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The best approximation of closed operators by bounded
operators in Hilbert spaces

Babenko V.F., Parfinovych N.V., Skorokhodov D.S.

We solve the problem of the best approximation of closed operators by linear bounded opera-
tors in Hilbert spaces under assumption that the operator transforms orthogonal basis in Hilbert
space into an orthogonal system. As a consequence, sharp additive Hardy-Littlewood-Pélya type
inequality for multiple closed operators is established. We also demonstrate application of these
results in concrete situations: for the best approximation of powers of the Laplace-Beltrami opera-
tor on classes of functions defined on closed Riemannian manifolds, for the best approximation of

differentiation operators on classes of functions defined on the period and on the real line with the

weight e=*", and for the best approximation of functions of self-adjoint operators in Hilbert spaces.
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1 Introduction

The problem of the best approximation of unbounded operator by bounded ones was for-
mulated by S.B. Stechkin in [13, 14]. There he also established some important relations and
obtained first solutions to this problem. We follow [14] to state the problem rigorously. Let
X, Y be normed spaces, A : X — Y be an operator with domain D(A), W C D(A) be some
class of elements, £ = L(X,Y) be the space of linear bounded operators S : X — Y. For S € L,
denote the error of approximation of A by S on W:

U(A,S; W) := sup ||Ax — Sx||y.
xeW

Let N > 0and Lxy = Ln(X,Y) be the set of operators S € £ such that ||S|| < N.
The problem of the best approximation of operator A by linear bounded operators on the class
W, also known as the Stechkin problem, consists of finding the quantity

EnN(A;W) = inf sup ||Ax — Sx||y, (1)
Sely xeW

and extremal operators S* € Ly (if any exists) for which the inf in the right hand part of (1) is
achieved.
The following simple yet powerful lower bound for (1) was found in [14].
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Proposition 1. Let A be a homogeneous operator, W C D(A) be a centrally-symmetric convex
set. Then, for every N > 0 and § > 0,
En(A;W) = sup([|Ax[ly = N|[x[|x)- 2)
xeW

Moreover, if there exist xo € W and Sy € L such that ||Axolly = U(A, So; W) + ||Sol| - [|x0l|x,
then Sy is extremal operator in problem (1) for N = ||xo||x and

Ejsy (A; W) = U(A, So; W) = [[Axo]ly — [|Sol| - [|xo0]lx-

For a good overview of known results on the Stechkin problem and discussion of related
questions we refer the reader to surveys [1, 3], book [6] and recent paper [2].

In this paper we will study problem (1) for operators acting in Hilbert spaces. Let us remind
known results in this situation. Yu.N. Subbotin and L.V. Taikov [15] solved the problem of
the best approximation of differential operator A = DF of order k € N acting in the space
X =Y = Ly(R) on the class

W= {x € Lo(R) : XV € ACie(R), x| ) <1},

where 7 € IN, r > k. V.F. Babenko and R.O. Bilichenko [5,10] generalized this result for integral
powers A = AF of self-adjoint and normal operators A, respectively, acting in Hilbert space H
on the class

W= {xe D) : |||y <1}.
Later, V.F. Babenko, Yu.V. Babenko and N.A. Kriachko [4] obtained further generalization of
above results by considering the function A = ¢(A) of self-adjoint operator A : H — H and
the class

W={xeH: [pa)x|y<1}.
Here ¢ and ¢ are continuous complex-valued functions on R such that |¢(t)| and |(t)| are
even and strictly increasing to +co on (0, ) and, in addition, |@(t)|?> = F(|(t)|?), where F
is a strictly increasing, concave function with F(0) = 0. Note that papers [4,5,10] imposed an
additional assumption on operator A that effectively requires its spectrum to have non-empty
continuous part (see proof of Corollary 6 below).

In this paper we solve the Stechkin problem in case A is closable operator acting between
Hilbert spaces that preserves orthogonality between elements of orthogonal basis and class
W is defined with the help of multiple closed operators (see Section 3). In Section 2 we will
follow [7] to introduce necessary notations, definitions and auxiliary results. In Section 4 we
demonstrate application of main result to the problem of finding sharp inequalities for the
norms of derivatives and in several concrete situations: for the best approximation of powers
of the Laplace-Beltrami operators on Riemannian manifolds, and for the best approximation of
differentiation operator in spaces of periodic functions and spaces of functions defined on the
real line with the weight e™*". In addition, we will demonstrate that the results of this paper
generalize previous results in [4, 5,10, 15].

2 Preliminaries

Let H be a separable Hilbert space over C endowed with scalar product (-, -) g, norm || - ||y
and orthonormal basis {e,}, ., where M is a finite or countable set. For definiteness but
without loss of generality, we fix the meaning of the sum of series indexed by the set M. Let
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(e 9]

{MNn}y_; be any given sequence of nested finite subsets of M such that M = My. Then,
N=1

for a sequence {a,}, .5 C Hor {a,},c) C C, we set:

ay := lim a
providing the limit in the right hand part exists. In what follows the choice of the sequence
{Mn} is not essential as only absolutely convergent series will be considered. For x € H, by
Xn = (x,en)y, n € M, we denote its Fourier coefficients with respect to the system {ey },eum
and by Syx :=),c My Xn€n, N € N, - partial sums of the Fourier series of x.
For convenience, for sequences {a,},,car, {0n},ear C [0, 00), we denote

(o, if 3ng € M s.t. (ay, # 0) A (by, =0),
ng/{ b, Z—”, otherwise,

\ nEM:bn;ﬁO n

and
0, if Ang € M s.t. (ay, # 0) A (by, = 0),

Nﬂn P—
::AI:/)IE T sup I otherwise.

| neM:by0 On

When the set {n € M : b, # 0} is empty we define inEMZ_: := 0 and sup,,¢ 3> := 0.

Next, we let H' be a Hilbert space over C endowed with scalar product (-, ), and norm
| - || 7. For m € Z., consider linear operators Bj:H — H',j=0,...,m, with domains D (B]-).
We will require operators By, .. ., By, to satisfy conditions:

(B1) Vn € M it follows that e, € ﬂ}”ZOD(B]-) =: Dg;

(B2) Vn',n" € M,n" #n",and Vj € {0,1,...,m} it follows that (Bje,s, Bje,s ) = 0;
(B3) Jjo €{0,...,m} and Ing € M such that Bje,, # 0;

(B4) By, By, ..., By are closed operators (see, e.g., [16, §2.6]).

Forj=0,...,m, we consider the subspace

H;:= {x €H: HxH%{] =) \xn\zﬂBjenH%{, < 00} ,
neM

m
set Hp := (] Hj, and endow Hpg with the (semi-)norm
j=0

m

Il =3 3 lxal®- IBjenllZy = 3 [xul*-bu,  x € Ha,
j=0neM neM

where
m
bn = Z ||B]'€n||%11, n e M.
j=0
The next proposition provides constructive characterization of elements of Hp, establishes
embedding Hg C Dp and presents sufficient conditions for the coincidence of these sets.
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Lemma 1. Let By, By, ..., By, satisfy conditions (B1), (B2) and (B4). Then Hg C Dg and, for
every x € Hpg,

m
Bix= ) xu-Bje, j=0,1,...,m, IxI3 = Y IIBjx|13p-
neM j=0

Furthermore, if Bje, € D(B]’F) (for the definition of the adjoint operator see, e.g., [16, §7.1]) for
everyn € Mandj=0,1,...,m, then Dg = Hp.

Finally we consider linear operator A : H — H’ with domain D(A). We will require A to
satisfy the conditions below:

(A1) Vn € M it follows thate, € D(A);
(A2) dng € M such that Aey,, # 0;
(A3) Aisclosable (see, e.g., [16, §2.6]).
Theorem 6 in [7] gives the mean-squared version of the Hardy-Littlewood-Pélya inequality.

Proposition 2. Let m € Z, operators By, By, ..., By, satisfy conditions (B1) —(B4), operator A
satisfys conditions (A1) —(A3), and

—_ 2
Q2 = sup Z w < o0.
feH": neM by
7l <1

Then, for x € D(A) N Hp, there holds true sharp inequality
[Ax[|r < Q- [|x[|-
Furthermore, if A is closed then above inequality holds true for every x € Hp.

In what follows we additionally assume that the system {Ae,}, ., is orthogonal. In this
case Proposition 2 can be simplified as follows.

Corollary 1. Let m € Z., operators By, By, ..., By, satisfy conditions (B1)—(B4), operator A
satisfy conditions (A1) —(A3), the system { Aey, },em be orthogonal, and

——||Aen||
Q:=sup—— < 0. (3)
wert Vb

Then, for x € D(A) N Hg (for x € Hy if A is closed), there holds true sharp inequality

[Ax]|pr < Q- |[x[|s-

3 Main results

Let p,g € Z,, p+q9 = m — 1, and split operators By, ..., By, into two groups: operators
Ci:H—H,j=01,...,pand Dy : H— H,k=0,1,...,9. Let us consider the problem of
the best approximation of operator A : Hc — C by linear bounded functionals on the class

Wp = {x € D(A) NHcNHp HXHD < 1}.
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For N > 0, consider operator Sy : Hc — H' defined as follows

Snx = Z Xy -min {N/cy, || Aen||g} - ¢n, x € Hg,
neM

where ¢, = Ae,,/ || Aey ||y if ||Aenl|;p # 0 and ¢, = 0 otherwise.
LetC*={neM:c, #0},set Ry ={n € C*: N\/c, < ||Aenl|| '} and define

—~— A ’_N\/
N*:=inf{ N >0 : sup [ Aen ol
neRy \/di’l

Observe that N* < Q. Indeed, for every N > O and n € Ry, by condition (3) we have

|Aenll i < Q- Vbu < Q- (en + Vdn) < Ny/cy + N\/dy,

leading to the estimate N* < N and, hence, to the desired inequality N* < Q.

Theorem 1. Let p,q € Z, both groups of operators Cy,...,Cp and Dy, .. ., D, satisfy condi-
tions (B1) —(B4), operator A satisfy conditions (A1) —(A3), the system { Aey, },cm be orthogonal
and condition (3) for operators Cy, ...,Cy, Dy, ..., Dy be fulfilled. Then, for N > N¥,

! —_— A /—N
En(A; Wp) = max{ sup M; 5P | Aenl| Ven ’
neM\C* Vi neRy Vd,

and the operator Sy is extremal in problem (1).

Proof. Since operators C;’s satisfy condition (B2), we have C* # &. Let us denote
Ae HH/
N** := sup IAenlnr .
neC* \/a

Clearly, N** is well defined and N** > Q > N*. First, we calculate the norm of Sy

2
ISnI> = sup Y |xn|2-min{Nzcn,HAen )

[xc<1neM

Ae, |2,
= sup Z cn\xnlz-min{NZ,in "HH}

Ix]lc<1nec Cn

> [l Aeall3y 2 2
= sup min ¢ N°, ——= » = min {N*, (N**)"}.

neC* Cn

Hence, ||Sn|| < N. Now, we estimate the deviation of Sy from operator A on the class Wp.
Using closability of A, we obtain

U(ASv;Wp)=sup | Y |wal2-[[AealZ + Y |2l (|| Aenll i — Ny/en)®
x€Wp \| neM\C* nERN
= mp MealwNvE s el o el —N Ve |
ne(M\C*)URy Vi, nemics Vn nery Vdy

The first sup in the later relation is finite by condition (3) and the second sup is finite for
N > N* by definition of N*.




458 Babenko V.F,, Parfinovych N.V., Skorokhodov D.S.

Let us now prove that Ex(A; Wp) > U(A, Sy, Wp). Assume that

A ,—N
U(A,Sy;Wp) =  sup | Aen || Var o
ne(M\C*)URy Vi,

Then, for every ¢ > 0, there exists ny € (M \ C*) U Ry such that

| Aeng || — N, /Cy,
\/ dno

Combining above inequality with the lower estimate (2), we obtain

B2 [ (e ), ()

Ae + — N, /c
— H ﬂoHHd o > U(A;SN,WD) — &,
no

> U(A, Sn; Wp) — &.

Hc

which leads to the desired estimate as ¢ — 0". Case when U(A, Sy; Wp) = 0 is trivial. O

Remark 1. Under assumptions of Theorem 1, it follows directly from the definition of N* that
En(A;Wp) = o0 when N < N*.

Remark 2. Under assumptions of Theorem 1, in the case N = N* the quantity Ex(A; Wp) can
be either finite or infinite. Indeed, let H = H' = {p; Fyx = (1%x1,2%x5,3%x3,...), « > 0, for
x € by, Ay = F{+ F,, witha € [0,1) and domain D(A,) = {x € {5 : Z]f’ilj2|x]-|2 < oo};
m=1landp =q=0,Cy =By =F and Dy = By = Fy. Evidently, N* = 1 and Ry = N, and

El(A,X; WD) =1ifa =0 and El(A,X; WD) = Jooifa € (0,1)

Remark 3. The quantity Ex(A; Wp) is non-decreasing in N and tends to 0 as N — oo only if

o Aenllyr
SUPnem\c* ™ a, =0.

Remark 4. In the case A is closed operator and under conditions of Theorem 1, Wp = {x €
HC ﬂHD : ||JCHD < 1}

4 Applications

Additive Hardy-Littlewood-Pélya type inequalities. S.B. Stechkin proposed problem (1) as
an approach for solving the problem of finding sharp inequalities for the norms of derivatives.
Let X,Y, Z be Banach spaces, T : X — Y and S : X — Z be operators with domains D(A) and
D(B), respectively, such that D(B) C D(A). The problem of finding sharp additive inequali-
ties between the norms of images of operators T and S consists of finding the set I' of pairs of
non-negative numbers (P, Q) such that sharp inequality holds

ITx|ly < P-llx[lx +Q-[IBxlz, ~ x€D(B). (4)

Here sharpness is understood in the sense that Q = Q(P) is the lowest possible constant
in inequality (4) under given P > 0. Consider the class W = {x € D(B) : ||Bx||z < 1}.
Proposition 1 provides a simple connection between problems (1) and (4): for every P > 0,
Q < Ep(A; W). We refer the reader to books [6,12] on thorough overview of these inequalities
of type (4) and related inequalities.

As a direct consequence from Theorem 1 and Remarks 1-2 we obtain.
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Corollary 2. Under conditions of Theorem 1, there holds sharp inequality
| Axllsr < N - #llc + Ex(A;Wp) - [ixlp,  x € D(A) N He N Hp.

Moreover, if En+(A; Wp) < oo thenT consists of all pairs (N, Ex(A; Wp)), N > N*. Otherwise,
I consists of all pairs (N, EN(A; Wp)), N > N*.

In addition, let us compare N* with the analogue of the sharp constant in the Markov-
Nikolskii type inequality:

A ! —_—— A /
Axl _ o Ieul

M* = sup =
xeﬂ?:()kerD]‘\{G} ”xHC neM:d,=0 \/a

In case the first sup above is taken over empty set we set M* := 0. From Corollary 2, for every
x € m?:o ker D;\ {6} and N > N*, we have || Ax'|| 7 < N||x||c. Hence, M* < N*. Under some
additional assumptions, we can show that N* = M*.
Remark 5. If sup#* < co then N* = M*.

neM
Remark 6. Let us give an example when M* < N*. Let H=H' = {l,,m=1,p=q=0,Dg =
By with Dox = (0,x,x3,...); Ax = (x1/2,2x,3x3,...); Cx = (x1,(2—v2)x2, (3 —v/3)x3,...).
Then M* =1/2 and N* = 1.

Best approximation of powers of the Laplace-Beltrami operator. Let d € IN and (M, g) be
a d-dimensional C* compact Riemannian manifold without boundary with volume element
tg. Following notations in [9], we denote by A the extension of the negative Laplace-Beltrami
operator in the space

Ly(M) = {x M —=C: HXH%Z(M) = /M x(£)]* dpg (t) < oo}.

A has a discrete spectrum 0 = p3 < u? < p3 < ... without accumulations, where each
eigenvalue occurs as many times as its multiplicity. We denote by {¢; i~ an Lp-orthonormal
basis of C*-real eigenfunctions associated with the y;’s. For s € R, define the Sobolev space
H*(M) as follows:

H*(M) := {x M —=C: HxH%IS(M) = X:l ]ajlzy]zs < oo} ,
]:
where a; = (x, ¢j)r,(m) = [ X(£)@j(t) dpg(t), and set

Hy(M) :={x € H*(M) : a9 =0}.
Define the fractional power of A. For x € H2(M), set

Ax = Z:l a]-]/t]z-sgoj.
]:

Consider H = H' = Ly(M), m = 1, A = A¥, By = id, By = A" with k,r € R such that
0 < k <r. Denoteby 0 < A? < ... < A2 < ... distinct eigenvalues p3, 3, ... of A such that
A% = 3. Clearly,
Wp = W2 (M) = {x € HY (M) : [|x]lrpp) < 1}.

L . k_ L .
Taking into account the fact that the function xzxer attains its maximal value on [N, 40) at

1/k
the point <%> , we obtain the following result.
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Corollary 3. Under above notations, N* = 0 and for N > 0,

AZ_N A =N Al —N
En(AS W (M) = sup ”AZr = max { nAZr ; n;’@r ,
neN:AZ>N n nN ny+1

1/k
WherenN:max{nE]N An S(:Z\]]{) }

Furthermore, for every x € H* (M), there holds sharp inequality

2k 2k
)‘ -N An +1 - N . HAZrX
AZr ’ AZr
ﬂN+1

7

AFx < N-|x
1A% 5 %[5 a1 +ma><{ L)
which turns into equality on either ¢y, or ¢, 41.

Remark 7. In the similar way we can solve the problem on the best approximation of powers
of positive self-adjoint unbounded operators with discrete spectrum or on the best approxi-
mation of integral powers of any self-adjoint unbounded operators with discrete spectrum.

Best approximation of differentiation operator on the period. In case M = T is the period of
length 277, Corollary 3 can be simplified to the following.

Corollary 4. Under conditions of Corollary 3, for N > 0,

kN N—N )fF—N
En(DS,WH(T)) = sup " — = max nNr ;(nN+) . ,
neN:nk>N - 1 N (nn+1)
1/k
N
(=)"]

Furthermore, for every x € H'(T), there holds sharp inequality

k - N k
<) < N el +max{”w JUTSIE N}.me

where ny =

4

ny 1 (nny+1) L,(T)
which turns into equality on either ¢"~(") or ¢!("n+1)(),
Note that sharp multiplicative inequalities for || - ||, (r)-norms of derivatives of periodic

functions were obtained in [11].

Best approximation of differentiation operator in spaces with weights. Denote by L, 2 (R)
the space of Lebesgue measurable functions x : R — R with the norm

) 1/2
Il = ( [ ey dt) < co.
R

It is well known that the system of Hermite polynomials {H;}{2 ; is orthonormal basis in
L,, »(R). By L’ 2 (R) we denote the space of functions x € L, _»(IR) having locally ab-

solutely contmuous derivative x("~1) and such that x(") € L,, »(R). It is well-known that

¥ = BuxHy i, where B = (2n(n —1) ... (n — k+1))1/2.
Consider H=H' =L, 2(R),m=1,kreN,k<r A=DKBy=Cy=id, By = Dy =

D’ Then N* = M* = B, and Wp =W, ,(R) = {xe Ll L(R): [+ <1},
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It is not difficult to see that the function

— N
gn(x) = L’g , x>0,

has a unique positive maximum on (0, c0), which is attained at some point {y. Denote by
nN = NNk, := [Cn] the integer part of .

Corollary 5. Under above assumptions, for N > B,_1,

- N
(DI, o(R) = up  BEES — maxgu(omgnn + 1)
nelN: by > nr

Furthermore, for every x € L;,e* 2 (R), there holds sharp inequality

lx O < N -l + max {gn () gn (i + 1)} - 127, (5)
which turns into equality on one of the Hermite polynomials Hy,, or H,, 1 1.

Note that sharp multiplicative analogues of inequality (5) under some additional assump-
tions were obtained in [8].

Best approximation of functions of self-adjoint operators. Let us follow notations and as-
sumptions of paper [4]. Let A : H — H be a self-adjoint unbounded operator with domain
D(A). From the spectral theorem (see [16, Ch. XI, §5, 6]) it follows that there exists a partition
of unity {E}, t € R, such that
+00
o= [ taE.

If  : R — C is a continuous function then the operator ¢(A) is well-defined and can be

represented as
—+o0

o(8) = [ olt)aE.

Now, consider the functions A = ¢(A) and Dy = By = (A) of operator A, where ¢ and ¢
are continuous complex-valued functions on R such that |¢(t)| and |¢(¢)| are even and strictly
increasing to +o0 on (0,00). Assume |¢(t)|> = F(|¢(t)|?), where F is a strictly increasing,
concave function with F(0) = 0. In addition, let A be such that, for every 0 < s < t < oo,

(Et — Es)D(y(A)) # {6}. 6)
Letalsom =1,p=g=0,Cy =By =idy,and Wp ={x € H : |[¢(A)x||xg < 1}.

For any b > 0, consider the function

_ o)
op(t) = () = ym ¥, <D, and set N(b) = max |¢y(t)].
0/ ’t‘ > b’ !

Corollary 6. Under above notations let |‘(fp((tt)))|| be non-increasing. Then, for every b > 0,

Enwy(A;Wp) = %'

and Q, = ¢u(A) is the operator of the best approximation of A on the class Wp with
1Qull < N(b )
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Proof. From (6) we conclude that E; # Es, for every 0 < s < t < oco. Since {E;} are pro-
jectors, their images Ry = E;(H) are closed subspaces in H and are such that Ry C R; and
Rs # Ry. Hence, for every h > 0 and n € Z, there exists z,, € R(n +p N R#h having unit norm
|zn||r = 1. Note that (Eizy,zn)g = 0, for every t < n, and (E;zpn, zn)g = 1, forevery t > n+ 1.
Evidently, A is well-defined on every z,, as

(n+1)h

Jazall = [ lo@PdEznzdn = [ lo()P (B z)n < ol DR,

Similar arguments apply for operator B. Note also that { Az, } and {Bz, } are orthogonal.

For h > 0, denote by H, the subspace of H having orthonormal basis {z,},cz, and set
Wp,, = Wp N Hy,. Then, by Theorem 1,

[Azn | — N(b) |[¢(nh)| — N(b)
E A;Wp) > E A;Wpp) = su > su )
NG N (AWDI) = S T 2 LS (e n)]

For every sufficiently small e > 0, let y, > 0 be such that |¢,(ye)| > N(b) —e. Choose h = h(e)
and n = n(e) € Z4 tobe such that y. = nh and [¢((n+ 1)h)| < |¢(ye)| +e. Then

lo(b)| . _
E (A W) > 120 = N®) o) — gyl —e _ fpl [Pl —¢
(01 — el te T [(ye)| + € [W(ye)| + €
Letting e — 0, we obtain the desired lower estimate En) (A;Wp) > %.

The extremality of operator S, was proved in [4, Theorem 5]. Alternatively, the operator

Q)= [ LY min (N(®),lg(0)]} dE

o [p(t)]
where % := 0 when ¢(t) = 0, is also extremal and its construction in some sense similar to
the construction of the extremal operator in Theorem 1. O

Remark 8. Assertion of Corollary 6 remains true is we relax the assumption that |¢(t)|> =
F(|p(t)|?), where F is a strictly increasing, concave function with F(0) = 0 to only requiring
that supp ¢ C supp ¢. Furthermore, the assumption of continuity of functions ¢ and ¥ can be

relaxed to right-continuity of function 1.

Note that Corollary 6 contains the classical result on the best approximation of differen-
tiation operator of integral order in space Ly(IR) by Yu.N. Subbotin and L.V. Taikov [15] and
generalizes [5, Theorem 3] and [4, Theorem 5]. Also, in a similar way as Corollary 6, the result
of paper [10] for the best approximation of integral powers of normal operators can be obtained
from Theorem 1.

References

[1] Arestov V.V. Approximation of unbounded operators by bounded operators and related extremal problems Russian
Math. Surveys 1996, 51 (6), 1093-1126. d0i:10.1070/RM1996v051n06 ABEH003001 (translation of Usp. Mat.
Nauk 1996, 51 (6), 89-124. d0i:10.4213/rm1019 (in Russian))

[2] Arestov V.V. Uniform Approximation of Differentiation Operators by Bounded Linear Operators in the Space Ly.
Anal. Math. 2020, 46, 425-445. d0i:10.1007 /s10476-020-0040-z

[3] Arestov V.V., Gabushin V.N. Best approximation of unbounded operators by bounded operators. Russian Math. (Iz.
VUZ) 1995, 39 (11), 38-63. (translation of Izv. Vyssh. Uchebn. Zaved. Mat. 1995, 11, 42-68. (in Russian))



The best approximation of closed operators by bounded operators in Hilbert spaces 463

(4]

(5]

(6]

(7]

(8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

(16]

Babenko V., Babenko Yu., Kriachko N. Inequalities of Hardy-Littlewood-Pélya Type for Functions of Operators and
Their Applications. . Math. Anal. Appl. 2016, 444 (1), 512-526. d0i:10.1016/].JMAA.2016.05.033

Babenko V.E, Bilichenko R.O. Approximation of unbounded operators by bounded operators in a Hilbert space.
Ukrainian Math. J. 2009, 61, 179-187. d0i:10.1007 /s11253-009-0212-2 (translation of Ukrain. Mat. Zh. 2009, 61
(2), 147-153. (in Russian))

Babenko V.E.,, Korneichuk N.P,, Kofanov V.A., Pichugov S.A. Inequalities for derivatives and their applica-
tions. Naukova Dumka, Kyiv, 2003. (in Russian)

Babenko V., Babenko Yu., Kriachko N., Skorokhodov D. On Hardy-Littlewood-Pélya and Taikov type inequalities
for multiple operators in Hilbert spaces. Analysis Math. 2021, 47 (4), 709-745. doi:10.1007 /s10476-021-0104-8

Berdnikova I.V., Rafal’son S.Z. Some inequalities between norms of a function and its derivatives in integral metrics.
Soviet Math. (Izv. VUZ) 1985, 29 (12), 1-5. (translation of Izv. Vyssh. Uchebn. Zaved. Mat. 1985, 12, 3-6. (in
Russian))

Besse A.L. Manifolds all of whose Geodesics are Closed. In: Zariski O. (Eds.) A Series of Modern Surveys in
Mathematics. Springer-Verlag, Berlin Heidelberg New York, 1978. d0i:10.1007 /978-3-642-61876-5

Bilichenko R.O. Some problems of approximation theory for powers of normal operators in Hilbert space. Researches
in Math. 2010, 18, 59-71. d0i:10.15421/241007 (in Russian)

Hardy G.H., Littlewood J.E., Pélya G. Inequalities. University Press, Cambridge, 1934.

Mitrinovi¢ D.S., Peéari¢ ].E., Fink A.M. Inequalities Involving Functions and Their Integrals and Derivatives.
In: Sobczyk K. (Eds.) Mathematics and its Applications, 53. Springer, Netherlands, 1991. d0i:10.1007 /978-94-
011-3562-7

Stechkin S.B. Inequalities between norms of derivatives of an arbitrary function. Acta Sci. Math. 1965, 26, 225-230.

Stechkin S.B. Best approximation of linear operators. Math. Notes 1967, 1 (2), 91-99. doi:10.1007 /BF01268056
(translation of Mat. Zametki 1967, 1 (2), 137-148. (in Russian))

Subbotin Yu.N., Taikov L.V. Best approximation of a differentiation operator in Ly-space. Mathem. Notes 1968, 3,
100-105. doi:10.1007 /BF01094328 (translation of Mat. Zametki 1967, 3 (2), 157-164. (in Russian))

Yosida K. Functional Analysis. Springer-Verlag, Berlin Heidelberg, 1995. d0i:10.1007 /978-3-642-61859-8

Received 27.06.2022

babenxo B.®., [Tapadpinosma H.B., Ckopoxoaos A.C. Hailkpauje HabnusiceHHs 3aMKHEHUX 0nepamopis
o6 medceHumu onepamopamu 8 2invbepmosomy npocmopi // Kapmarcbki matem. myba. — 2022. — T.14,
N22. — C. 453-463.

Po3p’s13aHa 3apava HalKpaIoro HabAVKeHHsI 3aMKHEeHIX OIlepaTopiB AiHIMHMMI 06MeXeHMI
orlepaTopaMi B TiAbOEpPTOBOMY IIPOCTOpPi Y MPUITYIIeHH], IO oepaTopy 36epiraloTb OpPTOrOHAAD-
HiCcTb 6a3mcy riabbepTOBOTO MPOCTOPY. SIK HacAiAOK, OTpMMaHa TOUYHa aAMTVMBHA HepPiBHICTD THITy
Xapai-AitapByaa-Tloita ansT AeKiABKOX 3aMKHeHMX omnepaTopis. HaBeaeHi 3acTocyBaHHS IMX pe-
3yABTaTiB y KOHKPETHMX CUTYallisIX: AAsSI HAIKpaIlloro HabAVDKeHHS CTeleHiB onepaTopa Aaraaca-
BeapTpami Ha xaacax dpyHKIIIN, BU3HAUeHMX Ha 3aMKHEHMX PiMaHOBMX MHOTOBMAAX, AASl HalKpa-
IIIOTO HaGAVDKEHHsI OTlepaTopiB AMdpepeHIIIIOBaHHsI Ha KAacax MepioAMIHMX OYHKIIIN Ta PYHKIII,
BUM3HaUeHNX Ha AiliCHilf oci 3 Baroro e~
PpiB B riAb6EpPTOBMX IIPOCTOPAX.

, AASI HalIKpaIIoro HabAVDKeHHS CaMOCIIPSDKEHNX OIlepaTo-

Kontouosi cnoea i ¢ppasu: Havikpalle HabAVDKeHHsI onepaTopis, mpobaema CTeukiHa, HepiBHOCTI
Tty Koamoroposa, camocripsikeHmiz oneparop, ornepaTtop Aamnaaca-beabTpami, 3aMKHeHII1 onepa-
TOP.



