥1

(−1)n−1tn+3xn = − 1

x2

(
1 + 2x − x2 + 2x3 −

(
1 + x2

)√
1 + 4x

1 − 2x +
√

1 + 4x

)
.
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This gives

∑
n≥3

det (An) xn =
g(x)

1 − g(x)
− det (A1) x − det (A2) x2

=
−1 − 2x + x2 − 2x3 +

(
1 + x2

)√
1 + 4x

1 + 2x −
√

1 + 4x
− 2x + 2x2

=
−1 − 4x − x2 + 2x3 +

(
1 + 2x − x2

)√
1 + 4x

1 + 2x −
√

1 + 4x

=

(
− 1 − 4x − x2 + 2x3 +

(
1 + 2x − x2

)√
1 + 4x

) (
1 + 2x +

√
1 + 4x

)

4x2

=
−2x2

(
1 + 2x − 2x2 −

√
1 + 4x

)

4x2

= x

(
1 −

√
1 + 4x

−2x
− 1 + x

)
= x ∑

n≥2

Cn(−x)n = ∑
n≥3

(−1)n−1Cn−1xn,

which implies (17).

3 Combinatorial proofs

In this section, we provide combinatorial proofs of formulas (3)–(11) and (12)–(17). Let us

first recall combinatorial interpretations of the sequences Sn, sn and tn, which we will make

use of in our proofs, and define some related terms. Let Pn denote the set of lattice paths

(called Schröder paths) from the origin to the point (2n, 0) that never go below the x-axis using

u = (1, 1), d = (1,−1) and h = (2, 0) steps. Then Sn = |Pn| for all n ≥ 0, where P0 is

understood to consist of the empty path of length zero. Half the horizontal distance traversed

by a Schröder path λ will be referred to here as the length of λ and is denoted by |λ|. Note

that |λ| equals the sum of numbers of u and h steps in λ. (We remark that the term semi-

length is often used in the literature, instead of length, for the quantity indicated, though we

prefer the latter due to brevity.) An h step connecting two points with y-coordinate ℓ ≥ 0

is said to be of height ℓ. A low h step will refer to an h step of height 0. The subset of Pn

whose members contain no low h steps will be denoted by Qn, with its members referred to

as restricted Schröder paths. Then it is well-known that sn = |Qn| for n ≥ 0. Hence, since

Sn = 2sn if n ≥ 1, we have that exactly half the members of Pn are restricted.

Let Dn denote the subset of Pn whose members contain no h steps. Members of Dn are

referred to as Dyck paths with |Dn| = Cn for n ≥ 0. A member of Dn is said to have a peak of

height i, where 1 ≤ i ≤ n if there exists a u directly followed by a d in which the u has ending

height i. Let En denote the subset of Dn whose members contain no peaks of height 1. Then it

is well-known that tn = En−1 for n ≥ 1 with t0 = 0.

By a return within a member of Pn, we mean an h or u step that terminates on the x-axis. A

terminal return is one that has endpoint (2n, 0) with all other returns being referred to as non-

terminal. By a unit within λ ∈ Pn, we mean a subpath of λ occurring between two adjacent

returns or prior to the first return. Note that a low h step comprises its own unit with all other

units of the form uσd for some possibly empty Schröder path σ. Within members of En, all

units must have length at least two, whereas members of Qn can also contain units of the form

ud, but not h. Finally, a member of Pn having no non-terminal returns is said to be primitive. A
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primitive member λ ∈ Pn for n ≥ 2 is necessarily of the form λ = uσd, where σ ∈ Pn−1, and

hence belongs to Qn.

We compute the determinant of an n × n Hessenberg-Toeplitz matrix using the definition

of a determinant as a signed sum over the set of permutations σ of [n]. In doing so, one

need only consider those σ whose cycles when expressed disjointly each comprise a set of

consecutive integers. Such σ are clearly in one-to-one correspondence with the compositions

of n, upon identifying the various cycle lengths with parts of a composition. This implies that

the determinant of a matrix An of the form (1) may be regarded as a weighted sum over the

set of compositions of n. If a0 = 1 in this sum, then each part of size r ≥ 1 has (signed)

weight given by (−1)r−1ar (regardless of its position) and the weight of a composition is the

product of the weights of its constituent parts. One can then define the sign of a composition

as (−1)n−m, where m denotes the number of its parts. On the other hand, when a0 = −1,

every part of size r now contributes ar towards the weight of the composition. Thus, assuming

ai ≥ 0 for i ≥ 1, each term in the determinant sum for An is non-negative in this case. Note

that computing det(An), where a0 = −1, is equivalent to finding the permanent of the matrix

obtained from An by replacing a0 = −1 with a0 = 1.

We now provide combinatorial proofs of the formulas from Theorems 1 and 3 above.

Proofs of (3), (4), (7) and (8)

Let An denote the set of marked Schröder paths of length n in which returns to the

x-axis may be marked and whose final return is always marked. Define the sign of λ ∈ An

by (−1)n−µ(λ), where µ(λ) denotes the number of marked returns of λ. Let A′
n ⊆ An con-

sist of those members of An in which there are no low h steps (marked or unmarked). Then

D+ (S1, . . . , Sn) and D+ (s1, . . . , sn) give the sum of the signs of all members of An and A′
n,

respectively. To see this, first suppose τ is a member of An or A′
n and is derived from the

(weighted) composition σ in either determinant expansion. That is, τ is obtained from σ by

overlaying a member of Pr or Qr on each part of σ of size r for every r, marking the final return

of each path and finally concatenating the paths in the same order as the parts of σ. Then the

sequence of part sizes of σ corresponds to the sequence of lengths of the subpaths occurring

between adjacent marked returns of τ (or prior to the first marked return), and, in particular,

the number of parts of σ equals the number of marked returns of τ. Thus, the sign of σ in the

determinant expansion corresponds to n − µ(τ) and considering all τ associated with each σ

implies D+ (S1, . . . , Sn) and D+ (s1, . . . , sn) give the sum of the signs of the members of An and

A′
n, respectively, as claimed.

We define a sign-changing involution on An by identifying the leftmost non-terminal re-

turn and either marking it or removing the marking from it. The set of survivors of this invo-

lution consists of the primitive members of An. If n ≥ 2, then there are Sn−1 primitive members

of An, each of sign (−1)n−1, which implies (3). Since the survivors of the involution all belong

to A′
n, this establishes (7) as well.

On the other hand, it is seen from the preceding that D− (S1, . . . , Sn) and D− (s1, . . . , sn)

give the cardinalities of the sets An and A′
n, respectively, since when a0 = −1 the sign of σ is

cancelled out by the product of the superdiagonal −1 factors in the term corresponding to σ

in the determinant expansion. We first show (8). Let P∗
n denote the set of colored members of

Pn wherein each low h step is colored in one of three ways. Recall one of the combinatorial

interpretations of A225887[n] is that it gives the cardinality of P∗
n for n ≥ 0. Thus, to complete
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the proof of (8), it suffices to define a bijection φ : P∗
n−1 → A′

n. Let ha, hb, hc denote the three

kinds of colored low h steps within λ ∈ P∗
n−1. We decompose λ as λ = λ(1) · · · λ(r) for some

r ≥ 1, where each subpath λ(i) for 1 ≤ i ≤ r − 1 ends in either ha or hb, with all other low h

steps in λ (if there are any) equal to hc, and λ(r) is possibly empty. Note that if λ contains no ha

or hb steps, then we take r = 1 and λ = λ(1); further, if λ ends in ha or hb, then r ≥ 2 with λ(r)

understood to be empty in this case. If 1 ≤ i ≤ r − 1 and λ(i) ends in ha with λ(i) = αiha, where

αi is possibly empty, then let λ
(i)

= uαid, where the final d is marked (i.e. the return to the

x-axis associated with this d is marked). If λ(i) = βihb, then let λ
(i)

= uβid, where the final d is

unmarked. Finally, let λ
(r)

= uλ(r)d, where the final d is marked. Define φ(λ) = λ
(1) · · · λ

(r)
as

the concatenation of the lattice paths λ
(i)

. Note that φ can be reversed, and hence is bijective,

as desired, upon considering the positions of the returns and whether or not they are marked.

Further, it is seen that the number of hc steps within λ equals the number of h steps of height

1 within φ(λ) for all λ.

We now show (4). Let P̃n denote the set derived from members of Pn by stipulating that

the low h steps come in one of four kinds, denoted by h(i) for 1 ≤ i ≤ 4. Recall that A134425[n]

gives |P̃n| for n ≥ 0, so for (4), we need to prove |An| = 2|P̃n−1| for n ≥ 1. We proceed

inductively, noting that the n = 1 case of the equality is clear. Let n ≥ 2 and we consider the

following cases on members λ ∈ An: (i) λ = λ′h, (ii) λ = λ′α, where α 6= h is a unit and λ′ is

nonempty, with the final return of λ′ marked, or (iii) λ = λ′β, where β 6= h is a unit and either

λ′ = ∅ or λ′ 6= ∅ with the final return of λ′ not marked. We partition ρ ∈ P̃n−1 as follows:

(I) ρ ends in h(1) or h(2), (II) ρ = ρ′α, where α 6= h(i) for any i is a unit and ρ′ is possibly empty,

or (III) ρ ends in h(3) or h(4).

We now demonstrate for each of (i) –(iii) that there are twice as many members λ ∈ An as

there are ρ ∈ P̃n−1 in the corresponding case (I) –(III). Upon considering whether or not the

final return in λ′ is marked, it is seen by the induction hypothesis that there are twice as many

λ ∈ An for which (i) applies as there are ρ ∈ P̃n−1 for which (I) applies. The same holds true

of (ii) and (II) as λ′ in (ii) has length one greater than that of ρ′ in (II), with α the same in both

cases. To show that the same holds for cases (iii) and (III) above, observe first that the number

of possible ρ ∈ P̃n−1 in (III) is given by 2|P̃n−2|. Thus, to complete the proof of (4), it is enough

to prove that there are 2|An−1| possible λ ∈ An in (iii).

Let λ = λ′β ∈ An, where β 6= h is a unit and λ′ does not have a marked final return.

If λ′ = ∅, i.e. λ is primitive, then write β = uβ′d and regard β′ as a member of An−1 in

which only the final return is marked. Otherwise, consider cases based on the length ℓ of β,

where 1 ≤ ℓ ≤ n − 1. If ℓ = 1, i.e. β = ud, then regard λ′ as a member of An−1 by marking

its last return. If ℓ ≥ 2, then let β = uβ′d, where β′ is nonempty. Then form the lattice path

σ = λ′β′ of length n − 1, wherein the last return of λ′ and of β′ are now both marked (here, it is

understood that all other returns of λ′ remain of the same status regarding whether or not they

are marked and that all non-terminal returns of β′, if any, are unmarked). Note that σ ∈ An−1

with σ containing at least two marked returns. It is seen then that each member of An−1 arises

exactly twice when one performs the operations described above on the various members of

An for which (iii) applies, upon considering whether or not a member of An−1 contains two

or more marked returns, and if it does, additionally taking into account the position of the

rightmost non-terminal marked return. This establishes the desired equality |An| = 2
∣∣∣P̃n−1

∣∣∣
for all n ≥ 1, which completes the proof of (4).
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Proofs of (5), (6), (9) and (10)

Let An be as in the previous proof and let Bn ⊆ An consist of those members in which all

marked returns (including the final return) correspond to low h steps. Let B′
n ⊆ Bn consist of

those members in which no low h is unmarked. Define the sign of λ ∈ Bn by (−1)n−µ(λ), where

µ(λ) denotes the number of marked low h’s. Reasoning as in the prior proof, we have that

D+ (S0, . . . , Sn−1) and D+ (s0, . . . , sn−1) respectively give the sum of the signs of all members

of Bn and B′
n. To show (5), we define a sign-changing involution on Bn by identifying the

leftmost non-terminal low h and either marking it or removing the marking from it. This

involution fails to be defined for paths of the form λ = αh, where α ∈ Qn−1 and h is marked.

Thus, there are sn−1 survivors of the involution, each of sign (−1)n−1, which implies (5). For

(9), we define an involution on B′
n by identifying the leftmost non-terminal (marked) low h

step or peak of height 1 (i.e. unit of the form ud) and replacing one option with the other. This

involution is not defined on members ρ = βh, where β ∈ Pn−1 contains no low h steps or peaks

of height 1. Note that there are A114710[n − 1] such ρ for all n ≥ 1, each with sign (−1)n−1,

which implies (9).

On the other hand, we have that D− (S0, . . . , Sn−1) and D− (s0, . . . , sn−1) respectively give

the cardinalities of the sets Bn and B′
n. To show (6), consider decomposing ρ ∈ Bn as ρ =

ρ(1) · · · ρ(r) for some r ≥ 1, where each ρ(i) ends in a marked low h step and contains no other

marked steps. Write ρ(i) = αih for 1 ≤ i ≤ r, where αi is possibly empty. Define ρ(i) = uαid and

let ρ = ρ(1) · · · ρ(r). Then the mapping ρ 7→ ρ is seen to define a bijection between Bn and Qn

(to reverse it, consider positions of the returns in members of Qn), and hence |Bn| = sn, which

implies (6). Finally, members of B′
n and Pn−1 are seen to be synonymous, upon removing the

marking from all low h’s and disregarding the final h in members of the former, which implies

(10).

Proof of (11)

Let Jn,k for 1 ≤ k ≤ n denote the set of ordered k-tuples λ = (λ1, . . . , λk) wherein each λi

is a restricted Schröder path having length at least two such that ∑
k
i=1 |λi| = n + k. Define the

sign of λ ∈ Jn,k by (−1)n−k and let Jn = ∪n
k=1Jn,k. Then we have that D+ (s2, . . . , sn+1) gives

the sum of the signs of all members of Jn. We define a sign-changing involution of Jn which

makes use of several cases as follows. First suppose that the final component λk of λ ∈ Jn,k

is not primitive. If λk = uσdτ, where σ is a possibly empty Schröder path and |τ| ≥ 2, then

replace λk with the two components λk = τ and λk+1 = uσdud, leaving all other components

of λ unchanged. We perform the reverse operation, i.e. fusing the last two components and

dropping ud, if the last component consists of a unit followed by ud. This pairs all members

of Jn in which the final component is not primitive except for those belonging to Jn,1 where

λ1 = uσdud for some σ.

Now suppose λk within λ is primitive. First assume |λk| ≥ 3, and we consider the following

further subcases:

(i) λk = uσd, with σ containing no low h’s and |σ| ≥ 2,

(ii) λk = uσ′hσ′′d, with σ′ 6= ∅ and containing no low h’s and σ′′ possibly empty,

(iii) λk = uhσd, with σ 6= ∅,
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where σ, σ′, σ′′ denote Schröder paths. (Note that by σ or σ′ not containing a low h in the

preceding, we mean when σ or σ′ is viewed by itself starting from the origin.) Now suppose

ρ = (ρ1, . . . , ρk) ∈ Jn,k, with ρk primitive and |ρk| = 2. We consider the following subcases:

(I) ρk = u2d2, (II) ρk = uhd, with ρk−1 not primitive, or (III) ρk = uhd, with ρk−1 primitive. Note

that n ≥ 2 implies k ≥ 2 in (I)–(III) and hence a penultimate component exists in each case.

We now perform the following operations on the members of Jn,k in (i)–(iii) above (leaving all

other components unchanged):

(a) λk = uσd ↔ λk = σ, λk+1 = u2d2,

(b) λk = uσ′hσ′′d ↔ λk = σ′uσ′′d, λk+1 = uhd,

(c) λk = uhσd ↔ λk = uσd, λk+1 = uhd.

Note that the assumptions on σ, σ′, σ′′ in (i)–(iii) imply that these operations are well-

defined and it is seen that they are reversible in each case. Hence, they provide bijections

between the members of Jn satisfying (i), (ii) or (iii) and those satisfying (I), (II) or (III), re-

spectively. Since the number of components changes by one in all cases, each member of Jn

whose final component is primitive is paired with another of opposite sign. Thus, when taken

together with the pairing defined in the preceding paragraph, we have that all members of Jn

are paired except for λ = (λ1) ∈ Jn,1 such that λ1 = uσdud for some σ ∈ Pn−1. There are Sn−1

possibilities for these λ, each having sign (−1)n−1, which implies formula (11).

Proofs of (12) and (13)

We first find a combinatorial interpretation for D− (t1, . . . , tn). A short unit within a member

of Dn will refer to a unit having length one (i.e. is equal ud), with all other units being referred

to as long. Let D′
n denote the subset of Dn whose members have last unit short and hence

|D′
n| = Cn−1 for n ≥ 1. Suppose ρ is a (weighted) composition of n with m parts occurring

in the expansion of D− (t1, . . . , tn). On a part of size r within ρ, we overlay α ∈ Er−1 followed

by ud. We do this for each part of ρ and concatenate the resulting lattice paths αud to obtain

a member of D′
n in which there are m short units altogether. Upon considering all possible m,

we have that D− (t1, . . . , tn) gives the cardinality of D′
n, which implies (13).

To show (12), first note that D+ (t1, . . . , tn) gives the sum of the signs of all λ ∈ D′
n, where

the sign of λ is defined as (−1)n−ν(λ) and ν denotes the statistic recording the number of short

units. Let rn = D+ (t1, . . . , tn) for n ≥ 1; clearly, we have r1 = r2 = 1, so we may assume

n ≥ 3. Let ρ ∈ D′
n. If the first unit of ρ has length i + 1 for some 1 ≤ i ≤ n − 2, then the

contribution towards the sum of signs is given by (−1)i+1Cirn−i−1. Summing over all i yields

a total contribution of ∑
n−2
i=1 (−1)i+1Cirn−i−1 for members of D′

n whose first unit is long. On

the other hand, if the first unit is short, then there are rn−1 possibilities as no adjustment for

the sign is required when prepending a short unit to a member of D′
n−1. Combining the prior

cases of ρ implies rn satisfies the desired recurrence and completes the proof.

Proofs of (14) and (15)

Let Ln denote the set of marked members of En wherein the first unit is not marked and all

other units may be marked. Define the sign of λ ∈ En by (−1)n−µ(λ), where µ(λ) denotes the

number of unmarked units of λ. Then D+ (t2, . . . , tn+1) and D− (t2, . . . , tn+1) are seen to give

the sum of signs and cardinality, respectively, of the members of Ln. To show (14), define an
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involution on Ln by marking or unmarking the second unit, if it exists. This operation is not

defined on the primitive members of Ln, each of which has sign (−1)n−1. Since the primitive

members of Ln have cardinality Cn−1 for n ≥ 2, formula (14) is established.

To show (15), let bn = D− (t2, . . . , tn+1) for n ≥ 1 and note

bn = Cn−1 + 2
n−3

∑
k=1

Ckbn−k−1, n ≥ 3, (18)

with b1 = 0 and b2 = 1, upon considering whether or not a member of Ln is primitive and,

if not, taking into account the length k + 1 of the first unit, where 1 ≤ k ≤ n − 3. Here, the

factor of 2 accounts for the choice concerning whether or not the second unit is marked in the

latter case. In order to establish bn = A137398[n], we must show that bn satisfies the defining

recurrence for A137398[n], i.e.

bn = 2bn−1 + 2bn−2 +
n−3

∑
k=1

Ckbn−k−1, n ≥ 4. (19)

Comparing (18) and (19), to complete the proof of (15), it suffices to show

Cn−1 +
n−3

∑
k=2

Ckbn−k−1 = 2bn−1 + bn−2, n ≥ 4. (20)

We may assume n ≥ 5 in (20) since it is seen to hold for n = 4.

To prove (20), we describe a combinatorial structure enumerated by the left side of the

identity and show that this structure is also enumerated by the right. We will make use of the

same descriptors short and long as before when referring to units of varying length. Let Yn

denote the set of all marked Dyck paths of length n containing at least one short unit wherein

long units occurring to the right of the rightmost short unit (if there are any) may be marked,

but where the first such long unit is always unmarked. Further, we require that the rightmost

short unit within a member of Yn correspond to the (2i − 1)-st and (2i)th steps for some i ≥ 3.

Note that there are Cn−1 members of Yn ending in a short unit, upon appending ud to any

member of Dn−1. Otherwise, λ ∈ Yn is expressible as λ = λ′udλ′′, where λ′ is any Dyck path

with |λ′| ≥ 2 and λ′′ is nonempty and consists of long units that may be marked, except for the

first, which is always unmarked. Then there are Ckbn−k−1 possibilities for λ in which |λ′| = k

and considering all possible k ∈ [2, n − 3] implies that there are ∑
n−3
k=2 Ckbn−k−1 members of Yn

that end in a long unit. Thus, we have that the left-hand side of (20) gives |Yn|.
We now show that 2bn−1 + bn−2 also gives |Yn|. First let us take two copies of each α ∈

Ln−1, where it is assumed for now that α contains at least one marked unit. Then write

α = α1 · · · αℓ−1αℓ · · · αr, where the αi denote the units of α, the leftmost marked unit is αℓ
and 2 ≤ ℓ ≤ r. Within the first copy of α, we insert ud directly between the units αℓ−1 and

αℓ. Within the second copy of α, we replace αℓ−1 with udα′
ℓ
ud, where αℓ−1 = uα′

ℓ−1d. In both

cases, we remove the mark from the unit αℓ and leave all other units of α undisturbed. On the

other hand, if α ∈ Ln−2 contains a marked unit and is decomposed into units as above, then

we insert udud between the units αℓ−1 and αℓ and remove the mark from αℓ. Note that the

operations described in this paragraph yield uniquely all members of Yn not ending in ud and

can be reversed by considering the position of the rightmost short unit and taking into account

whether there are one or more short units. If there are more than one, then consider further

whether or not the leftmost and rightmost short units are adjacent.
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So it remains to show

2
∣∣{α ∈ Ln−1 : α has no marked units}

∣∣+
∣∣{α ∈ Ln−2 : α has no marked units}

∣∣

equals the number of members of Yn ending in ud (recall that this number is Cn−1). Note that

this equality is equivalent to the known relation 2tn + tn−1 = Cn−1 for n ≥ 2; for a combinato-

rial proof, we refer the reader to [6, Section 3]. This completes the proof of (20), as desired.

Proof of (16)

Let Mn,k for 1 ≤ k ≤ n denote the set of ordered k-tuples (λ1, . . . , λk) such that each λi

is a nonempty Dyck path all of whose units are long, with ∑
k
i=1 |λi| = n + k. Let members of

Mn,k have sign (−1)n−k. Then it is seen that D+ (t3, . . . , tn+2) gives the sum of the signs of all

members of Mn, where Mn = ∪n
k=1Mn,k. Before defining an involution on Mn, let us recall a

definition. By a valley of height j within a Dyck path where j ≥ 0, we mean a d directly followed

by a u step in which the u has starting height j. A special valley will refer to one of height 1. Let

λ = (λ1, . . . , λk) ∈ Mn,k and suppose first that the component λk contains at least one special

valley. We decompose λk as λk = αduβ, where α and β contain 2a and 2b steps respectively

and du denotes the rightmost special valley. Note that a, b ≥ 1, with |λk| = a + b + 1. Let

λ∗ be obtained from λ by replacing λk with the two components λk = αd2 and λk+1 = u2β,

keeping all other components of λ the same. One may verify λk ∈ Ea+1, λk+1 ∈ Eb+1, and

hence λ∗ ∈ Mn,k+1, with λk+1 containing no special valleys. If it is the case that λ ∈ Mn,k

for some k > 1 with λk containing no special valleys, then λ∗ is obtained from λ by reversing

the operation described above. The mapping λ 7→ λ∗ is an involution of Mn which always

changes the sign and is not defined on M′
n ⊆ Mn consisting of those λ = (ρ) ∈ Mn,1 such

that ρ contains no special valleys.

To enumerate the members of M′
n, note that ρ can be decomposed into units as ρ = ρ1 · · · ρj

for some j ≥ 1, where ρi = u2ρ′id
2 for each i with ρ′i possibly empty. Let a(n, j) denote the

number of members of Dn that have j returns. Then removal of the initial u and the final d

from each unit ρi within ρ implies that there are a(n + 1 − j, j) possible ρ, and summing over

all j yields

∣∣M′
n

∣∣ =
⌊(n+1)/2⌋

∑
j=1

a(n + 1 − j, j).

Recall that one of the combinatorial properties for A030238[n] is that it is given explicitly as

∑
⌊(n+2)/2⌋
j=1 a(n + 2 − j, j). Hence, |M′

n| = A030238[n − 1] for n ≥ 1. Since each member of M′
n

has sign (−1)n−1, the proof of (16) is complete.

Proof of (17)

Let Tn,k denote the set of ordered k-tuples (λ1, . . . , λk) such that each λi is a Dyck path of

length at least three all of whose units are long, with ∑
k
i=1 |λi| = n + 2k. Let members of Tn,k

have sign (−1)n−k and let Tn = ∪n
k=1Tn,k. Then we have that D+ (t4, . . . , tn+3) gives the sum

of signs of all members of Tn. Let T ′
n ⊆ Tn consist of (λ1) ∈ Tn,1 such that λ1 is expressible

as λ1 = u2d2α, where α is a unit. Note that n ≥ 3 implies |α| ≥ 3 and hence α is long, as

required. As there are Cn−1 possibilities for λ1, we have σ (T ′
n ) = (−1)n−1Cn−1, where σ(S)

denotes the sum of the signs of the members of a subset S of Tn. Below, we define in several

steps a sign-changing involution on the entirety of Tn − T ′
n when n ≥ 3, which implies (17).
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We first partition Tn − T ′
n into three subsets Un, Vn and Wn given by

(i) Un =
{
(λ1, . . . , λk) ∈ Tn − T ′

n : λk not primitive
}

,

(ii) Vn =
{
(λ1, . . . , λk) ∈ Tn − T ′

n : λk primitive and contains no special peaks
}

,

(iii) Wn =
{
(λ1, . . . , λk) ∈ Tn − T ′

n : λk primitive and contains at least one special peak
}

,

where k ≥ 1 in each case and a special peak is one of height two. We first define involutions

on Un and Vn. Let (λ1, . . . , λk) ∈ Un and suppose λ = αβ, where |α| ≥ 2 and β is a unit. Then

we replace the component λk with the two components λk = α and λk+1 = u2d2β, if |α| ≥ 3,

or perform the inverse operation if |α| = 2 (i.e. α = u2d2). Note that the possible case where

k = 1 and λ1 = u2d2β has been excluded from consideration since such members of Tn belong

to T ′
n . Thus, the two operations defined above taken together yield an involution, which we

will denote by φ, that is defined on all of Un.

Now suppose (λ1, . . . , λk) ∈ Vn. Then either |λk| ≥ 4 and is primitive with no special peaks

or λk = u3d3. In the former case, we decompose λk as λk = uαd, where α ≥ 3. If |λk| ≥ 4, then

replace the component λk = uαd with the two components λk = α and λk+1 = u3d3, keeping

all other components the same. Note that λk containing no special peaks implies that the

penultimate component α in the resulting member of Tn contains no short units, as required.

If the final component λk equals u3d3, then perform the inverse operation, noting that n ≥ 3

implies k ≥ 2 in this case. Thus, the two operations taken together yield an involution, which

we will denote by ψ, that is defined on all of Vn.

Define the subset Wn(1) of Wn as follows:

Wn(1) =
{
(λ1, . . . , λk) ∈ Wn : λk = uαudβd

}
,

where |α| ≥ 1 and β contains only long units and is possibly empty.

In Lemma 3 below, it is shown σ
(
Wn(1)

)
= 0.

Now define the subset Wn(2) of Wn as consisting of those (λ1, . . . , λk) such that one of the

following two conditions holds:

(a) k ≥ 1 and λk = u(ud)βd, where β consists of two or more long units, or

(b) k ≥ 2 and λk = u(ud)τd, where τ is a single long unit, and λk−1 = u(ud)βd, where β

consists of one or more long units.

Define an involution of Wn(2) by breaking apart or combining the final two components as

indicated:

λk = u(ud)βd ↔ λk = u(ud)β′d, λk+1 = u(ud)τd,

where β consists of two or more long units, the first of which is denoted by τ, and β′ = β − τ.

Let W ′
n = Wn −Wn(1)−Wn(2). Note that (λ1, . . . , λk) ∈ W ′

n implies λk = u(ud)τd, where

τ is a long unit. We decompose W ′
n as W ′

n = ∪4
i=1W ′

n(i), where W ′
n(i) for 1 ≤ i ≤ 4 consists of

those (λ1, . . . , λk) in W ′
n satisfying respectively

(1) k = 1,

(2) k ≥ 2 and λk−1 is not primitive,

(3) k ≥ 2 and λk−1 is primitive with no special peaks, or

(4) k ≥ 2 and λk−1 = uα(ud)βd, where |α| ≥ 1 and β, possibly empty, consists of long units.
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Below, it is shown in Lemma 4 that σ (W ′
n) = 0 using the cases above, and hence σ (Wn) =

0. This implies σ (Tn − T ′
n ) = 0, as desired.

Lemma 3. If n ≥ 2, then σ
(
Wn(1)

)
= 0.

Proof. The result is readily shown if n = 2, so we may assume n ≥ 3. We pair members of

Wn(1) of opposite sign by either breaking apart the last component or combining the last two

components as indicated:

λk = uαudβd, |α| ≥ 2 ↔ λk = uαd, λk+1 = u(ud)2βd.

The set of survivors of this involution consists of those k-tuples (λ1, . . . , λk) such that either (i)

k ≥ 2 and λk = u(ud)2βd, with β consisting of long units if nonempty and λk−1 not primitive,

or (ii) k = 1 and λ1 = u(ud)2βd, with β as in (i). Note that n ≥ 3 implies β 6= ∅ in the latter

case. On the survivors satisfying condition (i), we apply the involution φ defined above to the

(k− 1)-tuple comprising the first k− 1 components and then append λk to the resulting vector.

Thus, all members satisfying (i) are paired except for those in which k = 2 with λ1 = u2d2τ

and λ2 = u(ud)2βd, where β consists of long units and τ is a single (long) unit.

Suppose |τ| = i + 1 in the decomposition of λ1. This implies

|β| = (n + 4)− |λ1| − 3 = n − 2 − i

in λ2, and thus β ∈ En−2−i. Hence summing over all i yields ∑
n−2
i=1 Citn−1−i possible ordered

pairs (λ1, λ2). Further, the survivors in case (ii) above have cardinality tn since β has length

n − 1 and contains only long units. Thus, the sum of the signs of the remaining unpaired

members of Wn(1) is given by

(−1)n−2
n−2

∑
i=1

Citn−1−i + (−1)n−1tn = 0,

as desired, upon observing the recurrence tn = ∑
n−2
i=1 Citn−1−i for n ≥ 3. Note that this recur-

rence may be easily realized combinatorially by considering the length i + 1 of the first unit

within a member of En−1. Thus, if desired, it is straightforward to pair the remaining members

of Wn(1) of opposite sign upon considering the position of the first return within a member

of En−1.

Lemma 4. If n ≥ 3, then

σ
(
∪3

i=1W ′
n(i)

)
= −σ

(
W ′

n(4)
)
= (−1)n−1Cn−2,

and hence σ(W ′
n) = 0.

Proof. We consider several cases on λ = (λ1, . . . , λk) ∈ W ′
n whose last component λk is given

by λk = u(ud)τd, where τ is a long unit. If λ ∈ W ′
n(1), then k = 1 implies |τ| = n and

thus σ
(
W ′

n(1)
)
= (−1)n−1Cn−1. If λ ∈ W ′

n(2), we apply the mapping φ defined above to

λ′ = (λ1, . . . , λk−1) and then append λk to φ(λ′). This operation yields an involution on W ′
n(2)

that is not defined for those members in which k = 2 with λ1 = u2d2σ and σ is a unit. Upon

considering |σ| = i + 1 for 1 ≤ i ≤ n − 3, one gets

n−3

∑
i=1

CiCn−2−i = Cn−1 − 2Cn−2
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unpaired members of W ′
n(2), by the recurrence for the Catalan numbers. If λ ∈ W ′

n(3), we

apply the mapping ψ defined above to λ′ and then append λk to ψ(λ′). This operation yields

an involution on W ′
n(3) except for those members where k = 2 and λ1 = u3d3, of which there

are Cn−2 possibilities. Combining the contributions from W′
n(i) for 1 ≤ i ≤ 3 yields

σ
(
∪3

i=1W′
n(i)

)
= (−1)n−1Cn−1 + (−1)n−2(Cn−1 − 2Cn−2) + (−1)n−2Cn−2 = (−1)n−1Cn−2.

For the second statement, let T denote the subset of W ′
n(4) consisting of those members

where k = 2 and λ1 = u(ud)2d. Since σ(T) = (−1)n−2Cn−2, we need to show σ (W ′
n(4)− T) =

0. Note that within the final component λk = u(ud)τd of λ ∈ W ′
n(4) − T, we must have

2 ≤ |τ| ≤ n − 2. We may then apply the involution g from Lemma 3 to λ′ (as |τ| ≤ n − 2), and

to the resulting vector g(λ′), we append the component λk. This operation is seen to yield a

sign-changing involution of W ′
n(4)− T, which completes the proof.
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Гой Т., Шаттук М. Визначники матриць Гессенберга-Тьоплiца, елементами яких є числа Шредера i

Файна // Карпатськi матем. публ. — 2023. — Т.15, №2. — C. 420–436.

У цiй статтi ми одержали формули для визначникiв деяких матриць Гессенберга-Теплiца,

ненульовими елементами яких є малi (великi) числа Шредера i числа Файна. Наведенi алге-

браїчнi доведення результатiв з використанням формули Трудi та твiрних функцiй деяких

послiдовностей визначникiв. Також запропоновано комбiнаторнi доведення, якi використо-

вують рiзнi методи пiдрахунку, зокрема знакозмiннi iнволюцiї на комбiнаторних структурах,

пов’язаних з класами ґратчастих шляхiв Шредера i Дiка. У результатi наших дослiджень ми

також отримали новi формули для чисел Шредера та Каталана, а також для деяких iнших

послiдовностей з Онлайн енциклопедiї цiлочисельних послiдовностей, у виглядi визначникiв

матриць Гессенберга-Тьоплiца.

Ключовi слова i фрази: матриця Гессенберга-Тьоплiца, формула Трудi, число Шредера, чи-

сло Файна, число Каталана, шлях Шредера, шлях Дiка.


