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New models for some free algebras of small ranks

Zhuchok A.V.1, Pilz G.F.2

Dimonoids, generalized digroups and doppelsemigroups are algebras defined on a set with two

binary associative operations. The notion of a dimonoid was introduced by J.-L. Loday during con-

structing the universal enveloping algebra for a Leibniz algebra. One of the important motivations

for studying doppelsemigroups comes from their connections to interassociative semigroups. Gene-

ralized digroups are dimonoids with some additional conditions while commutative dimonoids

provide the class of examples of doppelsemigroups.

Let V be a variety of universal algebras. One of the main problems is to describe free objects

in V. The purpose of this paper is to construct new more convenient free objects in some vari-

eties of dimonoids, generalized digroups and doppelsemigroups. We first construct a new class of

abelian dimonoids, give a new model of the free abelian dimonoid of rank 2 and extend it to the

case of an arbitrary rank. Then we show that the semigroups of the free generalized digroup are

anti-isomorphic, present a new model of the free monogenic generalized digroup and characterize

the least group congruence on it. We also prove that there do not exist commutative generalized

digroups with different operations. Finally, we construct a new model of the free monogenic com-

mutative doppelsemigroup, characterize the least semigroup congruence on it and establish that

every monogenic abelian doppelsemigroup is the homomorphic image of the free monogenic com-

mutative doppelsemigroup.
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1 Introduction

Lately, Loday-type algebras such as dialgebras, trialgebras, dimonoids, trioids, g-dimo-

noids, (generalized) digroups and other are actively studied. The idea of doppelsemigroups is

based on the study of dimonoids. At the current paper, we turn our attention to investigate di-

monoids, generalized digroups and doppelsemigroups. The dimonoid structure is introduced

by J.-L. Loday [16] as a non-trivial extension of the concept of a semigroup. These algeb-

ras have applications in dialgebra theory (see, e.g., [5, 16, 17]). Digroups and generalized di-

groups are dimonoids with some additional conditions. They were considered by R. Felipe [8],
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M.K. Kinyon [12], K. Liu [13], O.P. Salazar-Dı́az, R. Velásquez and L.A. Wills-Toro [23] and other

authors. The first examples of digroups were given by J.-L. Loday [16]. Digroups play an im-

portant role in Leibniz algebra theory. This theory was actively studied (see, e.g., [1–4, 12, 16]).

The study of doppelsemigroups was initiated by the first author in [29]. Doppelalgebras intro-

duced by B. Richter [20] are linear analogs of doppelsemigroups. It is well-known that there

exist natural relationships between doppelsemigroups and interassociative semigroups (see,

e.g., [27, 29, 34]). Finally, note that the following relations between dimonoids, digroups, gene-

ralized digroups and doppelsemigroups take place: every digroup is a generalized digroup,

every commutative dimonoid is a doppelsemigroup [29] and three axioms of a doppelsemi-

group appear in axiomatics of a dimonoid and a (generalized) digroup.

Let V be a variety of universal algebras. One of the main problems is to describe free ob-

jects in V. The motivation for this research comes from the fact that free objects in any variety

of algebras are important in the study of that variety. The above mentioned main problem

has been solved in many cases. For example, free objects are known for the varieties of di-

monoids, g-dimonoids, digroups, trioids, duplexes, (strong) doppelsemigroups and n-tuple

semigroups (see [16, 18, 19, 24, 28, 29, 31, 33]). Abelianity in generalized digroups, doppelsemi-

groups, digroups and dimonoids was considered in [21, 35, 37, 38], respectively. This property

has different meanings in universal algebra, and in the latter four papers, the term “abelian” is

not equivalent to the term “commutative”. A construction for the free abelian dimonoid was

given in [38]. The free generalized digroup was presented in [22]. The paper [29] establishes

the structure of the free commutative doppelsemigroup. In the present paper, we suggest new

models for some free algebras in the varieties of abelian dimonoids, generalized digroups and

commutative doppelsemigroups. The obtained models look more convenient than the corre-

sponding original constructions.

The paper is organized as follows. In the next section we construct a new class of abelian

dimonoids, give a new model of the free abelian dimonoid of rank 2 and extend it to the case of

an arbitrary rank. Then we show that the semigroups of the free generalized digroup are anti-

isomorphic, present a new model of the free monogenic generalized digroup and characterize

the least group congruence on it (Section 3). We also prove that there do not exist commutative

generalized digroups with different operations. In the final section, we construct a new model

of the free monogenic commutative doppelsemigroup and characterize the least semigroup

congruence on it. In addition, we establish that every monogenic abelian doppelsemigroup is

the homomorphic image of the free monogenic commutative doppelsemigroup.

2 Free abelian dimonoids of rank 2

In this section, we construct a new class of abelian dimonoids, give a new model of the free

abelian dimonoid of rank 2 and extend it to the case of an arbitrary rank.

Following J.-L. Loday [16], a dimonoid is a nonempty set D equipped with two binary

operations ⊣ and ⊢ satisfying the axioms

(x ⊣ y) ⊣ z = x ⊣ (y ⊣ z),

(x ⊣ y) ⊣ z = x ⊣ (y ⊢ z),

(x ⊢ y) ⊣ z = x ⊢ (y ⊣ z),

(x ⊣ y) ⊢ z = x ⊢ (y ⊢ z),

(x ⊢ y) ⊢ z = x ⊢ (y ⊢ z)
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for all x, y, z ∈ D. Some examples of dimonoids were given in [16,25]. A collection of relatively

free dimonoids can be found in [32]. A dimonoid (D,⊣,⊢) is called abelian [38] if

x ⊣ y = y ⊢ x (1)

for all x, y ∈ D.

Recall the construction of the free abelian dimonoid suggested in [38].

Let X be an arbitrary nonempty set and let FCm(X) be the free commutative monoid on X

with the empty word θ. Put FAd(X) = X × FCm(X) and define operations ⊣ and ⊢ on FAd(X)

as follows

(x, v) ⊣ (y, q) = (x, vyq), (x, v) ⊢ (y, q) = (y, xvq).

Theorem 1 ([38, Theorem 1]). The algebra
(

FAd(X),⊣,⊢
)

is the free abelian dimonoid on

X × {θ}.

The dimonoid (FAd(X),⊣,⊢) is denoted by FAd[X]. The free abelian dimonoid of rank 1

was considered in [38]. In the latter paper it was shown that the operations of the free mono-

genic abelian dimonoid coincide and it is a variant of the additive semigroup of all non-

negative integers. In order to present a new model of the free abelian dimonoid of rank 2

we construct a new class of abelian dimonoids. As usual, we denote by N
0 the set N of all

positive integers with zero. Let A, B be arbitrary nonempty subsets of N
0 and let

ϕ : A → B : x 7→ ϕx, ψ : A → B : y 7→ ψy

be arbitrary maps. Define operations ⊣ and ⊢ on N
0 × A × N

0 by

(n, a, m) ⊣ (p, b, s) = (n + ϕb + p, a, m + ψb + s), (2)

(n, a, m) ⊢ (p, b, s) = (n + ϕa + p, b, m + ψa + s) (3)

for all (n, a, m), (p, b, s) ∈ N
0 × A × N

0. The algebra (N0 × A × N
0,⊣,⊢) is denoted by

N
0(A, B)

ϕ
ψ.

Lemma 1. For any nonempty A, B ⊆ N
0 and any maps ϕ, ψ from A to B, the algebra N

0(A, B)
ϕ
ψ

is an abelian dimonoid.

Proof. It is easy to verify that multiplications in N
0(A, B)

ϕ
ψ are associative and it is an abelian

dimonoid.

Now we give a new model of the free abelian dimonoid of rank 2.

Let A = B = {0, 1} and

ϕx =

{

1, x = 0,

0, x = 1,
ψx =

{

1, x = 1,

0, x = 0.
(4)

Using (4), define operations ⊣ and ⊢ on N
0 × {0, 1} × N

0 by formulas (2) and (3). Then, by

Lemma 1, we get the abelian dimonoid N
0
(

{0, 1}, {0, 1}
)ϕ

ψ
which denote by FAd2.
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Theorem 2. Let X = {x, y}. Then FAd[X] is isomorphic to the dimonoid FAd2.

Proof. Words of FCm(X) we write as xnym, where n, m ∈ N
0. Define the map

α : FAd[X] → FAd2 : (z, xnym) 7→ (z, xnym)α =

{

(n, 0, m), z = x,

(n, 1, m), z = y.

We show that α is an isomorphism. Let ni, mi ∈ N
0, where 1 ≤ i ≤ 4. We have

(

(

x, xn1 ym1
)

⊣
(

y, xn2 ym2
)

)

α =
(

x, xn1+n2ym1+m2+1
)

α

= (n1 + n2, 0, m1 + m2 + 1) = (n1 + ϕ1 + n2, 0, m1 + ψ1 + m2)

= (n1, 0, m1) ⊣ (n2, 1, m2) =
(

x, xn1 ym1
)

α ⊣
(

y, xn2 ym2
)

α,

(

(

y, xn2 ym2
)

⊣
(

x, xn1ym1
)

)

α =
(

y, xn2+n1+1ym2+m1

)

α

= (n2 + n1 + 1, 1, m2 + m1) = (n2 + ϕ0 + n1, 1, m2 + ψ0 + m1)

= (n2, 1, m2) ⊣ (n1, 0, m1) =
(

y, xn2 ym2
)

α ⊣
(

x, xn1ym1
)

α,
(

(

x, xn1 ym1
)

∗
(

x, xn3ym3
)

)

α =
(

x, xn1+n3+1ym1+m3

)

α

= (n1 + n3 + 1, 0, m1 + m3) = (n1 + ϕ0 + n3, 0, m1 + ψ0 + m3)

= (n1, 0, m1) ∗ (n3, 0, m3) =
(

x, xn1 ym1
)

α ∗
(

x, xn3 ym3
)

α,
(

(

y, xn2 ym2
)

∗
(

y, xn4 ym4
)

)

α =
(

y, xn2+n4ym2+m4+1
)

α

= (n2 + n4, 1, m2 + m4 + 1) = (n2 + ϕ1 + n4, 1, m2 + ψ1 + m4)

= (n2, 1, m2) ∗ (n4, 1, m4) =
(

y, xn2 ym2
)

α ∗
(

y, xn4 ym4
)

α,

where ∗ ∈ {⊣,⊢}, and
(

(

x, xn1 ym1
)

⊢
(

y, xn2 ym2
)

)

α =
(

y, xn1+n2+1ym1+m2

)

α

= (n1 + n2 + 1, 1, m1 + m2) = (n1 + ϕ0 + n2, 1, m1 + ψ0 + m2)

= (n1, 0, m1) ⊢
(

n2, 1, m2

)

=
(

x, xn1 ym1
)

α ⊢
(

y, xn2 ym2
)

α,

(

(

y, xn2 ym2
)

⊢
(

x, xn1ym1
)

)

α =
(

x, xn2+n1ym2+m1+1
)

α

= (n2 + n1, 0, m2 + m1 + 1) = (n2 + ϕ1 + n1, 0, m2 + ψ1 + m1)

= (n2, 1, m2) ⊢ (n1, 0, m1) =
(

y, xn2 ym2
)

α ⊢
(

x, xn1ym1
)

α.
Moreover, it is clear that α is a bijection. So, α is a dimonoid isomorphism.

It is natural to extend the dimonoid FAd2 to the case of an arbitrary rank.

Remark 1. Let X = {ai | i ∈ I}, N
0
i = N

0 for all i ∈ I and

ϕ
ak
i =

{

1, i = k,

0, i 6= k

for any ak ∈ X, k ∈ I. Define operations ⊣ and ⊢ on X × ∏i∈I N
0
i by

(

aj, (xi)i∈I

)

⊣
(

ak, (yi)i∈I

)

=
(

aj, (xi + ϕ
ak
i + yi)i∈I

)

,
(

aj, (xi)i∈I

)

⊢
(

ak, (yi)i∈I

)

=
(

ak, (xi + ϕ
aj

i + yi)i∈I

)
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for all
(

aj, (xi)i∈I

)

,
(

ak, (yi)i∈I

)

∈ X × ∏i∈I N
0
i , where j, k ∈ I. An immediate check shows that

the map

τ : (x, v) 7→ (x, v)τ = (x, v∗),

where the ith component of the element v∗ is equal to the number of occurrences of an element

ai ∈ X in v, is an isomorphism of FAd[X] onto the algebra (X × ∏i∈I N
0
i ,⊣,⊢).

3 Free monogenic generalized digroups

In this section, we show that the semigroups of the free generalized digroup are anti-

isomorphic, give a new model of the free monogenic generalized digroup and present the

least group congruence on it. We also prove that there do not exist commutative generalized

digroups with different operations.

The notion of a digroup first appeared in J.-L. Loday’s work [16] as a dimonoid (see Sec-

tion 2) satisfying some additional identities. There exist two different definitions of a digroup

and examples of such algebras (see [36]). Bar-units are used in the definitions of digroups.

Recall that an element e of a dimonoid (D,⊣,⊢) is a bar-unit if x ⊣ e = x = e ⊢ x for every

x ∈ D [16]. Note that in contrast to monoids a dimonoid may possess not only one bar-unit;

and the set of all bar-units of a dimonoid (D,⊣,⊢), denoted by E
(

(D,⊣,⊢)
)

, is called the halo.

If a dimonoid has a unit then its operations coincide, which follows from the axioms of a di-

monoid.

Following [9, 12], a dimonoid (D,⊣,⊢) is called a digroup if

(G1) there exists a bar-unit e ∈ D;

(G2) for every g ∈ D there exists a unique element g−1 ∈ D such that g ⊢ g−1 = e = g−1 ⊣ g.

Such an element g−1 is said to be inverse to g.

Following [14, 15, 23], a dimonoid (D,⊣,⊢) is called a digroup if (G1) holds and

(G3) for every x ∈ D there exist elements x
ℓ

−1
e and x

r
−1
e of D such that x ⊢ x

r
−1
e = e = x

ℓ

−1
e ⊣ x.

In [23], the latter digroups are called generalized digroups. If in (G3) x
ℓ

−1
e = x

r
−1
e , then we

obtain the first definition of a digroup, that is, the class of all digroups is contained in the

class of all generalized digroups. Obviously, the nonempty halo of a dimonoid (D,⊣,⊢) is an

abelian subdimonoid which is a digroup, that is, the digroup E
(

(D,⊣,⊢)
)

satisfies (1). If a

dimonoid is a (generalized) digroup, then its bar-units and the halo are called, respectively,

bar-units and the halo of a (generalized) digroup. The problem of adjoining a set of bar-units

to dimonoids was studied in [26, 30]. If operations of a (generalized) digroup coincide, then

the (generalized) digroup becomes a group. So, (generalized) digroups are a generalization of

groups. Recall the construction of the free generalized digroup from [22].

Let X be an arbitrary nonempty set and let F(X) be the free group generated by X. Define

operations ⊣ and ⊢ on F(X)× X × F(X) by

(u, x, a) ⊣ (v, y, b) = (u, x, avyb),

(u, x, a) ⊢ (v, y, b) = (uxav, y, b)

for all (u, x, a), (v, y, b) ∈ F(X) × X × F(X). The algebra
(

F(X) × X × F(X),⊣,⊢
)

is denoted

by FD(X). By [22, Proposition 4], FD(X) is the free generalized digroup.
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The following statement establishes a relationship between the semigroups of the free gene-

ralized digroup.

Lemma 2.
(

F(X)× X × F(X),⊣
)

and
(

F(X)× X × F(X),⊢
)

are anti-isomorphic semigroups.

Proof. Define the mapping

f :
(

F(X)× X × F(X),⊣
)

→
(

F(X)× X × F(X),⊢
)

by the formula

(x1 . . . xi, xi+1, xi+2 . . . xk) f = (xk . . . xi+2, xi+1, xi . . . x1)

for all (x1 . . . xi, xi+1, xi+2 . . . xk) ∈ F(X)× X × F(X), where xi ∈ X, 1 ≤ i ≤ k.

An immediate verification shows that f is an anti-isomorphism. Indeed, f is a bijection

and for all (x1 . . . xi, xi+1, xi+2 . . . xk), (y1 . . . yj, yj+1, yj+2 . . . ym) ∈ F(X) × X × F(X), where

xi, yj ∈ X, 1 ≤ i ≤ k, 1 ≤ j ≤ m, we obtain
(

(x1 . . . xi, xi+1, xi+2 . . . xk) ⊣ (y1 . . . yj, yj+1, yj+2 . . . ym)
)

f

= (x1 . . . xi, xi+1, xi+2 . . . xky1 . . . yj . . . ym) f

= (ym . . . yj . . . y1xk . . . xi+2, xi+1, xi . . . x1)

= (ym . . . yj+2, yj+1, yj . . . y1) ⊢ (xk . . . xi+2, xi+1, xi . . . x1)

= (y1 . . . yj, yj+1, yj+2 . . . ym) f ⊢ (x1 . . . xi, xi+1, xi+2 . . . xk) f .

Now we give a new model of the free monogenic generalized digroup. As usual, by Z we

denote the set of integers. Define operations ⊣ and ⊢ on Z × Z by

(n, m) ⊣ (p, s) = (n, m + p + s + 1),

(n, m) ⊢ (p, s) = (n + m + p + 1, s)

for all (n, m), (p, s) ∈ Z × Z. The algebra (Z × Z,⊣,⊢) is denoted by FD1.

The main result of this section is the following theorem.

Theorem 3. FD1 is the free monogenic generalized digroup with the halo

E(FD1) =
{

(n, m) | n + m + 1 = 0
}

and inverses with respect to the bar unit (n, m)

(p, s)
ℓ

−1
(n,m)

= (n, m − s − p − 1) and (p, s)
r

−1
(n,m)

= (n − s − p − 1, m), where (p, s) ∈ FD1.

Proof. Let X = {x}. Define the map

β : FD(X) → FD1 :
(

xn, x, xm
)

7→ (n, m).

Prove that β is an isomorphism. For all n1, n2, m1, m2 ∈ Z we get
(

(

xn1 , x, xm1
)

⊣
(

xn2 , x, xm2
)

)

β =
(

xn1 , x, xm1+n2+m2+1
)

β = (n1, m1 + n2 + m2 + 1)

= (n1, m1) ⊣ (n2, m2) =
(

xn1 , x, xm1
)

β ⊣
(

xn2 , x, xm2
)

β,
(

(

xn1 , x, xm1
)

⊢
(

xn2 , x, xm2
)

)

β =
(

xn1+m1+n2+1, x, xm2

)

β = (n1 + m1 + n2 + 1, m2)

= (n1, m1) ⊢ (n2, m2) =
(

xn1 , x, xm1
)

β ⊢
(

xn2 , x, xm2
)

β.
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Obviously, β is a bijection. Thus, β is an isomorphism and FD1 is the free monogenic genera-

lized digroup.

Further, by [22, Proposition 4], E
(

FD(X)
)

=
{

(

xn, x, xm
)

| n + m + 1 = 0
}

. It is clear that

E
(

FD(X)
)

β =
{

(n, m) | n + m + 1 = 0
}

. Hence,

E
(

FD1

)

=
{

(n, m) | n + m + 1 = 0
}

.

Moreover, for all (p, s) ∈ FD1 and (m, n) ∈ E(FD1), we have

(p, s) ⊢ (p, s)
r
−1
(n,m)

= (p, s) ⊢ (n − s − p − 1, m)

= (n, m) = (n, m − s − p − 1) ⊣ (p, s) = (p, s)
ℓ

−1
(n,m)

⊣ (p, s).

So, FD1 is the free monogenic generalized digroup with the halo and inverses as in our

theorem.

Corollary 1. Let (p, s) ∈ FD1 and (n, m) ∈ E(FD1). The inverses (p, s)
ℓ

−1
(n,m)

and (p, s)
r

−1
(n,m)

coincide if and only if (p, s) ∈ E
(

FD1

)

. In this case,

(p, s)
ℓ

−1
(n,m)

= (p, s)
r
−1
(n,m)

= (n, m).

If ρ is a congruence on a generalized digroup (D,⊣,⊢) such that the operations of

(D,⊣,⊢)/ρ coincide and it is a group, we say that ρ is a group congruence. If µ : D1 → D2 is a

homomorphism of generalized digroups, the kernel of µ is denoted by ∆µ, that is,

∆µ =
{

(x, y) ∈ D1 × D1 | xµ = yµ
}

. (5)

Now we present the least group congruence on the free monogenic generalized digroup.

Lemma 3. The map

̟ : FD1 → (Z,+) : (n, m) 7→ (n, m)̟ = n + m + 1

is an epimorphism inducing the least group congruence on the free monogenic generalized

digroup FD1.

Proof. For arbitrary elements (n, m), (p, s) ∈ FD1, we have
(

(n, m) ⊣ (p, s)
)

̟ = (n, m + p + s + 1)̟

= n + m + p + s + 2 = (n + m + 1) + (p + s + 1) = (n, m)̟ + (p, s)̟,
(

(n, m) ⊢ (p, s)
)

̟ = (n + m + p + 1, s)̟

= n + m + p + s + 2 = (n + m + 1) + (p + s + 1) = (n, m)̟ + (p, s)̟.
The map ̟ is surjective since for any m ∈ Z there exists (m − 1, 0) ∈ FD1 such that

(m − 1, 0)̟ = m. Thus, ̟ is an epimorphism. Since (Z,+) is the free group of rank 1,

∆̟ is the least group congruence on FD1.

We conclude the section with some additional property of generalized digroups. Commu-

tative dimonoids were introduced and studied in [25] (see also [32]). It is natural to introduce

the notion of a commutative generalized digroup. A generalized digroup (D,⊣,⊢) will be

called commutative if both semigroups (D,⊣) and (D,⊢) are commutative.



302 Zhuchok A.V., Pilz G.F.

Proposition 1. There do not exist commutative generalized digroups with different operations.

Proof. Let (D,⊣,⊢) be a commutative generalized digroup and let e ∈ D be a bar-unit. From

[25, Lemma 2] it follows that

x ⊢ (y ⊣ z) = x ⊢ (y ⊢ z)

for all x, y, z ∈ D. If x = e, then from the latter equality we obtain y ⊣ z = y ⊢ z.

4 Free monogenic commutative doppelsemigroups

In this section, we construct a new model of the free monogenic commutative doppelsemi-

group and characterize the least semigroup congruence on it. Moreover, we establish that

every monogenic abelian doppelsemigroup is the homomorphic image of the free monogenic

commutative doppelsemigroup.

Recall that a doppelsemigroup [29] is a nonempty set D with two binary operations ⊣ and

⊢ satisfying the axioms

(x ⊣ y) ⊢ z = x ⊣ (y ⊢ z),

(x ⊢ y) ⊣ z = x ⊢ (y ⊣ z),

(x ⊣ y) ⊣ z = x ⊣ (y ⊣ z),

(x ⊢ y) ⊢ z = x ⊢ (y ⊢ z)

for all x, y, z ∈ D.

One of the important motivations for studying doppelsemigroups comes from their con-

nections to interassociative semigroups. Recall that two semigroups defined on the same set

are interassociative (see, e.g., [6, 7, 10]) provided that they satisfy the first two axioms of a

doppelsemigroup. This definition implies that two interassociative semigroups give rise to a

doppelsemigroup, and therefore, we can study interassociative semigroups via doppelsemi-

groups, applying methods of universal algebra. Commutative dimonoids are examples of dop-

pelsemigroups [25, 29]. Some other examples of doppelsemigroups can be found in [29, 31].

A doppelsemigroup (D,⊣,⊢) is called commutative [29] if both semigroups (D,⊣) and

(D,⊢) are commutative. Let S be a semigroup and a ∈ S. Define a new operation ◦a on S

by x ◦a y = xay for all x, y ∈ S. Then ◦a is associative and hence (S, ◦a) is a semigroup (see,

e.g., [11]).

Let T∗ be the free commutative monoid on the two-element set {a, b}.

Lemma 4 ([29, Corollary 4.4]).
(

T∗, ◦a, ◦b

)

is the free commutative doppelsemigroup of rank 1.

As in Section 2, N
0 denotes the set N of all positive integers with zero. Define operations

⊣ and ⊢ on N
0 × N

0 by

(n, m) ⊣ (p, s) = (n + p + 1, m + s),

(n, m) ⊢ (p, s) = (n + p, m + s + 1)

for all (n, m), (p, s) ∈ N
0 × N

0. The algebra
(

N
0 × N

0,⊣,⊢
)

is denoted by FCD1.

If ρ is a congruence on a doppelsemigroup (D,⊣,⊢) such that the operations of (D,⊣,⊢)/ρ

coincide, we say that ρ is a semigroup congruence. If µ : D1 → D2 is a homomorphism of

doppelsemigroups, the kernel ∆µ of µ is defined by (5).

Define a relation ǫ on FCD1 by (n, m)ǫ(p, s) if and only if n + m = p + s.

We are ready to formulate the main result of this section.
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Theorem 4. The relation ǫ is the least semigroup congruence on the free monogenic commu-

tative doppelsemigroup FCD1.

Proof. First we show that
(

T∗, ◦a, ◦b

)

is isomorphic to the algebra FCD1. Words of T∗ we write

as anbm, where n, m ∈ N
0. Define the map

γ :
(

T∗, ◦a, ◦b

)

→ FCD1 : anbm 7→ (n, m).

For all n1, n2, m1, m2 ∈ N
0 we get

(

(an1 bm1) ◦a (a
n2 bm2)

)

γ =
(

an1+n2+1bm1+m2

)

γ = (n1 + n2 + 1, m1 + m2)

= (n1, m1) ⊣ (n2, m2) =
(

an1 bm1
)

γ ⊣
(

an2 bm2
)

γ,

(

(an1 bm1) ◦b (a
n2 bm2)

)

γ =
(

an1+n2bm1+m2+1
)

γ = (n1 + n2, m1 + m2 + 1)

= (n1, m1) ⊢ (n2, m2) =
(

an1 bm1
)

γ ⊢
(

an2 bm2
)

γ.
Clearly, γ is a bijection. Thus, γ is an isomorphism and FCD1 is the free monogenic com-

mutative doppelsemigroup.

Further consider the map

̟ : FCD1 → (N,+) : (n, m) 7→ (n, m)̟ = n + m + 1.

A direct verification shows that ̟ is an epimorphism. Indeed, for (n, m), (p, s) ∈ FCD1, we

have
(

(n, m) ⊣ (p, s)
)

̟ = (n + p + 1, m + s)̟ = n + p + m + s + 2

= (n + m + 1) + (p + s + 1) = (n, m)̟ + (p, s)̟,
(

(n, m) ⊢ (p, s)
)

̟ = (n + p, m + s + 1)̟ = n + p + m + s + 2

= (n + m + 1) + (p + s + 1) = (n, m)̟ + (p, s)̟,
and (k − 1, 0)̟ = k for any k ∈ N.

Since (N,+) is the free semigroup of rank 1, ∆̟ is the least semigroup congruence on

FCD1. From the definition of ̟ it follows that ∆̟ = ǫ.

Recall that a doppelsemigroup (D,⊣,⊢) is called abelian [35] if it satisfies the identity (1).

Note that the variety of abelian doppelsemigroups does not coincide with the variety of com-

mutative doppelsemigroups.

Corollary 2. Every monogenic abelian doppelsemigroup is the homomorphic image of the

free monogenic commutative doppelsemigroup FCD1.

Proof. In [35, Corollary 4.2], it is stated that the operations of a singly generated free abelian

doppelsemigroup coincide and it is the additive semigroup (N0,+) of positive integers. By

the proof of Theorem 4,

̟1 : FCD1 → (N0,+) : (n, m) 7→ (n, m)̟2 = n + m + 1

is a homomorphism. In addition, there exists a homomorphism from (N0,+) to an arbitrary

monogenic abelian doppelsemigroup E which we denote by ̟2. Obviously, the composition

̟1 ◦ ̟2 of homomorphisms ̟1 and ̟2 is a homomorphism from FCD1 to E.

Remark 2. The models FAd2, FD1 and FCD1 look more convenient than the corresponding

original constructions since their operations ⊣ and ⊢ reduce to the addition of non-negative

integers.
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tivité. Manuscript, 1986.

[8] Felipe R. Digroups and their linear presentations. East-West J. Math. 2006, 8 (1), 27–48.

[9] Felipe R. Generalized Loday Algebras and Digroups. Comunicaciones del CIMAT, 2004, No. I-04-01/21-01-2004.

[10] Givens B.N., Rosin A., Linton K. Interassociates of the bicyclic semigroup. Semigroup Forum 2017, 94, 104–122.

doi:10.1007/s00233-016-9794-9

[11] Hickey J.B. On variants of a semigroup. Bull. Aust. Math. Soc. 1986, 34 (3), 447–459.

[12] Kinyon M.K. Leibniz algebras, Lie racks, and digroups. J. Lie Theory 2007, 17 (1), 99–114.

[13] Liu K. A class of group-like objects. arXiv:math/0311396. doi:10.48550/arXiv.math/0311396

[14] Liu K. The generalizations of groups. Research Monographs in Math. Publishing: Burnaby. 2004, 1, 153.

[15] Liu K. Transformation digroups. arXiv:math/0409265. doi:10.48550/arXiv.math/0409265

[16] Loday J.-L. Dialgebras. In: Dialgebras and Related Operads. Lect. Notes Math. 1763, Springer-Verlag, Berlin.

2001, 7–66. doi:10.1007/3-540-45328-8_2

[17] Majumdar A., Mukherjee G. Dialgebra cohomology as a G-algebra. Amer. Math. Soc. 2003, 356 (6), 2443–2457.

[18] Movsisyan Y., Davidov S., Safaryan Mh. Construction of free g-dimonoids. Algebra Discrete Math. 2014, 18 (1),

138–148.

[19] Pirashvili T. Sets with two associative operations. Centr. Eur. J. Math. 2003, 2, 169–183.

[20] Richter B. Dialgebren, Doppelalgebren und ihre Homologie. Diplomarbeit, Universitat Bonn 1997.

[21] Rodrı́guez-Nieto J.G., Salazar-Dı́az O.P., Velásquez R. Abelian and symmetric generalized digroups. Semigroup

Forum 2021, 102, 861–884. doi:10.1007/s00233-021-10162-5

[22] Rodrı́guez-Nieto J.G., Salazar-Dı́az O.P., Velásquez R. Augmented, free and tensor generalized digroups. Open

Math. 2019, 17 (1), 71–88. doi:10.1515/math-2019-0010

[23] Salazar-Dı́az O.P., Velásquez R., Wills-Toro L.A. Generalized digroups. Comm. Algebra 2016, 44 (7), 2760–2785.

doi:10.1080/00927872.2015.1065841

[24] Zhang G., Chen Y. A construction of the free digroup. Semigroup Forum 2021, 102, 553–567. doi:10.1007/s00233-

021-10161-6

[25] Zhuchok A.V. Commutative dimonoids. Algebra Discrete Math. 2009, 8 (2), 116–127.

[26] Zhuchok A.V. Dimonoids and bar-units. Sib. Math. J. 2015, 56 (5), 827–840. doi:10.1134/S0037446615050055



New models for some free algebras of small ranks 305

[27] Zhuchok A.V. Free left n-dinilpotent doppelsemigroups. Comm. Algebra 2017, 45 (11), 4960–4970. doi:

10.1080/00927872.2017.1287274

[28] Zhuchok A.V. Free n-tuple semigroups. Math. Notes 2018, 103 (5), 737–744. doi:10.1134/S0001434618050061

[29] Zhuchok A.V. Free products of doppelsemigroups. Algebra Universalis 2017, 77 (3), 361–374. doi:10.1007/s00012-

017-0431-6

[30] Zhuchok A.V. Relatively free dimonoids and bar-units. Internat. J. Algebra Comput. 2021, 31 (08), 1587–1599.

doi:10.1142/S0218196721500570

[31] Zhuchok A.V. Structure of free strong doppelsemigroups. Comm. Algebra 2018, 46 (8), 3262–3279. doi:

10.1080/00927872.2017.1407422

[32] Zhuchok A.V. Structure of relatively free dimonoids. Comm. Algebra 2017, 45 (4), 1639–1656. doi:

10.1080/00927872.2016.1222404

[33] Zhuchok A.V. Trioids. Asian-Eur. J. Math. 2015, 8 (4). doi:10.1142/S1793557115500898

[34] Zhuchok A.V., Demko M. Free n-dinilpotent doppelsemigroups. Algebra Discrete Math. 2016, 22 (2), 304–316.

[35] Zhuchok A.V., Knauer K. Abelian doppelsemigroups. Algebra Discrete Math. 2018, 26 (2), 290–304.

[36] Zhuchok A.V., Zhuchok Y.V. On two classes of digroups. São Paulo J. Math. Sci. 2017, 11 (1), 240–252.

doi:10.1007/s40863-016-0038-4

[37] Zhuchok Y.V. Endomorphisms of free abelian monogenic digroups. Matematychni Studii. 2015, 43 (2), 144–152.

doi:10.15330/ms.43.2.144-152

[38] Zhuchok Y.V. Free abelian dimonoids. Algebra Discrete Math. 2015, 20 (2), 330–342.

Received 08.02.2023

Жучок А.В., Пiльц Г.Ф. Новi моделi деяких вiльних алгебр малих рангiв // Карпатськi матем. публ.

— 2023. — Т.15, №1. — C. 295–305.

Дiмоноїди, узагальненi дiгрупи та допельнапiвгрупи є алгебрами, визначеними на множи-

нi з двома бiнарними асоцiативними операцiями. Поняття дiмоноїда було введено Ж.-Л. Лоде

пiд час побудови унiверсальної обгортуючої алгебри для алгебри Лейбнiца. Одна з важливих

мотивацiй для вивчення допельнапiвгруп випливає з їх зв’язкiв з iнтерасоцiативними напiв-

групами. Узагальненi дiгрупи є дiмоноїдами з деякими додатковими умовами, в той час як

комутативнi дiмоноїди забезпечують клас прикладiв допельнапiвгруп.

Нехай V — многовид унiверсальних алгебр. Однiєю з основних проблем є опис вiльних

об’єктiв у V. Метою цiєї статтi є побудова нових бiльш зручних вiльних об’єктiв у деяких мно-

говидах дiмоноїдiв, узагальнених дiгруп та допельнапiвгруп. Спочатку побудовано новий клас

абелевих дiмоноїдiв, наведено нову модель вiльного абелевого дiмоноїда рангу 2 та поширено

його на випадок довiльного рангу. Потiм показано, що напiвгрупи вiльної узагальненої дi-

групи є антиiзоморфними, представлено нову модель вiльної моногенної узагальненої дiгру-

пи та охарактеризовано найменшу групову конгруенцiю на нiй. Також доведено, що не iснує

комутативних узагальнених дiгруп з рiзними операцiями. Нарештi, побудовано нову модель

вiльної моногенної комутативної допельнапiвгрупи, охарактеризовано найменшу напiвгрупо-

ву конгруенцiю на нiй та встановлено, що кожна моногенна абелева допельнапiвгрупа є гомо-

морфним образом вiльної моногенної комутативної допельнапiвгрупи.

Ключовi слова i фрази: дiмоноїд, узагальнена дiгрупа, допельнапiвгрупа, вiльний абелевий

дiмоноїд рангу 2, вiльна моногенна узагальнена дiгрупа, вiльна моногенна комутативна до-

пельнапiвгрупа.


