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Generalized integral type mappings on orthogonal metric
spaces

Acar O., ErdoganE., Ozkapu A.S.

This study is devoted to investigate the problem whether the existence and uniqueness of inte-
gral type contraction mappings on orthogonal metric spaces. At the end, we give an example to
illustrative our main result.
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1 Introduction

In 1922, S. Banach [6] proved that on a complete metric space every contraction mapping
has a unique fixed point and also he established the existence of solutions for integral equa-
tions. Based on usefulness, applications and simplicity of Banach fixed point theorem, it has
become a very popular tool in many branches of mathematical analysis. So, this has led re-
searchers to expand and generalize the principle in many ways. Especially, A. Brianciari [7]
extended the Banach fixed point theorem as follows.

Theorem 1. Let T be a mapping from a complete metric space (M, p) into itself. Let c €]0,1]
and T : M — M be a mapping, such that for each x,y € M the inequality

(Tx,Ty) (%)
/p y’y(s)dsgc/p y’y(s)ds
0 0

holds, where v : Rt — R is Lebesque integrable mapping, which is summable on each
compact subset of R™, nonnegative and [ y(s)ds > 0 for each ¢ > 0.
Then T has a unique fixed pointa € M such thatlim,_, . T"x = a for each x € M.

Since then, many authors have established fixed point theorems for several classes of con-
tractive mappings of integral type (see [1,5,11,12]). Especially Z. Liu et al. [13] extended the
result of A. Brianciari in many different ways.

Recently, M.E. Gordji et al. [8] presented a new generalization of the Banach fixed point
theorem by defining the notion of orthogonal sets. The orthogonal set is a non-empty set
equipped with a binary relation having a special structure. The metric defined on the or-
thogonal set is called orthogonal metric space. The orthogonal metric space contains partially
ordered metric space and graphical metric space.
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After defining orthogonality concepts and giving generalization of Banach fixed point the-
orem, many generalizations were made. For example, M.E. Gordji et al. [10] studied fixed point
problems in generalized orthogonal metric spaces. K. Sawangsup et al. [14] showed that for
the first time the existence of fixed point in orthogonal metric spaces using the F-contraction
mapping. Moreover, K. Sawangsup and W. Sintunavarat [15] define the transitive orthogonal
set, giving a different perspective to the representation of the uniqueness of the fixed point in
orthogonal metric spaces. Also, the reader can see [2,3,9].

In this paper, we investigate whether the fixed point exists and is unique by establishing an
integral type contraction mapping in orthogonal metric spaces.

In order to do this we first recall some basic definitions and notations of corresponding
mappings and spaces.

Throughout this paper, we denote R™ := [0, o) and

P = {’)/ : RT — R™ | v is Lebesque integrable function, summable on each compact subset
of R™ and /Oe v(s)ds > 0 for each € > 0},

Dy = {;3 { R - R* | liminfB(a,) > 0 <= liminfa, > 0 for each (a,),en C 1R+},

OREES {a : RT — R" | a is nondecreasing continuous function and a(t) = 0 <=t = 0}.

Lemma 1 (13]). Lety € &1 and {a, } . be a nonnegative sequence withlim;, ,« a, = a. Then

an

lim y(s)ds = /Oa v(s)ds.

n—oo 0

Lemma 2 ([13]). Lety € ®1 and {ay }, be a nonnegative sequence. Then

an

nh_r>ro10 A 'y(s)ds:0<:>r}glgoan:0.

Lemma 3 ((13]). Let f € ®,. Then (t) > 0 <=t > 0.

Definition 1 ([8]). Let M be a non-empty set and A be a binary relation defined on M. If binary
relation A fulfils the following criteria

dgo[(Vw e M, wigp)or(VweM, go Aw),

then pair (M, A) known as an orthogonal set. The element ¢ is called an orthogonal element.
We denote this O-set or orthogonal set by (M, A ).

Definition 2 ([8]). Let (M, A) be an orthogonal set (O-set). Any two elements ¢, w € M, such
that ¢ A w, are said to be orthogonally related.

Definition 3 ([8]). A sequence {¢,} is called an orthogonal sequence (briefly O-sequence) if
(Vn €N, ¢y Agpe1) or (Vn €N, ¢ui1 AGn)-
Similarly, a Cauchy sequence {¢, } is said to be an orthogonally Cauchy sequence if

(Vn €N, ¢n Agpe1) or (Vn € N, Gyi1 AGn)-
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Definition 4 ([8]). Let (M, A) be an orthogonal set and p be a metric on M. Then (M, A,p) is
called an orthogonal metric space (O-metric space for short).

Definition 5 ([8]). Let (M, A,p) be an orthogonal metric space. Then M is said to be an
O-complete if every Cauchy O-sequence converges in M.

Definition 6 ([8]). Let (M, A, p) be an orthogonal metric space. A function f : M — M is said
to be orthogonally continuous (A -continuous) at ¢ if for each O-sequence {¢, } converging to ¢
it follows f(¢n) — f(g) asn — oo. Also f is A-continuous on M if f is A-continuous at every
¢ € M.

Definition 7 ([8]). Let a pair (M, A) be an O-set, where M(# &) is a non-empty set and A
be a binary relation on M. A mapping f : M — M is said to be \-preserving if f(¢) A f(w)
whenever ¢ A w and weakly A-preserving if f(¢) A f(w) or f(w) A f(g) whenever ¢ A w.

Definition 8 ([15]). We say that an O-set is a transitive orthogonal set if A is transitive.

Definition 9 ([15]). Let (M, A) be an O-set. A path of length k in A from x to y is a finite
sequence {zo,z1,...,2zx} C M such that

20 =X, Zk =Y, 2i N Zjiy1 OF Zjiy1 A Z;

foralli=0,1,...,k—1.
Let A(x,y, L) denotes the set of all paths of length k in A from x toy.

2 Main results

Definition 10. Let (M, A, p) be an orthogonal metric space. A mapping T : M — M is called
an generalized O-integral type mapping if Vx, u € X with x A u the inequality

. </OP(T9TV)7(S)dS> <a </Op(w) 7(s)ds> b </Op(g,ﬂ)7(s)d5> )

holds, whereax € ®3,8 € O,y € P;.

Theorem 2. Let (M, A, p) be an O-complete orthogonal metric space, ay is an orthogonal ele-
ment of M and T be a self mapping on M such that:

(i) (M, A) is a transitive orthogonal set;

(ii) T is A-preserving;

(iii) T is a generalized O-integral type mapping;

(iv) T is A-continuous.
Then T has a unique fixed point in M.

Proof. From the definition of the orthogonality, we have ag A T(ag) or T(ap) A ag. Let
ay = Tag, ay := Tay = T?ag, -+, an := Ta,_1 = T"ag

foralln € NU{0}. If a,» = a,+41, then a,- is a fixed point of T for some n* € N U {0}. So, we
suppose that a, # a,1 for all n € N U {0}. Thus, we get p(a,,a,+1) > 0 foralln € N U {0}.
Using A-preserving of T, we obtain

an N yy1 Or Ayy1 A dy.
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Thus {a, } is an 0-sequence. Set ¢, = p(T"ay, T"*1ap) and show that
cn<G¢n1, VnelN. (2)
Suppose that (2) does not hold. It follows that there exists some 1y € IN satisfying
Gy > Grg—1- 3)
Noting (3) and using y € ®;, we obtain
/Ogno v(s)ds > 0. 4)
Using (1), (3) and « € ®3, B € Py, y € Py, we conclude that

. < /Ogn017(s>ds> c < /Ogno +6) ds) . ( /OP(T"OaO,Tn0+1a0) +6) ds)
a<g”%””%“ww%>—ﬁ<4“m1”mmv@wﬂ
o[ as) b ([ 0 <a ([T a0 as),

IN

which yields that

and

B[ res) =o. ©

Combining (6) and Lemma 3 we get

Sng—1
/ ¥(s)ds =0,
0

which together with & € ®3 and (5) means that

o ([ o) =a ([ 906 ds) =) =0
w(f%ﬂ@%)za

which contradicts (4). Hence, (2) holds. Now we show that,

that is

lim ¢, = 0. (7)

n—o0

From (2), we deduce that the nonnegative sequence {¢,} is nonincreasing, which means that
there exists a constant ¢ with lim, ;. g, = ¢ > 0. Suppose that ¢ > 0. Then from (1) we get

. (/Ogn s) ds) . (/OP(T”aO,T"Hao) " (s) ds)
. (/()p(Tnla()lT”aO)’Y(S)dS) —5 </OP(T"1ao,T”u0) ’y(s)ds) (8)
« </Ognl v(s) ds) - B </0in 7(s) ds) , VneN.

IN
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Taking upper limit in (8) and using Lemma 1 and & € ®3,8 € ®,,y € Py, we get

() = ([ 200
<tz ([ ) < ()

. Cn—1 L. Cn—1
< limsupa </0 v(s) ds) - hgglfﬁ </0 (s) ds)

n—oo

= </()C'y(s)ds> —liggg}fﬁ </0gn1')/(s)ds> < </chy(s)ds>

which is a contradiction, so ¢ = 0.

Let us show that {T"ag } is an O-Cauchy sequence. Suppose that {T"a } is not an O-Cauchy
sequence, which means that there is a constant € > 0, such that for each positive integer k there
are positive integers m (k) and n(k) with m(k) > n(k) < k satisfying

p(T"®ag, T"®ag) > e. 9)

For each positive integer k, let m (k) denote the least integer exceeding n(k) and satisfying (9).
It follows that
o(T"®) gy, TR gg) > ¢

and
o(T" R 1gy T"Kg) < e, VkeN. (10)

Note that
o(T"® gy, TR o) < p(T" R gy, T" K gg) 4+ p(T™ ) "1gy, T"Kgy), Vi € N.
Hence, forall k € N
)p(T’”(k)ao, TR +1g0) — p(TK) gy, T"(k)ao)‘
‘p(Tm(k)+1a0’ T"0)+1g0) — p(T"K) g, Tn(k)+1a0)‘ < Gty (11)
)p(Tm(k)+1aO, Tn(k)+1a0> _ p(Tm(k)+1a0’ Tn(k)+2a0)‘
From (10) and (11), we obtain

e = lim p(T"Wag, T"®ag) = lim p(T""ag, 7" *1ag)
k—ro0 k—o0

= lim p(T’”(k)HaO, Tn(k)+1ll0) _ limp(Tm(k)+lll0, Tn(k)+2a0)‘ (12)
k—o0 k— 00
From (1), we have for all k € IN,
p(T;1z(k)+la0/Tn(k)+2a0)
oc( / 'y(s)ds>
’ (13)

p(Tm(k)ﬂolTn(k)Jrlao) p(T;7z(k)a0/Tn(k)+1H0)
<u </0 ’y(s)ds) — ﬁ(/o 'y(s)ds>.
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Taking upper limit in (13) and using (12), « € ®3, 8 € P,y € P1 and Lemma 1, we obtain

¢ p(Tnl(k)+lu0’T71(k)+2go)
« (/ ’y(s)ds) = limsupa (/ v(s) ds>
0 0

k—o0
p(Trrz(k)uolTn(k)+1H0) p(Tm(k)ﬂolTn(k)Jrlao)
<limsup |a / y(s)ds | — B / v(s)ds
k—o0 0 0
p(Tm(k)aO,Tn(kHlao) p(Tm(k)aO,Tn(k)Jrlao)
< limsupw / v(s)ds| — liminfp / v(s)ds
k—o00 0 k—e0 0

€ p(Tm(k)aO,Tn(k)+laO) €
=a (/ v(s) ds) — liminfpB / y(s)ds | <a (/ v(s) ds) ,
0 k—r o0 0 0

which is impossible. Thus {T"ay} is a O-Cauchy sequence. Since M is O-complete, then there
exists z* € M such that a, — z*. Since orthogonal continuity of T implies that Ta,, — Tz,
then

Tz* = T(lim a,) = lim Ta, = lim a,11 = 2%,
n—oo n—o0 n—00

so, z* is a fixed point of T. Now, we can show the uniqueness of the fixed point. Suppose that
there exists two distinct fixed point z* and w*. Since A(g, i, A) is nonempty for all ¢, u € M,
there exists a path {zg, z, . . ., zx } of some finite lenght k in A from z* to w* such that

z0=2% zx =w", z; Azj41 or zj41 A z;.

Since (M, A) is a transitive orthogonal set, we get z* A w* or w* A z*. Then from (1) we obtain

) </OP(Z*'W*)7(S)[15> . </Op(Tz*’Tw*)ly(S) dS)
<o ([ vsas) - ([ o) <a ([T 0as),

which is a contradiction. So, z* is a unique fixed point of T. O

Example 1. Let M = [O, 1] U {1} U {3} be endowed with the standard metric p. Assume that
T:M— Manda,B,v:R" — RT are defined as in the paper [13] such as

5, Vge {O,%],
Tc)=490 c=1, 5(5):{
1

2
%2, Vs € [0,1],
%, Vs € (1,+00),

, =3,

(S)_ 57 VSG[O,l], 0{(5)_ S, vse[oll]l
TWZ11, se (1, +o0), T B, Wse(1,+0).

Define relation A on M by ¢ A u <= ¢cu € {g, u} . Clearly (M, A) is an O-complete orthogonal
metric space and (v, B,a) € ®1x Pyx P3. In order to verify (1), we have to consider the
following four cases.
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Case 1. Let ¢ = 0 and p = 3. It follows that

()] -1 o
_ (/ ds+/ ) ﬁ(/olv()ds+/3v()d5>

(o) o (00

o [ vwas) - [ at0)85).

Case 2. Letg =1 and u = 3. It follows that

([ 0ra5) = o /pm’”w)ds) G):i (§)Z+1_(3)2:a(§)—ﬁ(§)
-p

Case3. Letg =1, € [O, %] . It follows that

a( /Opwg,w)7 ) ds) _ a( /Op<0,§‘)7 (S)ds> _ (ﬁ) ]/1_6
:a<!1 —4m2> ﬁ<!1—u!2> ( ) 5(/0‘)(1’”)7(5)ds>
(/OP(W)Y(S) ds) _ﬁ</op ()ds)

Case4. Letg =0, u € [0, %} . It follows that

“</()P(TG/TH) 7 (s) ds)

ll—m =g

=K

I
=
VR
o\
-
o
Nr=
2
—~
195}
SN—r
&
~~—
I
=
VR
S
~
I
S
VAN
|T:‘
N
|
PR
Il
=
7N
N
~~
|
e>)
VR
NS
~~

“(/OP(W) 7 (s) ds) B ﬁ(/op(w) 7 (s) ds).

That is, (1) holds. Thus Theorem 2 guarantees that T has a unique fixed point 0 € M.
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Ls cTaTTs IpucBsTIeHa AOCALAKEHHIO ITPOOAEMN iICHYBaHHS Ta €AVHOCTI CTHCKYIOWNX Biao6pa-
XeHb iHTerpaAbHOTO TUITY Ha OPTOTOHAABHMX MeTPUUHMX IpocTopax. HapeaeHO mpukAaa, 110 irro-
CTPYy€ OCHOBHMII pe3yAbTaT CTaTTi.

Koouosi cnosa i ¢ppasu: Hepyxoma TouKa, BiAOOpakeHHs iHTETpaAbHOTO THITY, OPTOrOHAABHMIA
MeTPUYHMIA ITPOCTIp.



