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Fixed sets and fixed points for mappings in generalized
Lim-spaces of Fréchet
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In the article, we axiomatically define generalized Lim-spaces (X, Lim), Cauchy structures, con-

tractive mappings and prove an abstract version of the contraction mapping principle. We also

consider ways to specify families of Cauchy sequences and contraction conditions using a base in

X2, distance-like or sum-like functions with values in some partially ordered set Y. We establish

fixed set and fixed point theorems for generalized contractions of the Meir-Keeler and Taylor, Ćirić

and Caristi types. The obtained results generalize many known fixed point theorems and are new

even in many classical situations.
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1 Introduction

The theory of fixed point theorems is a well-developed domain of Analysis and Topology

(see books [2, 5, 9, 11, 16] and references therein). In a series of papers (see, for example, [1, 14,

20, 23]) the theory of fixed points was developed in abstract L-spaces in the sense of Fréchet.

The classical contraction mapping theorem in metric spaces, which goes back to É. Picard,

S. Banach and R. Caccioppoli, was generalized in many various directions, and in most cases,

the following scheme was used to prove the obtained theorems. Consider a Picard sequence

(an orbit of f ) O( f , x0) := {x0, x1 = f (x0), . . . , xn = f (xn−1), . . . } and using the fact that f is

contractive in some sense, establish that it is a Cauchy sequence. Using completeness of the

space, obtain a point x such that xn → x as n → +∞. Continuity (in some sense) of f gives

f (x) = x.

The purpose of this note is to discuss the possibility of implementing this scheme in the

following abstract situation. Convergence of sequences {xn} ⊂ X is defined axiomatically,

essentially using an approach that goes back to M. Fréchet [10] (see also [21]), but with essen-

tially less requirements on a limiting operator Lim. Continuity (weakly orbital continuity) of a

function is then defined as a requirement for operators Lim and f to commute on orbits of f .

The family of Cauchy sequences is also defined axiomatically (our definition goes back to [13],

but with essentially less requirements). A necessary relation between the family of Cauchy

sequences and the Lim operator is given by the (orbital) completeness requirement, namely

Cauchy sequences, which are orbit of some f : X → X (actually, even not all of them must
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be convergent, see, e.g., [24]). A sufficient for fixed point theorems definition of a contractive

function is as follows: a function f is locally orbital contractive at a point x0 ∈ X, if the orbit

O( f , x0) is a Cauchy sequence (this definition will be refined later). Such a definition is mo-

tivated by the fact that in the case when the set of Cauchy sequences is determined using a

distance-like function, sum-like function or some base in X2, it is quite consistent with intu-

itive ideas about contraction. In these cases, various generalizations of known definitions of

contractions can be considered as sufficient conditions for contraction in the above presented

general sense and can be written in a form close to the traditional one. The obtained results

generalize many known fixed point theorems and are new even in many classical situations.

In Section 2, we give necessary notations and definitions. There we present the defini-

tion and some properties of Lim-spaces, the definition of Cauchy structures, and examples of

Cauchy structures defined by some base in X2, some distance-like or sum-like function taking

values in some partially ordered set. An abstract version of a fixed set and point theorem is

given in Subsection 3.1. In Subsections 3.2– 3.5 fixed set and point theorems are presented for

generalized contractions of Meir-Keeler and Taylor, Ćirić, and Caristi type defined in terms of

a base in X2 or distance-like and sum-like functions.

2 Notations and definitions

2.1 General notations

Let X be a nonempty set, s(X) be a set of all sequences {xn} of elements from X, s∞(X) be

the set of sequences from s(X) with pair-wise different elements, and P(X) be the family of

all subsets from X.

For x1, . . . , xn ∈ X by 〈x1, . . . , xn〉 we denote the sequence {x1, . . . , xn, x1, . . . , xn, . . .}. For

{xn}, {yn} ∈ s(X) we set

{xn} ∨∧ {yn} := {x1, y1, x2, y2, . . . , xn, yn . . .} .

For a mapping f : X → X, x0 ∈ X, n ∈ Z+, we set On( f , x0) =
{

f n(x0), f n+1(x0), . . .
}

,

O( f , x0) = O0( f , x0) =
{

f n(x0)
}

, and O( f ) =
{

O0( f , x0) : x0 ∈ X
}

.

Finally, let N =
{

{nk} ∈ s(N) : nk → +∞ as k → +∞
}

.

2.2 Limit spaces

Definition 1 (cf. [10, 21]). A pair (X, Lim) of a set X and a mapping

Lim: s(X) → P(X)

such that if {xn} ∈ s(X), then Lim{xn} = Lim{xn+1}, is called a Lim-space. If for some

{xn} ∈ s(X), Lim {xn} 6= ∅, then we say that the sequence {xn} is convergent, and write

{xn} ∈ c(X).

Example 1. If X is a metric space and for any {xn} ∈ s(X), Lim {xn} is the set of all partial

limits of {xn}, then (X, Lim) is a Lim-space.

Definition 2 (cf. [10]). Let a Lim-space (X, Lim) and A ⊂ c(X) be given. We say that (X, Lim)

is a A-Fréchet space, if for each {xn} ∈ A the set Lim {xn} is a singleton. If Lim {xn} = {x},

then we say that {xn} converges to x, and write {xn} → x as n → +∞.
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Definition 3. Let a Lim-space (X, Lim) and a mapping f : X → X be given. We say that f is

weakly orbital continuous, if for any {xn} ∈ O( f ) ∩ c(X)

Lim
{

f (xn)
}

= f
(

Lim{xn}
)

.

Remark 1. The definition of orbital continuity of the mapping f : X → X was introduced in [7].

The definition of weak orbital continuity is less restrictive.

2.3 Cauchy structures

Definition 4. A set C ⊂ s(X) is called a Cauchy structure (we write C ∈ CS), if {xn} ∈ C

implies {xn+1} ∈ C.

A Cauchy structure C is called a strong Cauchy structure (we write C ∈ SCS), if additionally

〈x〉 ∈ C for each x ∈ X, and

〈z1, . . . , zn〉 ∈ C implies z1 = zn for any z1 . . . , zn ∈ X. (1)

A Lim-space (X, Lim) is called C-complete, if arbitrary {xn} ∈ C∩ s∞(X) is convergent.

Remark 2. Of course, any classical set of Cauchy sequences forms a Cauchy structure.

Remark 3. For generalized metric spaces, the fact that for completeness of a space it is sufficient

to require convergence of only Cauchy sequences with pairwise different elements was noted

and used in [24].

Example 2. The set c(X) of all convergent sequences in a Lim-space (X, Lim) can be considered

as a Cauchy structure.

Example 3. Let a mapping f : X → X be given. The set C = O( f ) can be considered as a

Cauchy structure. In this case C-complete Lim-space can be called f -orbital complete (cf. [7]).

Definition 5 (cf. [13]). Setting CLim{xn} :=
{

x ∈ X : 〈x〉 ∨∧ {xn} ∈ C
}

, we transform a Cauchy

space (X,C) to a Lim-space (X,CLim).

If C ∈ SCS, and additionally the following condition is satisfied: for all {xn}, {zn} ∈ s(X)

and {yn} ∈ C,

{xn} ∨∧ {yn}, {yn} ∨∧ {zn} ∈ C imply {xn} ∨∧ {zn} ∈ C, (2)

then, as it is easily seen, the space (X,CLim) is a C-Fréchet space. Condition (2) is a generali-

zation of well-known Fréchet-Wilson conditions (see, e.g., [26]).

2.4 Cauchy structures defined by a base in X2

Generalizing the definition of a Cauchy sequence in a uniform space (see, e.g., [15, Chap-

ter 6]) and, in particular, in metric or distance spaces, we obtain the following example of a

Cauchy structure in the sense of Definition 4. Recall (see, e.g., [27, Chapter 3.2]) that a family

U of non-empty subsets of a set X is called a base in X, if for any U, V ∈ U there exists W ∈ U

such that W ⊂ U ∩ V.
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Definition 6. Let X be a nonempty set and U be a base in X2. The class

{

{xn} ∈ s(X) : for any U ∈ U there exists N ∈ N such that n > m ≥ N implies (xm, xn) ∈ U
}

forms a Cauchy structure CU . It is clear that

CU Lim{xn} =
{

x ∈ X : {xn} ∈ CU and for all U ∈ U there exists N ∈ N

such that (xn, x), (x, xn) ∈ U for any n ≥ N
}

.

The following lemma contains a Fréchet-Wilson type condition for the space (X,CU Lim).

Lemma 1. Suppose that
⋂

{U : U ∈ U} ⊂ ∆(X) =
{

(x, x) : x ∈ X
}

. If for arbitrary U ∈ U

there exist V, W ∈ U such that

(x, z) ∈ V and (z, y) ∈ W imply (x, y) ∈ U, (3)

then the space (X,CU Lim) is CU -Fréchét.

Proof. For any U ∈ U let V, W ∈ U be such that (3) is satisfied. Assume that x, y ∈ CU Lim{xn}.

Then there exists N ∈ N such that for all n ≥ N

(x, xn) ∈ V and (xn, y) ∈ W.

Condition (3) implies (x, y) ∈ U, and hence due to arbitrariness of U,

(x, y) ∈
⋂

{U : U ∈ U} ⊂ ∆(X).

Thus x = y.

2.5 Cauchy structures defined by distance functions

Let X be a set and (Y, LimY) be a Lim-space.

Definition 7. A mapping d : X2 → Y is called an Y-valued distance, if for all x, y ∈ X

d(x, y) = d(y, x) = d(x, x) = d(y, y) implies x = y. (4)

Definition 8. The family Cd that consists of all sequences {xn} ∈ s(X) such that

{

d(xmk
, xnk

)
}

∈ c(Y)

for any sequences {mk}, {nk} ∈ N, and the set LimY

{

d(xmk
, xnk

)
}

does not depend on {mk}

and {nk}, is a Cauchy structure.

Lemma 2. Let (Y, LimY) be such that 〈α〉, 〈β〉 ∈ c(Y) for any α, β ∈ Y, and

LimY〈α〉 = LimY〈β〉 implies α = β. (5)

Then Cd ∈ SCS.
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Proof. Indeed, 〈x〉 ∈ Cd, and if 〈z1, z2, . . . , zn〉 ∈ Cd, then

LimY

{

d(z1, zn)
}

= LimY

{

d(z1, z1)
}

= LimY

{

d(zn, zn)
}

= LimY

{

d(zn, z1)
}

.

Due to (5), we obtain d(z1, zn) = d(z1, z1) = d(zn, zn) = d(zn, z1), and due to (4), z1 = zn.

Hence Cd satisfies (1).

Remark 4. The Lim-spaces from Example 1 satisfy property (5).

It follows from Definition 5 that for any {xn} ∈ Cd we have

Cd Lim{xn} ⊂
⋂

{mk},{nk}∈N

{

x ∈ X : LimY

{

d(xmk
, x)

}

= LimY

{

d(x, xnk
)
}

= LimY

{

d(xnk
, xmk

)
}

= LimY〈d(x, x)〉
}

,

which is consistent with the definition of convergence in almost all previously considered

spaces, in particular in usual metric spaces, in partial metric spaces [18], dualistic partial met-

ric spaces [22], dislocated metric spaces [12], metric-like spaces [3], distance spaces [16], metric

and distance spaces with more general than R sets of values of a distance function (K-metric

spaces, cone metric spaces, M-distance spaces, probabilistic metric spaces, fuzzy metric spaces,

and others; see [4] and references therein).

2.6 Another way to define Cauchy structures

Let (Y,≤) be a partially ordered set and ψ :
⋃

n∈N Yn → Y be a function such that for any

y1, y2, . . . , yn ∈ Y

ψ(y2, . . . , yn) ≤ ψ(y1, y2, . . . , yn). (6)

Example 4. In the case Y = R+, the function ψ(y1, y2, . . . , yn) = ∑
n
k=1 yk satisfies (6). Moreover,

it is coordinate-wise monotone, i.e.

ψ(y1, y2, . . . , yn) ≤ ψ(z1, z2, . . . , zn),

provided yi ≤ zi, i = 1, . . . n, n ∈ N, and for all y1, . . . , ym+n ∈ Y,

ψ(y1, . . . , ym, ym+1, . . . , ym+n) = ψ
(

y1, . . . , ym, ψ(ym+1, . . . , ym+n)
)

.

We say that a set A ⊂ Y is bounded from above, if there exists α ∈ Y such that a ≤ α for

all a ∈ A.

Definition 9. The following set

Cψ =
{

{xn} ∈ s(X) :
{

ψ(x1, x2, . . . , xn)
}

is bounded from above
}

forms a Cauchy structure.

A partial case of the family Cψ can be obtained as follows.

Definition 10. Let an arbitrary function d : X2 → Y be given. The following set

Cψ,d =
{

{xn} ∈ s(X) : the sequence
{

ψ
(

d(x1, x2), . . . , d(xn−1, xn)
)}

is bounded from above
}

forms a Cauchy structure.
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3 Fixed sets and points theorems

3.1 A general fixed set and point theorem

Definition 11. A set A ⊂ X is called a fixed set of a mapping f : X → X, if f (A) = A. If a

singleton A = {x} is a fixed set, then we say that x is a fixed point of the mapping f .

Before stating the theorem, we discuss the question of how the contractiveness of a map-

ping could be understood in an abstract situation. Let us start with the observation that con-

tractiveness usually allows one to establish the fact that an orbit O( f , x0) is a Cauchy sequence.

On the other hand, if the property of being a Cauchy sequence is defined using some distance

function, then it means that the elements of the sequence become arbitrarily close as their in-

dices increase. This is quite consistent with intuitive ideas (at least ours) about contractiveness.

This is also observed in other cases (see, for example, Definition 6). Therefore, in our opinion,

in the abstract situation under consideration, it is natural to adopt the following definition.

Definition 12. Let a mapping f : X → X and x0 ∈ X be such that

O( f , x0) ∈
(

C ∩ s∞(X)
)

∪
(

s(X) \ s∞(X)
)

.

Then f is called locally orbital contractive at the point x0.

Theorem 1. Let a Lim-space (X, Lim), a set C ∈ CS be given, and (X, Lim) be C-complete. Let

also a weakly orbital continuous and locally orbital contractive at some point x0 ∈ X mapping

f : X → X be given. Then f has a fixed set.

If C ∈ SCS, the space (X, Lim) is a C-Fréchet space, and O( f , x0) ∈ C, then f has a fixed

point. If { f n(x)} ∨∧ { f n(y)} ∈ C for any x, y ∈ X, then the fixed point is unique.

Proof. Let C ∈ CS. Assume { f n(x0)} = O( f , x0) ∈ C ∩ s∞(X). Since the space (X, Lim) is

C-complete, Lim { f n(x0)} 6= ∅. Due to weakly orbital continuity of f , we obtain

Lim
{

f n(x0)
}

= Lim
{

f n+1(x0)
}

= Lim
{

f
(

f n(x0)
)

}

= f
(

Lim
{

f n(x0)
}

)

.

Thus Lim
{

f n(x0)
}

is a fixed set of f .

If
{

f n(x0)
}

∈ s(X) \ s∞(X), then for some k < l one has f k(x0) = f l(x0) and hence
{

f k(x0), f k+1(x0), . . . , f l−1(x0)
}

is a fixed set.

Let now C ∈ SCS, and let
{

f n(x0)
}

∈ C. If
{

f n(x0)
}

∈ C ∩ s∞(X), then there exits x ∈ X

such that Lim
{

f n(x0)
}

= {x}, and hence x is a fixed point of f . If
{

f n(x0)
}

∈ C \ s∞(X) and

f k(x0) = f l(x0), k < l, then in the case l = k + 1, f k(x0) is a fixed point of f . If l > k + 1, then

the sequence
〈

f k(x0), f k+1(x0), . . . , f l−1(x0)
〉

also belongs to C. By property (1), we have

f l(x0) = f k(x0) = f l−1(x0),

i.e. f l−1(x0) is a fixed point of f .

Let for any x, y ∈ X, { f n(x)} ∨∧ { f n(y)} ∈ C. Assume that x, y are fixed points of the

function f . Using property (1), we obtain

{

f n(x)
}

∨∧
{

f n(y)
}

= 〈x〉 ∨∧ 〈y〉 = 〈x, y〉 ∈ C,

hence x = y, i.e. the fixed point is unique.
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3.2 A fixed set and point theorem in CU -complete Lim-spaces

Below we present a result of Meir-Keeler [19] and Taylor [25] type. Let U be a base in X2

and a mapping ζ : U 2 → U be such that

for all U, V ∈ U (u, v) ∈ U and (v, w) ∈ V imply (u, w) ∈ ζ(U, V). (7)

An important example of ζ for which (7) is satisfied is

ζ(U, V) = U ◦ V :=
{

(u, v) : there exists w such that (u, w) ∈ U and (w, v) ∈ V
}

.

In uniform spaces, contraction condition (i) in the theorem below with such ζ coincides

with the one used by Taylor [25].

Theorem 2. Let a space (X, Lim) be CU -complete. Assume f : X → X satisfies the following

properties:

(i) for all U ∈ U there exists V ∈ U such that (x, y) ∈ ζ(U, V) implies
(

f (x), f (y)
)

∈ U;

(ii) there exists x ∈ X such that for all U ∈ U there exists N ∈ N for which n ≥ N implies

( f n(x), f n+1(x)) ∈ U.

Then f has a fixed set. If the space (X, Lim) is CU -Fréchet, then f has a fixed point.

Proof. We show that
{

f n(x)
}

∈ CU . For a fixed U ∈ U choose V ∈ U according to condition (i).

Due to (ii), there exists N such that for all n ≥ N one has

(

f n(x), f n+1(x)
)

∈ V and
(

f n(x), f n+1(x)
)

∈ U. (8)

Let n > N be fixed. We show by induction on k that for all k ∈ N one has

(

f n(x), f n+k(x)
)

∈ U. (9)

For k = 1 inclusion (9) holds due to (8). Assume that it is true for some k ≥ 1. Then due to (8),
(

f n−1(x), f n(x)
)

∈ V and
(

f n(x), f n+k(x)
)

∈ U by the inductive assumption. Due to (7),
(

f n−1(x), f n+k(x)
)

∈ ζ(U, V), and hence in virtue of condition (i),
(

f n(x), f n+k+1(x)
)

∈ U,

which completes the induction step.

Thus for arbitrary U ∈ U there exists N ∈ N such that for all n > m ≥ N, inclusion
(

f m(x), f n(x)
)

∈ U holds, and hence we obtain
{

f n(x)
}

∈ CU .

Application of Theorem 1 finishes the proof.

3.3 A fixed set and point theorem in Cd-complete Lim-spaces

Let Y be a LimY-space and at the same time a partially ordered set with a partial

order ≤. We assume that the partial order and the operator LimY agree in the following sense:

if two sequences {αn}, {βn} ∈ c(Y) have equal limits, and αn ≤ γn ≤ βn for each n ∈ N, then

{γn} ∈ c(Y) and

LimY{γn} = Lim{αn} = Lim{βn}.

We say that a set A ⊂ X is bounded, if there exist α, β ∈ Y such that α ≤ d(x, y) ≤ β for all

x, y ∈ A.
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Denote by Λ(Y) the set of all non-decreasing mappings λ : Y → Y such that for some non-

empty set Lim(λ) ⊂ Y and arbitrary α ∈ Y,

LimY {λn(α)} = Lim(λ).

Observe that if Y is an ordinary metric space and λ is a contractive in the usual sense

mapping, then λ ∈ Λ(Y), and Lim(λ) is a singleton.

Theorem 3. Assume that a Lim-space (X, Lim) and Y-valued distance function d in X be

such that (X, Lim) is Cd-complete. Suppose that for a weakly orbitally continuous function

f : X → X there exists a point x0 ∈ X such that the orbit O( f , x0) is bounded, and two map-

pings λ1, λ2 ∈ Λ(Y) are such that Lim(λ1) = Lim(λ2). If for arbitrary x, y ∈ On( f , x0) one can

find x′, y′, x′′, y′′ ∈ On−1( f , x0) for which

λ1

(

d(x′, y′)
)

≤ d(x, y) ≤ λ2

(

d(x′′, y′′)
)

, (10)

then the mapping f has a fixed set. If the space (X, Lim) is Cd-Fréchet, then f has a fixed point.

Remark 5. Contraction conditions (10) generalize the Ćirić conditions [6, 8].

Proof. For arbitrary sequences {mk}, {nk} that tend to infinity, from condition (10) and bound-

edness of O( f , x0) we obtain

λ
min(mk,nk)
1 (α) ≤ d(xmk

, xnk
) ≤ λ

min(mk,nk)
2 (β),

where α, β ∈ Y are the elements from the definition of boundedness.

Since min(mk, nk) → +∞ whenever k → +∞, we obtain

Lim
{

d(xmk
, xnk

)
}

= Lim(λ1) = Lim(λ2),

and hence O( f , x0) ∈ Cd. Application of Theorem 1 finishes the proof.

3.4 A fixed set and point theorem in Cψ-complete Lim-spaces

The following theorem is a variant of the Caristi theorem (see, e.g., [17] and references

therein).

Theorem 4. Let Y be a partially ordered set, and a Lim-space (X, Lim) be Cψ-complete, where ψ

is a mapping satisfying property (6). Assume that there exists a function ψ : (
⋃

n Xn)×Y → Y

and such that for arbitrary x1, . . . , xn ∈ X and y, z ∈ Y,

ψ(x1, . . . , xn) ≤ ψ(x1, . . . , xn, y), ψ(x1, . . . , xn, y) ≤ ψ
(

x1, . . . , xn−1, ψ(xn, y)
)

, (11)

and y ≤ z implies ψ(x1, . . . , xn, y) ≤ ψ(x1, . . . , xn, z). If f : X → X is a weakly orbitally contin-

uous function and there exists φ : X → Y such that for some x0 ∈ X

ψ
(

x, φ
(

f (x)
)

)

≤ φ(x) for all x ∈ O( f , x0), (12)

then f has a fixed set. If the space (X, Lim) is Cd-Fréchet, then f has a fixed point.

Proof. Let xn = f (xn−1), n ∈ N. We prove by induction on n that

ψ
(

x0, x1, . . . , xn−1, φ(xn)
)

≤ φ(x0).

For n = 1 the inequality follows from (12). Assume it holds for some n = k ≥ 1. Then for

n = k + 1, we obtain

ψ
(

x0, x1, . . . , xk, φ(xk+1)
)

≤ ψ
(

x0, x1, . . . , xk−1, ψ
(

xk, φ(xk+1)
)

)

≤ ψ
(

x0, x1, . . . , xk−1, φ(xk)
)

≤ φ(x0),

which finishes the induction step. Inequality (11) implies that O( f , x0) ∈ Cψ, and in order to

finish the proof, it is sufficient to apply Theorem 1.
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3.5 Fixed set and point theorems in Cψ,d-complete Lim-spaces

The following theorem uses a generalization of the Ćirić-type contraction condition.

Theorem 5. Let a Lim-space (X, Lim) be Cψ,d complete, where ψ is a coordinate-wise non-

decreasing mapping that satisfies property (6), d : X2 → Y is some function, and Y is a partially

ordered set. Assume that there exists a non-decreasing λ : Y → Y such that for each y ∈ Y the

sequence
{

ψ(y, λ(y), . . . , λn(y))
}

is bounded from above, x0 ∈ X, and a weakly orbital continuous mapping f : X → X are

such that for all n > 1 and all x, y ∈ On( f , x0) there exist x′, y′ ∈ On−1( f , x0) that satisfy the

inequality

d(x, y) ≤ λ
(

d(x′, y′)
)

. (13)

If there exists α ∈ Y such that d(x, y) ≤ α for all x, y ∈ O( f , x0), then f has a fixed set. If the

space (X, Lim) is Cd-Fréchet, then f has a fixed point.

Proof. Let xn = f (xn−1), n ∈ N. Then for each n ∈ N, consecutively applying inequality (13),

we obtain that for some y, z ∈ O( f , x0) and α from the statement of the theorem,

d(xn, xn+1) ≤ λn
(

d(y, z)
)

≤ λn(α).

Thus for all n ∈ N we have

ψ
(

d(x0, x1), d(x1, x2), . . . , d(xn, xn+1)
)

≤ ψ
(

α, λ(α), . . . , λn(α)
)

,

which implies boundedness of the sequence
{

ψ(d(x0, x1), . . . , d(xn, xn+1))
}

.

Hence O( f , x0) ∈ Cψ,d, and it is enough to apply Theorem 1 in order to finish the proof.
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Бабенко В.Ф., Бабенко В.В., Коваленко О.В. Нерухомi множини та нерухомi точки вiдображень,

що дiють у Lim-просторах Фреше // Карпатськi матем. публ. — 2023. — Т.15, №1. — C. 260–269.

У статтi ми аксiоматично означуємо узагальненi Lim-простори (X, Lim), множини послi-

довностей Кошi, стискаючi вiдображення та доводимо абстрактну версiю принципу стискаю-

чих вiдображень. Ми також розглядаємо рiзнi способи задання множин послiдовностей Кошi

та умов стиску за допомогою бази у X2, функцiй, що подiбнi до вiдстанi чи суми, зi значеннями

у деякiй частково впорядкованiй множинi Y. Ми доводимо теореми про нерухомi множини i

нерухомi точки для узагальнених стискаючих вiдображень типiв Меiра-Кiлера i Тейлора, Чiрi-

ча та Карiстi. Отриманi результати узагальнюють багато вiдомих теорем про нерухомi точки

i є новими навiть у багатьох класичних ситуацiях.

Ключовi слова i фрази: теорема про нерухому точку, множина послiдовностей Кошi, Lim-

простiр Фреше.


