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The best approximation of closed operators by bounded
operators in Hilbert spaces
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We solve the problem of the best approximation of closed operators by linear bounded opera-

tors in Hilbert spaces under assumption that the operator transforms orthogonal basis in Hilbert

space into an orthogonal system. As a consequence, sharp additive Hardy-Littlewood-Pólya type

inequality for multiple closed operators is established. We also demonstrate application of these

results in concrete situations: for the best approximation of powers of the Laplace-Beltrami opera-

tor on classes of functions defined on closed Riemannian manifolds, for the best approximation of

differentiation operators on classes of functions defined on the period and on the real line with the

weight e−x2
, and for the best approximation of functions of self-adjoint operators in Hilbert spaces.
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1 Introduction

The problem of the best approximation of unbounded operator by bounded ones was for-

mulated by S.B. Stechkin in [13, 14]. There he also established some important relations and

obtained first solutions to this problem. We follow [14] to state the problem rigorously. Let

X, Y be normed spaces, A : X → Y be an operator with domain D(A), W ⊂ D(A) be some

class of elements, L = L(X, Y) be the space of linear bounded operators S : X → Y. For S ∈ L,

denote the error of approximation of A by S on W:

U(A, S; W) := sup
x∈W

‖Ax − Sx‖Y.

Let N ≥ 0 and LN = LN(X, Y) be the set of operators S ∈ L such that ‖S‖ ≤ N.

The problem of the best approximation of operator A by linear bounded operators on the class

W, also known as the Stechkin problem, consists of finding the quantity

EN(A; W) = inf
S∈LN

sup
x∈W

‖Ax − Sx‖Y, (1)

and extremal operators S∗ ∈ LN (if any exists) for which the inf in the right hand part of (1) is

achieved.

The following simple yet powerful lower bound for (1) was found in [14].
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Proposition 1. Let A be a homogeneous operator, W ⊂ D(A) be a centrally-symmetric convex

set. Then, for every N ≥ 0 and δ ≥ 0,

EN(A; W) ≥ sup
x∈W

(‖Ax‖Y − N‖x‖X). (2)

Moreover, if there exist x0 ∈ W and S0 ∈ L such that ‖Ax0‖Y = U(A, S0; W) + ‖S0‖ · ‖x0‖X,

then S0 is extremal operator in problem (1) for N = ‖x0‖X and

E‖S0‖(A; W) = U(A, S0; W) = ‖Ax0‖Y − ‖S0‖ · ‖x0‖X .

For a good overview of known results on the Stechkin problem and discussion of related

questions we refer the reader to surveys [1, 3], book [6] and recent paper [2].

In this paper we will study problem (1) for operators acting in Hilbert spaces. Let us remind

known results in this situation. Yu.N. Subbotin and L.V. Taikov [15] solved the problem of

the best approximation of differential operator A = Dk of order k ∈ N acting in the space

X = Y = L2(R) on the class

W =
{

x ∈ L2(R) : x(r−1) ∈ ACloc(R), ‖x(r)‖L2(R) ≤ 1
}

,

where r ∈ N, r > k. V.F. Babenko and R.O. Bilichenko [5,10] generalized this result for integral

powers A = ∆k of self-adjoint and normal operators ∆, respectively, acting in Hilbert space H

on the class

W = {x ∈ D(∆r) : ‖∆rx‖H ≤ 1}.

Later, V.F. Babenko, Yu.V. Babenko and N.A. Kriachko [4] obtained further generalization of

above results by considering the function A = ϕ(∆) of self-adjoint operator ∆ : H → H and

the class

W = {x ∈ H : ‖ψ(∆)x‖H ≤ 1} .

Here ϕ and ψ are continuous complex-valued functions on R such that |ϕ(t)| and |ψ(t)| are

even and strictly increasing to +∞ on (0, ∞) and, in addition, |ϕ(t)|2 = F(|ψ(t)|2), where F

is a strictly increasing, concave function with F(0) = 0. Note that papers [4, 5, 10] imposed an

additional assumption on operator ∆ that effectively requires its spectrum to have non-empty

continuous part (see proof of Corollary 6 below).

In this paper we solve the Stechkin problem in case A is closable operator acting between

Hilbert spaces that preserves orthogonality between elements of orthogonal basis and class

W is defined with the help of multiple closed operators (see Section 3). In Section 2 we will

follow [7] to introduce necessary notations, definitions and auxiliary results. In Section 4 we

demonstrate application of main result to the problem of finding sharp inequalities for the

norms of derivatives and in several concrete situations: for the best approximation of powers

of the Laplace-Beltrami operators on Riemannian manifolds, and for the best approximation of

differentiation operator in spaces of periodic functions and spaces of functions defined on the

real line with the weight e−x2
. In addition, we will demonstrate that the results of this paper

generalize previous results in [4, 5, 10, 15].

2 Preliminaries

Let H be a separable Hilbert space over C endowed with scalar product (·, ·)H , norm ‖ · ‖H

and orthonormal basis {en}n∈M, where M is a finite or countable set. For definiteness but

without loss of generality, we fix the meaning of the sum of series indexed by the set M. Let
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{MN}∞
N=1 be any given sequence of nested finite subsets of M such that M =

∞⋃
N=1

MN . Then,

for a sequence {an}n∈M ⊂ H or {an}n∈M ⊂ C, we set:

∑
n∈M

an := lim
N→∞

∑
n∈MN

an

providing the limit in the right hand part exists. In what follows the choice of the sequence

{MN} is not essential as only absolutely convergent series will be considered. For x ∈ H, by

xn := (x, en)H, n ∈ M, we denote its Fourier coefficients with respect to the system {en}n∈M

and by SNx := ∑n∈MN
xnen, N ∈ N, – partial sums of the Fourier series of x.

For convenience, for sequences {an}n∈M , {bn}n∈M ⊂ [0, ∞), we denote

˜∑
n∈M

an

bn
:=





∞, if ∃n0 ∈ M s.t. (an0 6= 0) ∧ (bn0 = 0),

∑
n∈M : bn 6=0

an

bn
, otherwise,

and

s̃up
n∈M

an

bn
:=





∞, if ∃n0 ∈ M s.t. (an0 6= 0) ∧ (bn0 = 0),

sup
n∈M : bn 6=0

an

bn
, otherwise.

When the set {n ∈ M : bn 6= 0} is empty we define ∑̃n∈M
an
bn

:= 0 and s̃upn∈M
an
bn

:= 0.

Next, we let H′ be a Hilbert space over C endowed with scalar product (·, ·)H′ and norm

‖ · ‖H′ . For m ∈ Z+, consider linear operators Bj : H → H′, j = 0, . . . , m, with domains D
(

Bj

)
.

We will require operators B0, . . . , Bm to satisfy conditions:

(B1) ∀ n ∈ M it follows that en ∈ ⋂m
j=0 D(Bj) =: DB;

(B2) ∀ n′, n′′ ∈ M, n′ 6= n′′, and ∀ j ∈ {0, 1, . . . , m} it follows that (Bjen′ , Bjen′′)H′ = 0;

(B3) ∃ j0 ∈ {0, . . . , m} and ∃ n0 ∈ M such that Bj0en0 6= 0;

(B4) B0, B1, . . . , Bm are closed operators (see, e.g., [16, §2.6]).

For j = 0, . . . , m, we consider the subspace

Hj :=

{
x ∈ H : ‖x‖2

Hj
:= ∑

n∈M

|xn|2‖Bjen‖2
H′ < ∞

}
,

set HB :=
m⋂

j=0
Hj, and endow HB with the (semi-)norm

‖x‖2
B :=

m

∑
j=0

∑
n∈M

|xn|2 · ‖Bjen‖2
H′ = ∑

n∈M

|xn|2 · bn, x ∈ HB,

where

bn :=
m

∑
j=0

‖Bjen‖2
H′ , n ∈ M.

The next proposition provides constructive characterization of elements of HB, establishes

embedding HB ⊂ DB and presents sufficient conditions for the coincidence of these sets.



456 Babenko V.F., Parfinovych N.V., Skorokhodov D.S.

Lemma 1. Let B0, B1, . . . , Bm satisfy conditions (B1), (B2) and (B4). Then HB ⊂ DB and, for

every x ∈ HB,

Bjx = ∑
n∈M

xn · Bjen, j = 0, 1, . . . , m, ‖x‖2
B =

m

∑
j=0

‖Bjx‖2
H′ .

Furthermore, if Bjen ∈ D(B∗
j ) (for the definition of the adjoint operator see, e.g., [16, §7.1]) for

every n ∈ M and j = 0, 1, . . . , m, then DB = HB.

Finally we consider linear operator A : H → H′ with domain D(A). We will require A to

satisfy the conditions below:

(A1) ∀ n ∈ M it follows that en ∈ D(A);

(A2) ∃ n0 ∈ M such that Aen0 6= 0;

(A3) A is closable (see, e.g., [16, §2.6]).

Theorem 6 in [7] gives the mean-squared version of the Hardy-Littlewood-Pólya inequality.

Proposition 2. Let m ∈ Z+, operators B0, B1, . . . , Bm satisfy conditions (B1) – (B4), operator A

satisfys conditions (A1) – (A3), and

Q2 := sup
f∈H′ :

‖ f ‖
H′≤1

˜∑
n∈M

|( f , Aen)H′ |2
bn

< ∞.

Then, for x ∈ D(A) ∩ HB, there holds true sharp inequality

‖Ax‖H′ ≤ Q · ‖x‖B.

Furthermore, if A is closed then above inequality holds true for every x ∈ HB.

In what follows we additionally assume that the system {Aen}n∈M is orthogonal. In this

case Proposition 2 can be simplified as follows.

Corollary 1. Let m ∈ Z+, operators B0, B1, . . . , Bm satisfy conditions (B1) – (B4), operator A

satisfy conditions (A1) – (A3), the system {Aen}n∈M be orthogonal, and

Q := s̃up
n∈M

‖Aen‖H′√
bn

< ∞. (3)

Then, for x ∈ D(A) ∩ HB (for x ∈ HB if A is closed), there holds true sharp inequality

‖Ax‖H′ ≤ Q · ‖x‖B.

3 Main results

Let p, q ∈ Z+, p + q = m − 1, and split operators B1, . . . , Bm into two groups: operators

Cj : H → H′, j = 0, 1, . . . , p, and Dk : H → H′, k = 0, 1, . . . , q. Let us consider the problem of

the best approximation of operator A : HC → C by linear bounded functionals on the class

WD := {x ∈ D(A) ∩ HC ∩ HD : ‖x‖D ≤ 1} .
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For N ≥ 0, consider operator SN : HC → H′ defined as follows

SN x = ∑
n∈M

xn · min {N
√

cn, ‖Aen‖H′} · φn, x ∈ HC,

where φn = Aen/ ‖Aen‖H′ if ‖Aen‖H′ 6= 0 and φn = 0 otherwise.

Let C∗ = {n ∈ M : cn 6= 0}, set RN = {n ∈ C∗ : N
√

cn < ‖Aen‖H′} and define

N∗ := inf

{
N > 0 : s̃up

n∈RN

‖Aen‖H′ − N
√

cn√
dn

< ∞

}
.

Observe that N∗ ≤ Q. Indeed, for every N > Q and n ∈ RN , by condition (3) we have

‖Aen‖H′ ≤ Q ·
√

bn ≤ Q · (√cn +
√

dn) < N
√

cn + N
√

dn,

leading to the estimate N∗ ≤ N and, hence, to the desired inequality N∗ ≤ Q.

Theorem 1. Let p, q ∈ Z+, both groups of operators C0, . . . , Cp and D0, . . . , Dq satisfy condi-

tions (B1) – (B4), operator A satisfy conditions (A1) – (A3), the system {Aen}n∈M be orthogonal

and condition (3) for operators C0, . . . , Cp, D0, . . . , Dq be fulfilled. Then, for N > N∗,

EN(A; WD) = max

{
s̃up

n∈M\C∗

‖Aen‖H′√
dn

; s̃up
n∈RN

‖Aen‖H′ − N
√

cn√
dn

}
,

and the operator SN is extremal in problem (1).

Proof. Since operators Cj’s satisfy condition (B2), we have C∗ 6= ∅. Let us denote

N∗∗ := sup
n∈C∗

‖Aen‖H′√
cn

.

Clearly, N∗∗ is well defined and N∗∗ ≥ Q ≥ N∗. First, we calculate the norm of SN :

‖SN‖2 = sup
‖x‖C≤1

∑
n∈M

|xn|2 · min
{

N2cn, ‖Aen

∥∥∥
2

H′
}

= sup
‖x‖C≤1

∑
n∈C∗

cn|xn|2 · min

{
N2,

‖Aen‖2
H′

cn

}

= sup
n∈C∗

min

{
N2,

‖Aen‖2
H′

cn

}
= min {N2, (N∗∗)2}.

Hence, ‖SN‖ ≤ N. Now, we estimate the deviation of SN from operator A on the class WD.

Using closability of A, we obtain

U(A, SN ; WD)= sup
x∈WD

√
∑

n∈M\C∗
|xn|2 · ‖Aen‖2

H′ + ∑
n∈RN

|xn|2 (‖Aen‖H′ − N
√

cn)
2

= s̃up
n∈(M\C∗)∪RN

‖Aen‖H′−N
√

cn√
dn

= max

{
s̃up

n∈M\C∗

‖Aen‖H′√
dn

; s̃up
n∈RN

‖Aen‖H′−N
√

cn√
dn

}
.

The first sup in the later relation is finite by condition (3) and the second sup is finite for

N > N∗ by definition of N∗.
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Let us now prove that EN(A; WD) ≥ U(A, SN , WD). Assume that

U(A, SN ; WD) = s̃up
n∈(M\C∗)∪RN

‖Aen‖H′ − N
√

cn√
dn

> 0.

Then, for every ε > 0, there exists n0 ∈ (M \ C∗) ∪ RN such that

‖Aen0‖H′ − N
√

cn0√
dn0

> U(A, SN ; WD)− ε.

Combining above inequality with the lower estimate (2), we obtain

EN(A; WD) ≥
∥∥∥A

(
en0/

√
dn0

)∥∥∥
H′

− N
∥∥∥
(

en0/
√

dn0

)∥∥∥
HC

=
‖Aen0‖H′ − N

√
cn0√

dn0

> U(A; SN , WD)− ε,

which leads to the desired estimate as ε → 0+. Case when U(A, SN ; WD) = 0 is trivial.

Remark 1. Under assumptions of Theorem 1, it follows directly from the definition of N∗ that

EN(A; WD) = ∞ when N < N∗.

Remark 2. Under assumptions of Theorem 1, in the case N = N∗ the quantity EN(A; WD) can

be either finite or infinite. Indeed, let H = H′ = ℓ2; Fαx = (1αx1, 2αx2, 3αx3, . . .), α ≥ 0, for

x ∈ ℓ2; Aα = F1 + Fα, with α ∈ [0, 1) and domain D(Aα) = {x ∈ ℓ2 : ∑
∞
j=1 j2|xj|2 < ∞};

m = 1 and p = q = 0; C0 = B0 = F1 and D0 = B1 = F0. Evidently, N∗ = 1 and R1 = N, and

E1(Aα; WD) = 1 if α = 0 and E1(Aα; WD) = +∞ if α ∈ (0, 1).

Remark 3. The quantity EN(A; WD) is non-decreasing in N and tends to 0 as N → ∞ only if

s̃upn∈M\C∗
‖Aen‖H′√

dn
= 0.

Remark 4. In the case A is closed operator and under conditions of Theorem 1, WD = {x ∈
HC ∩ HD : ‖x‖D ≤ 1}.

4 Applications

Additive Hardy-Littlewood-Pólya type inequalities. S.B. Stechkin proposed problem (1) as

an approach for solving the problem of finding sharp inequalities for the norms of derivatives.

Let X, Y, Z be Banach spaces, T : X → Y and S : X → Z be operators with domains D(A) and

D(B), respectively, such that D(B) ⊂ D(A). The problem of finding sharp additive inequali-

ties between the norms of images of operators T and S consists of finding the set Γ of pairs of

non-negative numbers (P, Q) such that sharp inequality holds

‖Tx‖Y ≤ P · ‖x‖X + Q · ‖Bx‖Z, x ∈ D(B). (4)

Here sharpness is understood in the sense that Q = Q(P) is the lowest possible constant

in inequality (4) under given P ≥ 0. Consider the class W = {x ∈ D(B) : ‖Bx‖Z ≤ 1}.

Proposition 1 provides a simple connection between problems (1) and (4): for every P ≥ 0,

Q ≤ EP(A; W). We refer the reader to books [6,12] on thorough overview of these inequalities

of type (4) and related inequalities.

As a direct consequence from Theorem 1 and Remarks 1–2 we obtain.
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Corollary 2. Under conditions of Theorem 1, there holds sharp inequality

‖Ax‖H′ ≤ N · ‖x‖C + EN(A; WD) · ‖x‖D, x ∈ D(A) ∩ HC ∩ HD.

Moreover, if EN∗(A; WD) < ∞ then Γ consists of all pairs (N, EN(A; WD)), N ≥ N∗. Otherwise,

Γ consists of all pairs (N, EN(A; WD)), N > N∗.

In addition, let us compare N∗ with the analogue of the sharp constant in the Markov-

Nikolskii type inequality:

M∗ := sup
x∈∩q

j=0 ker Dj\{θ}

‖Ax‖H′

‖x‖C
= s̃up

n∈M : dn=0

‖Aen‖H′√
cn

.

In case the first sup above is taken over empty set we set M∗ := 0. From Corollary 2, for every

x ∈ ∩q
j=0 ker Dj \ {θ} and N > N∗, we have ‖Ax′‖H′ ≤ N‖x‖C. Hence, M∗ ≤ N∗. Under some

additional assumptions, we can show that N∗ = M∗.

Remark 5. If s̃up
n∈M

cn
dn

< ∞ then N∗ = M∗.

Remark 6. Let us give an example when M∗ < N∗. Let H = H′ = ℓ2, m = 1, p = q = 0, D0 =

B1 with D0x = (0, x2, x3, . . .); Ax = (x1/2, 2x2, 3x3, . . .); Cx = (x1, (2−
√

2)x2, (3−
√

3)x3, . . .).

Then M∗ = 1/2 and N∗ = 1.

Best approximation of powers of the Laplace-Beltrami operator. Let d ∈ N and (M, g) be

a d-dimensional C∞ compact Riemannian manifold without boundary with volume element

µg. Following notations in [9], we denote by ∆ the extension of the negative Laplace-Beltrami

operator in the space

L2(M) =

{
x : M → C : ‖x‖2

L2(M) :=
∫

M
|x(t)|2 dµg(t) < ∞

}
.

∆ has a discrete spectrum 0 = µ2
0 < µ2

1 ≤ µ2
2 ≤ . . . without accumulations, where each

eigenvalue occurs as many times as its multiplicity. We denote by {ϕj}∞
j=0 an L2-orthonormal

basis of C∞-real eigenfunctions associated with the µj’s. For s ∈ R, define the Sobolev space

Hs(M) as follows:

Hs(M) :=

{
x : M → C : ‖x‖2

Hs(M) :=
∞

∑
j=1

|aj |2µ2s
j < ∞

}
,

where aj = (x, ϕj)L2(M) =
∫
M x(t)ϕj(t)dµg(t), and set

Hs
0(M) := {x ∈ Hs(M) : a0 = 0} .

Define the fractional power of ∆. For x ∈ H2s
0 (M), set

∆sx :=
∞

∑
j=1

ajµ
2s
j ϕj.

Consider H = H′ = L2(M), m = 1, A = ∆k, B0 = id, B1 = ∆r with k, r ∈ R such that

0 < k < r. Denote by 0 < λ2
1 < . . . < λ2

n < . . . distinct eigenvalues µ2
1, µ2

2, . . . of ∆ such that

λ2
1 = µ2

1. Clearly,

WD = W2r
0 (M) =

{
x ∈ H2r

0 (M) : ‖x‖H2r(M) ≤ 1
}

.

Taking into account the fact that the function x2k−N
x2r attains its maximal value on [N,+∞) at

the point
(

r·N
r−k

)1/k
, we obtain the following result.
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Corollary 3. Under above notations, N∗ = 0 and for N > 0,

EN(∆
k; W2r

0 (M)) = sup
n∈N : λ2k

n >N

λ2k
n − N

λ2r
n

= max

{
λ2k

nN
− N

λ2r
nN

;
λ2k

nN+1 − N

λ2r
nN+1

}
,

where nN = max

{
n ∈ N : λn ≤

(
r·N
r−k

)1/k
}

.

Furthermore, for every x ∈ H2r(M), there holds sharp inequality

‖∆kx‖L2(M) ≤ N · ‖x‖L2(M) + max

{
λ2k

nN
− N

λ2r
nN

;
λ2k

nN+1 − N

λ2r
nN+1

}
·
∥∥∥∆2rx

∥∥∥
L2(M)

,

which turns into equality on either ϕnN or ϕnN+1.

Remark 7. In the similar way we can solve the problem on the best approximation of powers

of positive self-adjoint unbounded operators with discrete spectrum or on the best approxi-

mation of integral powers of any self-adjoint unbounded operators with discrete spectrum.

Best approximation of differentiation operator on the period. In case M = T is the period of

length 2π, Corollary 3 can be simplified to the following.

Corollary 4. Under conditions of Corollary 3, for N > 0,

EN(Dk; Wr
0(T)) = sup

n∈N : nk>N

nk − N

nr
= max

{
nk

N − N

nr
N

;
(nN + 1)k − N

(nN + 1)r

}
,

where nN =

[(
r·N
r−k

)1/k
]

.

Furthermore, for every x ∈ Hr(T), there holds sharp inequality

‖x(k)‖L2(T) ≤ N · ‖x‖L2(T) + max

{
nk

N − N

nr
N

;
(nN + 1)k − N

(nN + 1)r

}
·
∥∥∥x(r)

∥∥∥
L2(T)

,

which turns into equality on either einN(·) or ei(nN+1)(·).

Note that sharp multiplicative inequalities for ‖ · ‖L2(T)-norms of derivatives of periodic

functions were obtained in [11].

Best approximation of differentiation operator in spaces with weights. Denote by L
2,e−t2(R)

the space of Lebesgue measurable functions x : R → R with the norm

‖x‖ :=

(∫

R

|x(t)|2e−t2
dt

)1/2

< ∞.

It is well known that the system of Hermite polynomials {Hk}∞
k=1 is orthonormal basis in

L
2,e−t2(R). By Lr

2,e−t2
(R) we denote the space of functions x ∈ L

2,e−t2(R) having locally ab-

solutely continuous derivative x(r−1) and such that x(r) ∈ L
2,e−t2(R). It is well-known that

H
(k)
n = βn,k Hn−k, where βn,k = (2kn(n − 1) . . . (n − k + 1))1/2.

Consider H = H′ = L
2,e−t2(R), m = 1, k, r ∈ N, k < r, A = Dk, B0 = C0 = id, B1 = D0 =

Dr. Then N∗ = M∗ = βr−1,k and WD = Wr
2,e−t2

(R) =
{

x ∈ Lr
2,e−t2

(R) :
∥∥x(r)

∥∥ ≤ 1
}

.
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It is not difficult to see that the function

gN(x) =
βx,k − N

βx,r
, x > 0,

has a unique positive maximum on (0, ∞), which is attained at some point ξN . Denote by

nN = nN;k,r := [ξN ] the integer part of ξN .

Corollary 5. Under above assumptions, for N ≥ βr−1,k,

EN(Dk; Wr
2,e−t2

(R)) = sup
n∈N : βn,k>N

βn,k − N

βn,r
= max {gN(nN); gN(nN + 1)}.

Furthermore, for every x ∈ Lr
2,e−t2

(R), there holds sharp inequality

‖x(k)‖ ≤ N · ‖x‖+ max {gN(nN); gN(nN + 1)} · ‖x(r)‖, (5)

which turns into equality on one of the Hermite polynomials HnN or HnN+1.

Note that sharp multiplicative analogues of inequality (5) under some additional assump-

tions were obtained in [8].

Best approximation of functions of self-adjoint operators. Let us follow notations and as-

sumptions of paper [4]. Let ∆ : H → H be a self-adjoint unbounded operator with domain

D(∆). From the spectral theorem (see [16, Ch. XI, §5, 6]) it follows that there exists a partition

of unity {Et}, t ∈ R, such that

∆ =
∫ +∞

−∞
t dEt.

If ϕ : R → C is a continuous function then the operator ϕ(∆) is well-defined and can be

represented as

ϕ(∆) =
∫ +∞

−∞
ϕ(t)dEt.

Now, consider the functions A = ϕ(∆) and D0 = B1 = ψ(∆) of operator ∆, where ϕ and ψ

are continuous complex-valued functions on R such that |ϕ(t)| and |ψ(t)| are even and strictly

increasing to +∞ on (0, ∞). Assume |ϕ(t)|2 = F(|ψ(t)|2), where F is a strictly increasing,

concave function with F(0) = 0. In addition, let ∆ be such that, for every 0 ≤ s < t ≤ ∞,

(Et − Es)D(ψ(∆)) 6= {θ}. (6)

Let also m = 1, p = q = 0, C0 = B0 = idH, and WD = {x ∈ H : ‖ψ(∆)x‖H ≤ 1}.

For any b > 0, consider the function

ϕb(t) =

{
ϕ(t)− ϕ(b)

ψ(b)
· ψ(t), |t| ≤ b,

0, |t| > b,
and set N(b) = max

t
|ϕb(t)|.

Corollary 6. Under above notations let |ϕ(t))|
|ψ(t)| be non-increasing. Then, for every b > 0,

EN(b)(A; WD) =
|ϕ(b)|
|ψ(b)| ,

and Qb = ϕb(∆) is the operator of the best approximation of A on the class WD with

‖Qb‖ ≤ N(b).
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Proof. From (6) we conclude that Et 6= Es, for every 0 ≤ s < t ≤ ∞. Since {Et} are pro-

jectors, their images Rt = Et(H) are closed subspaces in H and are such that Rs ⊂ Rt and

Rs 6= Rt. Hence, for every h > 0 and n ∈ Z+, there exists zn ∈ R(n+1)h ∩ R⊥
nh having unit norm

‖zn‖H = 1. Note that (Etzn, zn)H = 0, for every t ≤ n, and (Etzn, zn)H = 1, for every t ≥ n + 1.

Evidently, A is well-defined on every zn, as

‖Azn‖2
H =

∫ +∞

−∞
|ϕ(t)|2 d(Etzn, zn)H =

∫ (n+1)h

nh
|ϕ(t)|2 d(Etzn, zn)H ≤ |ϕ((n + 1)h)|2 .

Similar arguments apply for operator B. Note also that {Azn} and {Bzn} are orthogonal.

For h > 0, denote by Hh the subspace of H having orthonormal basis {zn}n∈Z+ and set

WD,h = WD ∩ Hh. Then, by Theorem 1,

EN(b)(A; WD) ≥ EN(b)(A; WD,h) = sup
n∈RN(b)

‖Azn‖H − N(b)

‖Bzn‖H
≥ sup

n∈RN(b)

|ϕ(nh)| − N(b)

|ψ((n + 1)h)| .

For every sufficiently small ε > 0, let yε > 0 be such that |ϕb(yε)| > N(b)− ε. Choose h = h(ε)

and n = n(ε) ∈ Z+ to be such that yε = nh and |ψ((n + 1)h)| ≤ |ψ(yε)|+ ε. Then

EN(b)(A; WD) ≥ |ϕ(yε)| − N(b)

|ψ(yε)|+ ε
≥ |ϕ(yε)− ϕb(yε)| − ε

|ψ(yε)|+ ε
=

|ϕ(b)|
|ψ(b)| · |ψ(yε)| − ε

|ψ(yε)|+ ε
.

Letting ε → 0, we obtain the desired lower estimate EN(b)(A; WD) ≥ |ϕ(b)|
|ψ(b)| .

The extremality of operator Sb was proved in [4, Theorem 5]. Alternatively, the operator

Q′
b =

∫ +∞

−∞

ϕ(t)

|ϕ(t)| · min {N(b), |ϕ(t)|} dEt,

where
ϕ(t)
|ϕ(t)| := 0 when ϕ(t) = 0, is also extremal and its construction in some sense similar to

the construction of the extremal operator in Theorem 1.

Remark 8. Assertion of Corollary 6 remains true is we relax the assumption that |ϕ(t)|2 =

F(|ψ(t)|2), where F is a strictly increasing, concave function with F(0) = 0 to only requiring

that supp ψ ⊂ supp ϕ. Furthermore, the assumption of continuity of functions ϕ and ψ can be

relaxed to right-continuity of function ψ.

Note that Corollary 6 contains the classical result on the best approximation of differen-

tiation operator of integral order in space L2(R) by Yu.N. Subbotin and L.V. Taikov [15] and

generalizes [5, Theorem 3] and [4, Theorem 5]. Also, in a similar way as Corollary 6, the result

of paper [10] for the best approximation of integral powers of normal operators can be obtained

from Theorem 1.
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for multiple operators in Hilbert spaces. Analysis Math. 2021, 47 (4), 709–745. doi:10.1007/s10476-021-0104-8

[8] Berdnikova I.V., Rafal’son S.Z. Some inequalities between norms of a function and its derivatives in integral metrics.

Soviet Math. (Izv. VUZ) 1985, 29 (12), 1–5. (translation of Izv. Vyssh. Uchebn. Zaved. Mat. 1985, 12, 3–6. (in

Russian))

[9] Besse A.L. Manifolds all of whose Geodesics are Closed. In: Zariski O. (Eds.) A Series of Modern Surveys in

Mathematics. Springer-Verlag, Berlin Heidelberg New York, 1978. doi:10.1007/978-3-642-61876-5

[10] Bilichenko R.O. Some problems of approximation theory for powers of normal operators in Hilbert space. Researches

in Math. 2010, 18, 59–71. doi:10.15421/241007 (in Russian)
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Бабенко В.Ф., Парафiнович Н.В., Скороходов Д.С. Найкраще наближення замкнених операторiв

обмеженими операторами в гiльбертовому просторi // Карпатськi матем. публ. — 2022. — Т.14,

№2. — C. 453–463.

Розв’язана задача найкращого наближення замкнених операторiв лiнiйними обмеженими

операторами в гiльбертовому просторi у припущеннi, що оператори зберiгають ортогональ-

нiсть базису гiльбертового простору. Як наслiдок, отримана точна адитивна нерiвнiсть типу

Хардi-Лiтльвуда-Пойа для декiлькох замкнених операторiв. Наведенi застосування цих ре-

зультатiв у конкретних ситуацiях: для найкращого наближення степенiв оператора Лапласа-

Бельтрамi на класах функцiй, визначених на замкнених рiманових многовидах, для найкра-

щого наближення операторiв диференцiювання на класах перiодичних функцiй та функцiй,

визначених на дiйснiй осi з вагою e−x2
, для найкращого наближення самоспряжених операто-

рiв в гiльбертових просторах.

Ключовi слова i фрази: найкраще наближення операторiв, проблема Стєчкiна, нерiвностi

типу Колмогорова, самоспряжений оператор, оператор Лапласа-Бельтрамi, замкнений опера-

тор.


