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Inverse problems of determining an unknown depending on
time coefficient for a parabolic equation with involution and
periodicity conditions

‘ Baranetskij Ya.O. 1 Demkiv I.L}, Solomko A.V.2

The solution of the investigated problem with an unknown coefficient in the equation was con-
structed by using the method of separation of variables. The properties of the induced spectral
problem for the second-order differential equation with involution are studied. The dependence on
the equation involutive part of the spectrum and its multiplicity as well as the structure of the sys-
tem of root functions and partial solutions of the problem were investigated. The conditions for the
existence and uniqueness of the solution of the inverse problem have been established. To determine
the required coefficient, Volterra’s integral equation of the second kind was found and solved.
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1 Introduction

Problems of determining the coefficients or the right-hand side of a differential equation
simultaneously with its solution are called inverse problems of mathematical physics. Such
problems appear, for example, in the simulation of hyperthermia, thrombosis and sclerosis of
vessels, optical tomography.

Inverse heat conduction problems arise in various branches of applied heat engineering. In
particular, the problem of modeling the thermodiffusion process is described in the paper [9].
The authors analyzed a problem that describes a mathematical model of the process of heat
diffusion in a closed metal rod, the insulation of which is slightly permeable. Therefore, the
temperature at the point of the rod on one side of the insulation affects the diffusion process
in the rod on the other side of the insulation. The authors proposed to consider the following
heat conduction equation with involution for modeling the process:

ou(x,t) [Xazu(x,t) 0%u(—x,t)

ot ox2 p oxz2

a, B elR. D

In the paper [1], for the equation

du(x,t) 0%u(x,t) n 0%u(—x,t)

ot 92 s =f), (heQ={-m<x<m 0<t<T} (2
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inverse problems of determining a pair of unknown functions {u(x, t), f(x)} with boundary
conditions

ou(—r,t) _ ou (7, t)

v =l =0 ox 0
au _7T,t au 7T,t
u(=m,t) —u(rm,t) =0, (ax : B (ax ) =0, 3)
u(_n', t) + u(ﬂ, t) _ 0’ au(gxﬂ; t) + aug;;'/ t) _ O,

are investigated. In the paper [22], for equation (1), the inverse problem with nonlocal condi-

tions
du(—m,t) du(m,t)

ox ox
which are weak perturbations of conditions (3), was considered. In [23], for the equation (2) the
inverse problem of finding {u(x, t), f(x)} with the initial condition u(x,0) = ¢(x), condition
of redefinition u(x, E) = ¢(x) and Ionkin-type conditions

ou(—rm,t) ou (7, t)
0x e 0x

—au(m,t) =0, wu(—m,t)—u(mt)=0,

=0, u(—mt)—u(mt)=0,

are investigated.

The inverse problem of mathematical biology is considered in [10], namely, the problem
of finding a time-dependent source function for a population model with nonlocal boundary
conditions of the population density.

So,in={0<x<1,0<t<T}, for the equation

ou(x,t)  *u(x,t)
ot o2

the inverse problem of finding {u(x,t), r(t)} with the initial condition u(x,0) = ¢(x), condi-
tion of redefinition

+r(t)u(x, t) +u(x,t)

1
/ u(x, t)dt = E(t)
0
and perturbed antiperiodicity conditions

ou(0, t) N ou(1,t)
dax dax

=0, u(0,f)+bu(l,t)=0,

was considered.

In the papers [11-13], inverse problems of determining {u(x, t), r(t) } with nonlocal bound-
ary conditions used in models of population age description were investigated.

Mixed and boundary value problems for equations with partial derivatives, which contain
involution, were studied in [2, 3, 16,20, 23,25]. For ordinary differential operators with involu-
tion boundary value problems were studied in the papers [4,5, 18,19, 26,27].

2 Notations and main results
Denote

W3(-1,1) :=

—

yeLy(-1,1): y™ eC[-1,1], y® € Lr(-1,1), m = 0,1},

2
(s u)wa(—1) = I;O(y(k);u(k>)L2<_1,1>, 113211 = @ wz (1)
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Let E be the identity map in Ly(—1,1), I : Lo(—1,1) > y(x) — y(—x) € Ly(—1,1) be the
involution operator. Denote p; := %(E + (=1)/T) the orthoprojectors of space Ly(—1,1) and

Lj,Z(_]-/ 1) = {y € LZ(—l,].) . y = p]y}, ] = 0,1

Inthe domain Dr = {—-1 < x < 1,0 < t < T}, letus consider the heat conduction equation
with involution
du(x,t)  %u(x,t) %u(x,t)  u(—x,t)
— 1 _
ot St (T )
ou(x,t ou(—x,t
u(x,t) n u(—x,t)
ox

(4)

+ 0(2< ) —r(Du(x,t) + f(x,t), (x,t) € Dy,

with boundary conditions

u(—1,t) —u(l,t) =0,
ou(—1,t) du(1,t) 0<t<T, BupaeR, p1# P, (5)
hi ox P2 ax 0,

initial condition

u(x,0) =n(x), —-1<x<1, (6)
and redefinition condition

/ "y, dx = E(), @)

-1
Definition 1. A pair of functions {r(t),u(x,t)} from the set C[—1,1] x (C>!(Dr) N C*(Dr))

is called a classical solution of the inverse problem (4)—(7).

LetL: Ly(—1,1) — Lp(—1,1) be an operator of the problem

=" (x) + a1 (14 yx) (v (x) = v (=x)) + a2 (V' (x) = V(%)) = f(x), ®)
a0 €R, —1<x <],
{Zlv :=v(—=1) —v(1) =0, 6 4 fo, @)

by = BV (—1) + B (1) =0,
D(L) = {ve W3(-1,1): v =Lt =0}.

Theorem 1.

A. For any B1,B2 € R, if B1 # B2 then the operator L has the system of root functions

1
Vy = {vs,m(x) € Ly(—1,1) s vp(x) = —, vym(x) = (1 + hx) sin mrrx,
V2 (10)
Vo,m = COSMTTX, M € IN},
which is the Riesz basis of the space Ly(—1,1), h = /ﬁ; + 22.
1— p2
In this case, there is a biorthogonal system
1 .
Wy, = {ws,m(x) € Ly(—1,1) :wop(x) = ﬁ(l — hx), wy m(x) = sinmmx,

wo,;m = (1 — hx) cosmmx, m € ]N}.
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Al Lety = ay = /ﬁ; 22 Then the operator L has the set of eigenvalues o U 01, where
1— P2
0= {Ak eR, A = 7'(2k2, k e N}, o = {Al,k e R, Al,k = (1 — 2061))\k, A €0, k € N}, and

the system of eigenfunctions Vj,.

1+ B2
1— B2

the system of eigenfunctions Vj,.

A2 Leta; =0,7 # Pt P Then the operator L has the set of double eigenvalues ¢ and

A3. Leta; =0,7 = PrvPp 2. Then the operator L has the set of double eigenvalues o and

the system of eigenfunctions Vj,.

Let

£(%) = foo (B0 (x) + :21 (o (v (1) + Fue (B (x)),

e 0]

n(x) = noovo0(x) + Y (Moxvor(x) +11xvi(x)),
k=1

where for = (f; W) 1y(~1,1) sk = (1 Wr k) 1y(—1,1) fors =0,1and k € N.

Theorem 2.
Al Lety=uap = gl + gz and the following assumptions hold:
1— P2
B1) & CHL-1,1) 5(-1) — (1) =0, fuy/ (~1) + o/ (1) =0, [ y(x)dx = E(0)

B2) E(t) € C'[-1,1];

B3) f(x,t) € C(Dr)NCHDr), f-1t) — f(1,t) = 0, pLEL L g MWD

. 0x 0x
/1 f(x, t)dx #0;
B4) ypy = (h—ay)(2kr —1), k € IN.
Then there is a unique solution of the problem (4)—(6) of the following form
7700+/ T) foo(T dT Voo( )
+ Z ( et +/ T)fLr(T)e %1"‘“#)%) v (%) (11)

+ 0k€ A"t+/ T) fo () M= T)dT)VOk( ))

and the pair of functions {r(t),u(x,t)} is the unique solution of the inverse problem (4)—7).
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A.2. Leta; =0, v # b1 _T_ﬁ 2 and the assumptions B1)-B3) hold. Then there is a unique
2+ p1
solution of the problem (4)—(6) of the following form

u(x,t) =<7700+/ T) foo(T )dT)Vo,o(x)

+k21< 1o,c€ A"tJr/ ) for (T)e M- T)dT)VOk( ) (12)
<771k€ Akt+/ T) fre(T)e M T)dT)Vlk( ))

and the pair of functions {r(t), u(x,t)} is the unique solution of the inverse problem (4)-(7).

A.3. Letoq:O,v:’Bl_ 2

and the assumptions B1)-B3) hold. Then there is a unique
2 1
solution of the problem (4)—(6) of the following form

1700+/ ) foo (1)) o (x)
+Z< (e W+/ ) foe ()M DdT ()
[ ([ o) iate)e @>de) g
< (mse Muna(x) + [ o) fame 0T ),

(13)

and the pair of functions {r(t), u(x, t)} is the unique solution of the inverse problem (4)-(7).

3 Proof of the Theorem 1

Let us consider the eigenvalue problem for the equation
—"(x)=M(x), reC, -1<x<1, (14)

with boundary conditions (9).
Determine the fundamental system of solutions for the equation (14)

— ¥ —ox
{VO(’C’Q) T Reg<0, A=¢

v1(x,0) = €% —e 9%,

and substitute the general solution v(x,0) = Covp(x, 0) + Civ1(x,0), Co, C1 € R, of the equa-
tion (14) into boundary conditions (9).
To determine the parameters Cp, C; we obtain the system of linear algebraic equations with

the matrix of coefficients ©
0 wo )
Qo) = ,
@ = (ante) e
where w(0) = 2(e® —e7?), wi(0) = 2¢(B1 — P2)(e™° —¢?), w3(0) = 20(p1 + P2)(e™% +¢?).
To determine the eigenvalues of problem (14), (9) we obtain the characteristic equation
det (o) = 40(B1 — B2) (e~ % — €2)?, which has the roots 0, 7k, k = +1,42,... .
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Therefore, problem (13), (9) has eigenvalues A, = Kk, k = 0,1,..., and corresponding

1
ek
The attached functions of the problem are defined by relations vy := (1 + hx)sin ¥,
B1— B2
B2t B

Therefore, the operator of the problem (14), (9) has a spectrum ¢ and the system of functions
V},, which are the root functions in the sense of ratios [17]:

eigenfunctions vpo(x) := vy k(x) := cos rtkx, k € IN.

k € IN. Substituting these expressions into the boundary conditions (9), we obtain i =

{_V(/)/,k(x) = MV (x), LeN
_Vil,k(x) = Mvir(x) + prvor(x),

where y = 2krth, k € IN.

Note, that in the case B = —f; the boundary conditions (9) coincide with the periodicity
conditions, yx = 0, k € IN, and the system of functions (10) is an orthonormal basis in the
space Ly(—1,1):

Vo = {rslk(x) € Ly(—1,1): 1o(x) = \/LE' Tox(x) = cos tkx, T x(x) = sinmkx, k € IN}.

If B = —p1, then the boundary conditions (9) are singular and det Q(¢) = 0 (see [19]).
The operator of the conjugate problem to (14), (9) (see [3,19])

—w'(x) =Aw(x), AeC, -1<x<1,
paw(=1) + prw(1) =0,
w'(-1) —w'(1) =0,
has the system (10) of root functions that is orthogonal in the sense of equalities

(Vr,k; ws,m)Lz(—l,l) = 57,55](,111/ r,5 = Or 1/ krm € IN.

Lemma 1. For arbitrary numbers B1, B2 € R, B1 # —Po, the system of functions Vj, is the Riesz
basis of the space Lp(—1,1).

Proof. The boundary conditions (9) are regular by Birkhoff [19]. Therefore systems of functions
Vi, Wy, are complete and minimal in space Ly(—1,1).

From the definition of these systems for an arbitrary function ¢ € Lp(—1,1) we obtain
Bessel inequalities [14]:

o 1
(q), 1/00 Lz + Z Z q)lvrk S MO”QH%Z(fl,l)’
k=1r=0 where My = 2(1 + 1?).
((Pr wOO L2 "‘ Z Z (Pr wsm 1,1) < MOH(P”%Z(_l 1)
m=1s=0
Therefore, applying theorem of N.K. Bari (see [4]), we obtain the statement of lemma. O

Thus, the statement A.1 of Theorem 1 is proved.
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Let O(V},, o) be the set of operators L : Ly(—1,1) — La(—1,1), which have the point spec-
trum ¢ and the system of root functions V}, in the sense of ratios
{Lvo,k(x) = Mvoi(x), k=0,1...,
Lvy(x) = Mevae(x) + pvor(x), k=1,2,...,

for some real numbers py, k € IN.
Let us consider the operator L : Ly(—1,1) — Ly(—1,1), generated by the equation

(15)

Lv:= —v"(x)+a(V(x) +V(—x)) =Av(x) =0, AeC yeR, -1<x<1, (16)

and boundary conditions (9).
By substituting functions (10) into the equation (16), we obtain the relations (15), where

urp = (o —h)2km, ke NN.

Therefore, L € O(V},, ). Thus, the statement A.2 of Theorem 1 is proved.

If equality « = h holds, then yj = 0. In this case the elements of system V}, are eigenfunc-
tions of operator L. Therefore, A.3 of Theorem 1 is proved.

Let o7 := {A1x € R, k € N}, and O(V},, 0, 01) be the set of operators L : Ly(—1,1) —
Ly(—1,1) with the point spectrum ¢ U 07 and system of eigenfunctions Vj,

{LVO,k(x) = Mvoi(x), Ar€0, k=0,1,...,
Lvyp(x) = A pvap(x), Apx € 01

Let us consider the operator L of the problem (8)—(9). By substituting functions (10) into
equation (8), we obtain

{LVO,k(x) = My (x),
Lvy g (x) = Agvy () — 209 A (1 4 9x) Ty 1 (%) + prvio (%),
pe = (h—az)(2kmr — 1),
Lvy(x) = Aqpvae(x) — 200 (7 — h)xt e (x) + prvor(x), Appi= (1 —2aq)A,
for k € N. Therefore, L ¢ O(V}, ).

B1— B2
,then 1, = 0 for k € IN.
By + Bi Mk

fy=a=h=

Therefore,
{LVO,k(x) = Avoi(x), — (17)
Lvy(x) = Aqvir(x),
Thus, V}, is the system of eigenfunctions of operator L, for which the equalities (17) hold,
where 07 := {A1x € R, Ay = (1 —2a7)Ag, k € N}
Then, L € O(V},, 0, 07). Therefore, taking into account Lemma 1, we obtain the following
statement.

Lemma 2. For any numbers a1, a3, 1, B2 € R, where 2a; # 1, B1 # — B2, the system of eigen-
functions Vj, of operator L is Riesz basis of the space Ly(—1,1).

Consequently, the statement A.1 of Theorem 1 holds.
Note, that for the case ay = v = 0 the spectral properties of operator L are investigated in
the papers [17,18].
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4 Existence and uniqueness of solution to the problem (4)—(7)

_B1—p

- Bt By
of the problem (4)—(6) are determined by relations

4.1. Let the conditions v = a, and assumptions B1)-B3) hold. Partial solutions

uo0(x,t) = Too(t)voo(x),
uok(x,t) = Tox(t)vor(x), ke N.
upp(x, t) = Ty e(t)ve(x),

To determine functions T, x(f), we obtain problems that are solved sequentially

Too(t) = r(t) foo(t), Toe(0) =100,
Tox(t) = AxTok(t) +r(t) for, Tox(0) = 1ok keN.
T1 (1) = A Toe(t) +r(8) fue(t), Tix(0) = 11,

Therefore,
Too(t) = 1700t+/ T) fo,0(T)dT
Ty x(t) =11 e A“‘“f/ ) fir(t)e Mt Tdr, ke N.

TOk( ) = Noke A"tJr/ T) for(T)e M =Ddr,

uo()(xt ﬂoot—F/ fo() dT)l/o()( ),
s t) = (o™ '+ [ r(0) (@) M Yuge(x), k€N,

k”l,k(x/t) = (771k€ A"t+/ T) for (T)e M- T)dT>V1k( ),

From the continuity of 7(x) and the boundedness of functions (10) we obtain inequalities
I, kl <M, r=0,1, k € N. Taking into account these inequalities, we have the estimates

oo (x, t)| < |00l +max ([r(t)| - [foo(t)]) < Mo,
g (x, )| < ] +max ([r(£)] - [ fue(t)])e M1k < Mye M,
o (x, 1) < 10| +max (|r(t)] - [for(t)])e M < Mae M,

So, the functional series

oo 1
MO,()(X, t) + Z Z us,k(xl t) (18)
k=1s=0

is estimated by an absolutely convergent numerical series

oo
My + Z (Mle_Al/ke + Mze_Akg) .
k=1
Therefore, according to the Weierstrass M-Test, the series (18) is uniformly convergent to
a continuous function for t > &. Thus, the sum of the series (18) determines the continuous
function u(x, t), which satisfies the initial condition (6).
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Differentiating the series (18) element-by-element by the variable ¢, we obtain

r(t) foo ()voo(x) + 2 (( At re M — v () fi i (t +/ T)fir(T)e 7A1"‘(t7T)dT>V1,k(x)
< Mertoxe” M —r(t) fox(t +/ T) for(T)e M- T)dT>V0k( ))

Let us consider

)M‘ < o0l +max (|r(t)] - | foo(t)]),
)amg&‘ < max (|r(t)] - [fie(®)]) + (|A1el[171,6] + max ]r(t)]T]fllk(t)‘)e*?u,ksr

2805 | < e ()] - o)) + (1Al ol + mae (BT foa ().

From the assumption B3) and the embedding theorems we obtain uniform convergence
and continuity of the sum of series max |r(t)] - <\f00 (1) + Z (I fox ()] + | fr(t )D) in the do-

main Dr.
The series

g(Alk”ﬁkH)/ 7) fie(t)e Mt T)dT“"AkWOkH’)/ ) for(T)e M T)dTD

(o]
is estimated for t > ¢ by series Mz } | (Aqre 14 + Age™ ).
k=1

oo 1
au0,0(xl t) ‘ + Z Z aMs,k(x/ t) .

Therefore, the sum of the series ‘ o o is a continuous function in

ou(x,t)
ot~

Differentiating the series (18) element-by-element twice by the variable x, we obtain

k=1s=0

Dt and coincides with

[ee]

Z( Mk(’?lke A”‘t+/ T) fi(T)e Mt T)dT>Vl,k(x)

k=1

_)\k<770ke )"‘t+/ T) fo (T)e M- T)dT>V0k( ))

(o]
The obtained series is estimated for t > ¢ by series My Z (Al,ke_’\l/ks + Ake_)‘kg). Therefore,
k=1
0%u(x,t)
oxz

is investigated. Further, by the embed-

ding theorems we obtain the continuity of functions ou gx 2) , ul=x1) ; in Dr.

sum of this series is a continuous function in Dt and coincides with

*u(—x,t)

Similarly, the smoothness of the function >
x

Therefore, the sum of the series (12) is a classical solution of the problem (4)—(6).



14 ‘ Baranetskij Ya.O. ‘, Demkiv LI, Solomko A.V.

Let us consider the equation to define the function r(t):

/o1 %d’c =E'(t) = \/ir(f)foo(t)

( B) fur(t) — Aqgipe 1At

_Al,k/ r(T) fre(T)e Mrlts ﬂdT)

Then we construct the equation to determine the function r(t):

1k1

r(t) (\/Efoo ) +2h Z fl k )) )+ hz Ay re A
® 2(—1)k-1
+h2¥m/ (7) fux(r)e M= Ddr,
o Tk
hence
o - oo 4t
E/(t)+2(1_2“1)h 2 (_;l.[)kk 17’]1,](67)\1rkt 2h(1—2061) Z (_;l_[)]f 1fr(T)fl,k(T)e_/\l'k(t_T)dT
r(t) = k=1 I k=1

0
Vafao(t) +2h ¥ S et Vafua(t) +21 & )

So, to determine the function r(f) the Volterra integral equation of the second kind is ob-
tained:

t
£ + / K(t, T)r(7)dT, (19)
0
where -
E'(t) +2(1 —2aq1)h Z mf 1171 e Mkt
F(t) = = , (20)

V2foo(t) 42k koé _nki fri(t)

2h(1~2m) ¥ G fua(r)e 00
K(t,7) = k=1 — . 1)
V2fo(t) +2h Z CLU A ()

The denominator of fractions (20), (21) is not equal to zero, because the assumption B3) is
obtained

/fxtdx—\/_foo +2h2 () 20,

According to assumptions B1)-B3), the function F(t) and the kernel K(t, T) are continuous
functions on [0, T] and [0, 1] x [0, T], respectively.

Therefore, equation (19) has a unique solution. This solution is a continuous function r(t)
on [0, T], which forms a unique solution {r(t), u(x,t)} of the inverse problem (4)—(7) together
with the given Fourier series (11) as a solution u(x, t) of the direct problem (4)—(6).

The statement A.1 of Theorem 2 is proved.
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4.2. Letwy = 0. Then A, = Al,k for k € IN.
In the case of v # bL—Pa the elements of system V}, are the root functions of the operator

2 1
L, for which the equalities (15) hold.

Proof of statement A.2 of Theorem 2. The partial solutions of the problem (4)-(6) are determined
by relations (17). To find the functions T, ;(t) we obtain the following problems

Too(t) = r(t) foo0, Too(0) = o0,
Tox(t) = ATox(t) +r(t) for(t), Tox(0) =nox, k€N,
Ty () = MToi(t) +7(8) for(t), Tix(0) = nix,

which are solved sequentially.
Therefore,

Too(t) —1700f+/ T) foo(T)dT
Tox(t) = noxe A"t+/ ) for(t)e = Tdr, keN,

Tix(t) = ke A"t+/ T) fup(T)e M"Ddr,

¢

uopo(x,t) 1700f+/ T) foo(T )Vo,o(x),
uok(x, 1) = (770k€ A"t+/ 7) fox(t)e M T)dT>V0k( ), kel
uri(x,t) = <’71k€ A"t+/ T) fr(T)e M- T)dT>V1k( ),

Taking into account the assumptions B1)-B3) of the theorem, we obtain the estimates

\

lug,0(x, t)| < |10,0] + max (|r(t)] - |foo(t)]) < My,
g i (3, £)| < max vy (8)] (1] +max [r(£)] - [fre(t)])e M < Mse ¥, (22)

Juox(x, )] < (1ol +max [r()] - [for(H)])e™ ™ < Mee™ ™, (23)
Therefore, the functional series (18) is majorized by an absolutely convergent numerical

[ee]

series My Z e M€ for t > ¢. Then, according to the Weierstrass M-Test, the series (18) is uni-
k=1

formly convergent to a continuous function for ¢ > &. Thus, the sum of the series (18) defines a

continuous function that satisfies the initial condition (6).
By direct substitution, we make sure that

auO k(x, t)

FTaa <—7(f)f0,k() A (o™ )"‘t+/ ) for (T)e M= T)dr))volk(x),
ouq i(x, 1)

i <—7(f)f1,k() A(1m e )"‘t+/ ) fip(r)e M T)dT))Vl,k(x)'

for k € IN.
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According to the scheme of the proof of A.1, we differentiate the series (18) element-by-
element by the variable t and twice by the variable x. Then we define majorant number series
for t > & and obtain uniform continuity of the sum of this series by the Weierstrass M-Test
fort > e.

We differentiate the series (18) element-by-element twice by the variable x:

oo 1 aZ , t o0 _ t _ —
)3 Z’ ual;zx ‘ =) <_Ak<’70,ke Ak*+/0 r(T) fox(v)e M T)dT>V0'k(x)

k=1r=0

_)\k<(771,k+l“‘k’70,k)eAkt+/()tr(7 ) (fie(T) + pefor(T)e A"(tT)ﬂlT)V1,k(x))>-

Taking into account the estimates (22), (23), we obtain

)8 ugi(x,t)

9?1y
e e

‘ < 2\ Mse M, ) < 2\ Mge M

for k € IN.

[ee]

Then, the obtained series is majorized by series My ) _ Ae M€ for t > & > 0 and My > 0.
k=1

Therefore, the sum of this series is a continuous function in the domain Dt and coincides with

2 2. (_
w M is obtained.

dx? dx?
By embedding theorems, we obtain continuity of functions 8ug§, ) , ou( a_xx, ) in Dr. Thus,

. Similarly, the smoothness of the function

the function u(x, t), defined by the series (12), is a classical solution of the problem (4)—(6).
Let us consider the following equation to define the function r(#):

/01 aug;;, D gx = E'() = v2r(t) foo(t)
+2h Z

-1

< B fur(t) — Aage

_)\k/ r(T) fr(T)e M- T)dT>

Then we construct the equation to determine the function r(t):

1
e

r(6)(V2foo(t) + 2 z ) =

k—1

+2hi( /t (7) i (T)e ",
]

hence

o) .t
e 2n Y EUTL f () (r)e M
k=1 0

E'(t)
r(t) - + k—1
V2foolt >+2h z LAl V2l +2n B
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Therefore, to determine the function r(t) the Volterra integral equation of the second kind
is obtained:

£+ /0 'Kt )r(t)dT, (24)

where

E()+2h —Met

F(t) = (25)
V2fool(t )+2h Z flk( )

2h 2 flk( T)e M(t=T)
K(t,7) = . (26)
V2fo0(t) +2hk§1 (771T)k fri(t)

The denominator of fractions (25), (26) is not equal to zero, because the assumption B3) is
obtained

/fxtdx—\/_foo +2h2 )klflk()

According to assumptions B1)-B3), the function F(t) and the kernel K(t, T) are continuous
functions on [0, T] and [0, 1] x [0, T], respectively.

Therefore, equation (24) has a unique solution. This solution is a continuous function r(t)
on [0, T], which forms a unique solution {r(t), u(x,t)} of the inverse problem (4)—(7) together
with solution u(x, t) of the direct problem (4)—(6).

The statement A.2 of Theorem 2 is proved. O

4.3. Letay = h = M In this case the elements of system V), are the eigenvalues of

2 1
operator L, for which the following equalities hold

{LVO,k(x) = Mevp (%), Fe N

Lvyi(x) = Agv e(x),

The proof of statement A.3 of Theorem 2 repeats the proof of A.1 of this theorem.
We note that inverse problem is investigated in [21] for B; = 1, B2 = b, v = 0, a1 = —¢,
a> = 0. In addition, if 1 — 2¢; < 0, then more research is needed.
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‘BapaHeHhKI/Iﬁ S1.0. ‘, Aemxkis LI, Coromko A.B. ObepHeri 3adaui 8usHaueHHs Hesid0M020, 3a1eHCHO20

80 uacy koegpiyieHma 019 napaboiuHO20 PiBHIHHA 3 IHBO.IIOYIEI0 A Ymosamu nepioduurocmi // Kapnar-
cbKi MaTeM. my6A. — 2023. — T.15, Nel. — C. 5-19.

MeToA0M BiAOKpeMAEHHS 3MIHHMX TIOOYAOBAHO PO3B’SI30K AOCAIAXKYBaHOI 3aAadi 3 HEBIAOMMM
KoedpiIlieHTOM y piBHSHHI. BB4eHO BAACTMBOCTI iHAYKOBAaHOI CIIEKTPaAbHOI 3aaadi AAST AMdpepeH-
LiaABHOTO PiBHSHHSI APYTOTO HMOPSIAKY 3 iHBOAIOIIi€I0. AOCAIAXEHO 3aAeXHICTh CIeKTpa Ta 10ro
KPaTHOCTi, a TAKOX CTPYKTYPU CUCTEMM KOpeHeBMX (pyHKIIi i YacTMHHIX PO3B’s3KiB 3apadi Bia iH-
BOAIOTVBHOI YaCTVMHY IIbOTO PiBHSHHSL. BCcTaHOBAEHO yMOBY iCHYBaHHS Ta €AVHOCTi pO3B’s13Ky obep-
HeHOI 3apavi. AAsl BU3HaUeHHsI IITyKaHOTO KoedpillieHTa 3HalfA€HO Ta pO3B’si3aHO iHTerpasbHe piB-
Hs1HHSI BoAbTepa apyroro poay.

Kontouosi cnosa i ppasu: obepHeHa 3apava, PiBHSHHS TEIIAOIPOBIAHOCTI, METOA BiAOKpEMAEHHS
3MiHHIMX, HeAOKaAbHA YMOBa, iHBOAIOIIisI, 6asmc Picca.



